Dataset Viewer
Auto-converted to Parquet
Year
stringdate
1960-01-01 00:00:00
2024-01-01 00:00:00
internally_displaced_persons_new_displacement_associated_with_disasters_number_of_cases_
float64
2
3.89M
urban_land_area_where_elevation_is_below_5_meters_sq_km_
float64
0
4.82k
urban_population_of_total_population_
float64
2.08
91
1960-01-01
25,000
133.555919
30.51
1961-01-01
25,000
133.555919
31.797
1962-01-01
25,000
133.555919
33.214
1963-01-01
25,000
133.555919
34.662
1964-01-01
25,000
133.555919
36.141
1965-01-01
25,000
133.555919
37.643
1966-01-01
25,000
133.555919
38.84
1967-01-01
25,000
133.555919
39.004
1968-01-01
25,000
133.555919
39.169
1969-01-01
25,000
133.555919
39.334
1970-01-01
25,000
133.555919
39.5
1971-01-01
25,000
133.555919
39.665
1972-01-01
25,000
133.555919
39.831
1973-01-01
25,000
133.555919
39.997
1974-01-01
25,000
133.555919
40.163
1975-01-01
25,000
133.555919
40.33
1976-01-01
25,000
133.555919
40.497
1977-01-01
25,000
133.555919
40.928
1978-01-01
25,000
133.555919
41.794
1979-01-01
25,000
133.555919
42.665
1980-01-01
25,000
133.555919
43.542
1981-01-01
25,000
133.555919
44.42
1982-01-01
25,000
133.555919
45.303
1983-01-01
25,000
133.555919
46.189
1984-01-01
25,000
133.555919
47.079
1985-01-01
25,000
133.555919
47.968
1986-01-01
25,000
133.555919
48.86
1987-01-01
25,000
133.555919
49.722
1988-01-01
25,000
133.555919
50.511
1989-01-01
25,000
133.555919
51.298
1990-01-01
25,000
133.555919
52.085
1991-01-01
25,000
135.127017
52.871
1992-01-01
25,000
136.698115
53.657
1993-01-01
25,000
138.269213
54.439
1994-01-01
25,000
139.840311
55.219
1995-01-01
25,000
141.411409
55.997
1996-01-01
25,000
142.982506
56.774
1997-01-01
25,000
144.553604
57.544
1998-01-01
25,000
146.124702
58.313
1999-01-01
25,000
147.6958
59.118
2000-01-01
25,000
149.266898
59.919
2001-01-01
25,000
150.284609
60.712
2002-01-01
25,000
151.30232
61.501
2003-01-01
25,000
152.320031
62.284
2004-01-01
25,000
153.337743
63.061
2005-01-01
25,000
154.355454
63.83
2006-01-01
25,000
155.373165
64.593
2007-01-01
25,000
156.390876
65.348
2008-01-01
25,000
157.408587
66.097
2009-01-01
2,500
158.426298
66.826
2010-01-01
1,960
159.444009
67.54
2011-01-01
1,420
160.46172
68.236
2012-01-01
880
161.479431
68.915
2013-01-01
340
162.497143
69.576
2014-01-01
4,500
163.514854
70.221
2015-01-01
19,000
164.532565
70.848
2016-01-01
2,000
164.532565
71.459
2017-01-01
1,009.5
164.532565
72.052
2018-01-01
19
164.532565
72.629
2019-01-01
3,200
164.532565
73.189
2020-01-01
9,600
164.532565
73.733
2021-01-01
6,600
164.532565
74.261
2022-01-01
2,000
164.532565
74.772
2023-01-01
23,000
164.532565
75.268
2024-01-01
23,000
164.532565
75.268
1960-01-01
86,000
23.731462
10.435
1961-01-01
86,000
23.731462
10.798
1962-01-01
86,000
23.731462
11.204
1963-01-01
86,000
23.731462
11.624
1964-01-01
86,000
23.731462
12.058
1965-01-01
86,000
23.731462
12.504
1966-01-01
86,000
23.731462
12.965
1967-01-01
86,000
23.731462
13.441
1968-01-01
86,000
23.731462
13.932
1969-01-01
86,000
23.731462
14.436
1970-01-01
86,000
23.731462
14.957
1971-01-01
86,000
23.731462
15.632
1972-01-01
86,000
23.731462
16.455
1973-01-01
86,000
23.731462
17.31
1974-01-01
86,000
23.731462
18.202
1975-01-01
86,000
23.731462
19.128
1976-01-01
86,000
23.731462
20.092
1977-01-01
86,000
23.731462
21.088
1978-01-01
86,000
23.731462
22.122
1979-01-01
86,000
23.731462
23.192
1980-01-01
86,000
23.731462
24.298
1981-01-01
86,000
23.731462
25.437
1982-01-01
86,000
23.731462
26.612
1983-01-01
86,000
23.731462
27.821
1984-01-01
86,000
23.731462
29.065
1985-01-01
86,000
23.731462
30.338
1986-01-01
86,000
23.731462
31.643
1987-01-01
86,000
23.731462
32.978
1988-01-01
86,000
23.731462
34.343
1989-01-01
86,000
23.731462
35.731
1990-01-01
86,000
23.731462
37.144
1991-01-01
86,000
25.148525
38.58
1992-01-01
86,000
26.565587
40.039
1993-01-01
86,000
27.982649
41.511
1994-01-01
86,000
29.399712
43
End of preview. Expand in Data Studio

