Unnamed: 0
int64
category
string
githuburl
string
customtopics
string
customabout
string
customarxiv
string
custompypi
string
featured
float64
links
string
description
string
_repopath
string
_reponame
string
_stars
int64
_forks
int64
_watches
int64
_language
string
_homepage
string
_github_description
string
_organization
string
_updated_at
string
_created_at
string
_age_weeks
int64
_stars_per_week
float64
_avatar_url
string
_description
string
_github_topics
string
_topics
string
_last_commit_date
string
sim
string
_pop_contributor_count
int64
_pop_contributor_orgs_len
float64
_pop_contributor_orgs_error
float64
_pop_commit_frequency
float64
_pop_updated_issues_count
int64
_pop_closed_issues_count
int64
_pop_created_since_days
int64
_pop_updated_since_days
int64
_pop_recent_releases_count
int64
_pop_recent_releases_estimated_tags
int64
_pop_recent_releases_adjusted_count
int64
_pop_issue_count
float64
_pop_comment_count
float64
_pop_comment_count_lookback_days
float64
_pop_comment_frequency
float64
_pop_score
int64
1,341
data
https://github.com/prefecthq/prefect-aws
['aws']
null
[]
[]
null
null
null
prefecthq/prefect-aws
prefect-aws
83
39
11
Python
https://PrefectHQ.github.io/prefect-aws/
Prefect integrations with AWS.
prefecthq
2023-12-29
2022-01-04
108
0.768519
https://avatars.githubusercontent.com/u/39270919?v=4
Prefect integrations with AWS.
['aws', 'prefect']
['aws', 'prefect']
2024-01-05
[('aws/aws-sdk-pandas', 0.6139408946037292, 'pandas', 1), ('boto/boto3', 0.5230756402015686, 'util', 1), ('pynamodb/pynamodb', 0.5191414952278137, 'data', 1), ('rhinosecuritylabs/pacu', 0.5137910842895508, 'security', 1), ('prefecthq/prefect-dbt', 0.512976348400116, 'ml-ops', 1)]
34
4
null
1.42
50
32
25
0
18
15
18
50
43
90
0.9
31
1,659
data
https://github.com/unstructured-io/unstructured-inference
['unstructured', 'inference', 'pipeline']
Hosted model inference code for layout parsing models.
[]
[]
null
null
null
unstructured-io/unstructured-inference
unstructured-inference
61
18
15
Python
null
null
unstructured-io
2024-01-14
2022-12-20
58
1.051724
https://avatars.githubusercontent.com/u/108372208?v=4
Hosted model inference code for layout parsing models.
[]
['inference', 'pipeline', 'unstructured']
2024-01-10
[('optimalscale/lmflow', 0.5030722618103027, 'llm', 0)]
24
3
null
3.21
70
54
13
0
71
72
71
70
43
90
0.6
31
1,038
term
https://github.com/manrajgrover/halo
[]
null
[]
[]
null
null
null
manrajgrover/halo
halo
2,816
146
24
Python
null
💫 Beautiful spinners for terminal, IPython and Jupyter
manrajgrover
2024-01-11
2017-09-03
334
8.423932
null
💫 Beautiful spinners for terminal, IPython and Jupyter
['async', 'halo', 'ipython', 'jupyter', 'ora', 'spinner']
['async', 'halo', 'ipython', 'jupyter', 'ora', 'spinner']
2020-11-09
[('ipython/ipyparallel', 0.5247726440429688, 'perf', 1)]
31
4
null
0
4
0
77
39
0
0
0
4
1
90
0.2
30
1,783
diffusion
https://github.com/openai/improved-diffusion
['denoising', 'diffusion']
null
[]
[]
null
null
null
openai/improved-diffusion
improved-diffusion
2,511
408
116
Python
null
Release for Improved Denoising Diffusion Probabilistic Models
openai
2024-01-12
2021-02-08
155
16.185083
https://avatars.githubusercontent.com/u/14957082?v=4
Release for Improved Denoising Diffusion Probabilistic Models
[]
['denoising', 'diffusion']
2022-01-12
