Datasets:
Formats:
text
Languages:
English
Size:
< 1K
Tags:
object-detection
classification
safety-helmet
hardhat-detection
construction-safety
drone-imagery
License:
Dataset Viewer
text
stringlengths 57
81
|
---|
4 0.20403125 0.39586574074074077 0.03576302083333331 0.061541666666666696
|
3 0.36857291666666664 0.4891111111111111 0.04278906249999999 0.0698888888888889
|
2 0.7723489583333334 0.4316435185185185 0.03523697916666677 0.056805555555555574
|
4 0.20797135416666668 0.40431018518518513 0.03249999999999999 0.05960185185185186
|
3 0.38467968750000003 0.49744444444444447 0.04131510416666669 0.06562037037037032
|
1 0.7250182291666667 0.42886574074074074 0.032981770833333236 0.05125000000000002
|
2 0.7936536458333333 0.42519444444444443 0.03637760416666656 0.062425925925925885
|
3 0.4239583333333333 0.4996574074074074 0.04583333333333333 0.06320370370370369
|
4 0.25638020833333336 0.4112175925925926 0.04765625 0.05855092592592594
|
1 0.7166666666666667 0.42580092592592594 0.0375 0.04049537037037038
|
2 0.8428385416666667 0.43298148148148147 0.039322916666666666 0.05948148148148149
|
1 0.7215989583333333 0.4322175925925926 0.024343749999999886 0.05237962962962968
|
2 0.8913072916666667 0.4453518518518519 0.03686197916666671 0.05082870370370369
|
3 0.46895312499999997 0.508550925925926 0.05807552083333327 0.07521759259259256
|
4 0.2997682291666666 0.4102731481481482 0.036166666666666694 0.06413425925925925
|
3 0.5061145833333334 0.5016805555555556 0.040005208333333306 0.06725000000000005
|
1 0.7223958333333333 0.43992592592592594 0.028125 0.06411111111111112
|
2 0.9455338541666667 0.4517083333333334 0.04017968749999999 0.06744444444444442
|
4 0.33905729166666665 0.4126435185185185 0.03198958333333337 0.06612499999999996
|
3 0.5502604166666667 0.5024351851851852 0.043229166666666666 0.06875925925925926
|
4 0.3958333333333333 0.4237222222222222 0.04583333333333333 0.059476851851851864
|
1 0.7072916666666667 0.4315925925925926 0.029166666666666667 0.04743981481481483
|
4 0.4239192708333333 0.43808796296296293 0.04972916666666668 0.08266203703703708
|
1 0.6842161458333333 0.4299027777777778 0.03825260416666675 0.0446527777777778
|
3 0.5916250000000001 0.5048425925925926 0.054770833333333255 0.05543981481481482
|
4 0.303125 0.4508101851851852 0.04375 0.09050925925925926
|
3 0.4733072916666667 0.5174861111111111 0.053385416666666664 0.07571296296296294
|
1 0.5315104166666667 0.4424722222222222 0.04739583333333333 0.07383796296296302
|
0 0.8979166666666667 0.44455555555555554 0.035416666666666666 0.07337500000000005
|
2 0.9477864583333333 0.47697222222222224 0.04401041666666667 0.08264351851851846
|
4 0.32011197916666667 0.4524583333333333 0.04729427083333337 0.08358333333333332
|
0 0.81384375 0.4416435185185185 0.034950520833333346 0.05577314814814816
|
1 0.48164583333333333 0.4373194444444444 0.02608072916666669 0.047124999999999986
|
2 0.9699869791666667 0.45014351851851847 0.044687500000000095 0.06349537037037041
|
3 0.4918177083333333 0.5085555555555555 0.04120833333333328 0.05049074074074072
|
4 0.23163020833333334 0.4543842592592593 0.050544270833333314 0.07553703703703703
|
1 0.3251171875 0.4350879629629629 0.030630208333333304 0.045518518518518486
|