Master Datacard for Urban, Disaster Risk, Resilience, and Land Indicators for African Countries

This repository contains time-series datasets for key urban development, disaster risk, resilience, and land indicators for 54 African countries. The data is sourced from The World Bank and has been cleaned, processed, and organized for analysis.

Each country has its own set of files, including a main CSV dataset and a corresponding datacard in Markdown format. The data covers the period from 1960 to 2024, where available.


Repository Structure

The datasets are organized by country. Each country's folder contains:

  1. A CSV file with the naming convention: {CountryName}-Urban_Disaster_Risk_Resilience_and_Land-Indicators-Dataset-{StartYear}-{EndYear}.csv
  2. A detailed datacard named datacard_Urban_Disaster_Risk_Resilience_and_Land.md.

Indicators Included

This collection includes the following indicators:

  • Internally displaced persons, new displacement associated with disasters (number of cases)
  • Urban land area where elevation is below 5 meters (sq. km)
  • Urban population (% of total population)

Countries Included

This dataset covers all 54 sovereign nations of Africa as recognized by the source data:

  • Algeria
  • Angola
  • Benin
  • Botswana
  • Burkina Faso
  • Burundi
  • Cabo Verde
  • Cameroon
  • Central African Republic
  • Chad
  • Comoros
  • Congo, Dem. Rep.
  • Congo, Rep.
  • Cote d'Ivoire
  • Djibouti
  • Egypt, Arab Rep.
  • Equatorial Guinea
  • Eritrea
  • Eswatini
  • Ethiopia
  • Gabon
  • Gambia, The
  • Ghana
  • Guinea
  • Guinea-Bissau
  • Kenya
  • Lesotho
  • Liberia
  • Libya
  • Madagascar
  • Malawi
  • Mali
  • Mauritania
  • Mauritius
  • Morocco
  • Mozambique
  • Namibia
  • Niger
  • Nigeria
  • Rwanda
  • Sao Tome and Principe
  • Senegal
  • Seychelles
  • Sierra Leone
  • Somalia
  • South Africa
  • South Sudan
  • Sudan
  • Tanzania
  • Togo
  • Tunisia
  • Uganda
  • Zambia
  • Zimbabwe

Data Preparation

The raw data from The World Bank was processed using a Python script with the following steps:

  1. Filtering: Data was filtered for each of the 54 African countries.
  2. Reshaping: Wide-format data (with years as columns) was melted into a long format.
  3. Merging: All indicator files for a country were merged into a single time-series dataset based on the 'Year' column.
  4. Cleaning: The 'Year' column was converted to a standard date format (YYYY-MM-DD).
  5. Missing Data Handling: Gaps in the time-series were filled using linear interpolation followed by a back-fill to ensure data continuity.

How to Use

You can access the data directly through the Hugging Face Hub, either by downloading individual files or by using the datasets library to load the data.

from datasets import load_dataset

# Example: Load the dataset for Nigeria
dataset = load_dataset('electricsheepafrica/Urban-Disaster-Risk-Resilience-and-Land-Indicators-For-African-Countries', data_files='Nigeria/Nigeria-Urban_Disaster_Risk_Resilience_and_Land-Indicators-Dataset-1960-2024.csv')

print(dataset)
Downloads last month
43