3 0.40534895833333334 0.5041203703703704 0.043234375 0.05291203703703702
|
0 0.6305416666666667 0.4366851851851852 0.026416666666666564 0.05042129629629633
|
2 0.8794921875 0.4623703703703704 0.041002604166666616 0.07795370370370376
|
4 0.2875 0.4711851851851852 0.03333333333333333 0.07569444444444444
|
3 0.4197916666666667 0.5103101851851852 0.04791666666666667 0.0752453703703704
|
0 0.5748697916666666 0.4357592592592593 0.02734375 0.0465138888888889
|
2 0.9169270833333333 0.4681712962962963 0.04739583333333333 0.07430555555555556
|
1 0.2703125 0.45567129629629627 0.040625 0.05856018518518514
|
4 0.348828125 0.4910925925925926 0.054427083333333334 0.08774074074074073
|
3 0.43059895833333334 0.5246620370370371 0.06171875 0.09469907407407416
|
0 0.5356770833333333 0.4378425925925926 0.034895833333333334 0.06457407407407409
|
2 0.9692708333333333 0.4809074074074074 0.053125 0.1044074074074074
|
1 0.2698880208333333 0.44297685185185187 0.03841927083333336 0.04348611111111114
|
4 0.4274973958333333 0.48974999999999996 0.03669010416666663 0.0755601851851852
|
3 0.46889322916666665 0.5040925925925925 0.0368802083333333 0.04960648148148152
|
0 0.4969401041666667 0.4259074074074074 0.031502604166666615 0.0503240740740741
|
4 0.5309401041666667 0.48821296296296296 0.04379687500000002 0.07590277777777775
|
3 0.4984765625 0.48924074074074075 0.0211302083333333 0.04381018518518524
|
0 0.46898958333333335 0.4260787037037037 0.021705729166666642 0.04724999999999997
|
1 0.2501015625 0.44553703703703706 0.03534375000000001 0.0383657407407408
|
IITU Safety-Helmet Dataset v1.0 Demo
Overview:
This dataset contains annotated images of safety helmets captured both by drone and at ground level, designed for helmet detection and color classification tasks in computer vision.
This is the DEMO version of the dataset, now it contains only 14 images and annotations.
π Dataset Summary
This dataset contains 1,664 images annotated for safety-helmet detection and color classification.
- 6,473 helmet instances
- Captured by drone (3β5 m, 10β15 m; angles 0Β°, 45Β°, 90Β°) and at ground level
- Lighting conditions: daytime (clear) and night (lamp light)
π Dataset Structure
iitu-safety-helmet/
βββ data
β βββ frames_daytime
β β βββ horizontal_0deg
β β β βββ 3-5_meters
β β β β βββ images/
β β β β βββ annotations/
β β β βββ 10-15_meters
β β β βββ images/
β β β βββ annotations/
β β βββ tilted_45deg
β β βββ vertical_90deg
β βββ frames_night_time
β βββ horizontal_0deg
β β βββ images/
β β βββ annotations/
β βββ tilted_45deg
β βββ vertical_90deg
βββ classes.txt
βββ README.md
Annotation Format:
- Each .txt annotation file corresponds to one image and contains one line per helmet.
- Line format (YOLO v5-style with high-precision floats): "class_id", "x_center", "y_center", "width", "height".
- All five values are space-separated; the four geometry values are normalized to [0, 1] and may have up to 16 decimal places.
Classes:
0 blue helmet
1 green helmet
2 red helmet
3 white helmet
4 yellow helmet
Paper / Citation
Bektemyssova, G.; Bykov, A.; Keresh, A.; Yergazy, Y.; Shaikemelev, G.;
IITU Safety-Helmet Dataset: Drone-Captured and Ground-Level Images with Color Annotations. 2025.
DOI: soon
License:
CC BY 4.0
- Downloads last month
- 81