[('lllyasviel/controlnet', 0.5762985944747925, 'diffusion', 0), ('tanelp/tiny-diffusion', 0.5728610754013062, 'diffusion', 0), ('divamgupta/stable-diffusion-tensorflow', 0.5380927324295044, 'diffusion', 0)]
1
0
null
0
28
2
36
24
0
0
0
28
28
90
1
30
800
web
https://github.com/flipkart-incubator/astra
[]
null
[]
[]
null
null
null
flipkart-incubator/astra
Astra
2,385
389
84
Python
null
Automated Security Testing For REST API's
flipkart-incubator
2024-01-13
2018-01-10
315
7.550882
https://avatars.githubusercontent.com/u/7090545?v=4
Automated Security Testing For REST API's
['ci-cd', 'owasp', 'penetration-testing', 'penetration-testing-framework', 'postman-collection', 'restapiautomation', 'sdlc', 'security', 'security-automation']
['ci-cd', 'owasp', 'penetration-testing', 'penetration-testing-framework', 'postman-collection', 'restapiautomation', 'sdlc', 'security', 'security-automation']
2023-02-16
[('rhinosecuritylabs/pacu', 0.5590912699699402, 'security', 2), ('taverntesting/tavern', 0.552314817905426, 'testing', 0), ('swisskyrepo/payloadsallthethings', 0.5459146499633789, 'security', 2), ('tox-dev/tox', 0.5185132026672363, 'testing', 0), ('tiangolo/fastapi', 0.5062249302864075, 'web', 0)]
12
3
null
0.02
4
0
73
11
0
0
0
4
1
90
0.2
30
1,328
ml-dl
https://github.com/google-research/electra
[]
null
[]
[]
null
null
null
google-research/electra
electra
2,269
350
61
Python
null
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
google-research
2024-01-13
2020-03-10
203
11.17734
https://avatars.githubusercontent.com/u/43830688?v=4
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
['deep-learning', 'nlp', 'tensorflow']
['deep-learning', 'nlp', 'tensorflow']
2021-03-31
[('huggingface/text-generation-inference', 0.648766815662384, 'llm', 2), ('minimaxir/textgenrnn', 0.6392484903335571, 'nlp', 2), ('amansrivastava17/embedding-as-service', 0.6076592803001404, 'nlp', 3), ('google/sentencepiece', 0.5957339406013489, 'nlp', 0), ('allenai/allennlp', 0.5719739198684692, 'nlp', 2), ('microsoft/unilm', 0.5669850707054138, 'nlp', 1), ('openai/clip', 0.5659348964691162, 'ml-dl', 1), ('minimaxir/gpt-2-simple', 0.5602125525474548, 'llm', 1), ('infinitylogesh/mutate', 0.553767204284668, 'nlp', 0), ('yueyu1030/attrprompt', 0.5535896420478821, 'llm', 0), ('deepset-ai/farm', 0.5499265789985657, 'nlp', 2), ('alibaba/easynlp', 0.5465848445892334, 'nlp', 2), ('bytedance/lightseq', 0.5465645790100098, 'nlp', 0), ('huggingface/transformers', 0.5317683219909668, 'nlp', 3), ('openai/finetune-transformer-lm', 0.5301187634468079, 'llm', 0), ('graykode/nlp-tutorial', 0.5271270871162415, 'study', 2), ('extreme-bert/extreme-bert', 0.5268334150314331, 'llm', 2), ('keras-team/keras-nlp', 0.5258187651634216, 'nlp', 3), ('qanastek/drbert', 0.5233448147773743, 'llm', 1), ('salesforce/blip', 0.5222206115722656, 'diffusion', 0), ('huggingface/text-embeddings-inference', 0.5215802788734436, 'llm', 0), ('nvidia/deeplearningexamples', 0.5167393684387207, 'ml-dl', 3), ('jonasgeiping/cramming', 0.5113855600357056, 'nlp', 0), ('explosion/spacy-transformers', 0.5100114941596985, 'llm', 1), ('huggingface/neuralcoref', 0.5090615153312683, 'nlp', 1), ('lucidrains/dalle2-pytorch', 0.5081148743629456, 'diffusion', 1), ('huggingface/setfit', 0.5080073475837708, 'nlp', 1), ('minimaxir/aitextgen', 0.5072848796844482, 'llm', 0), ('squeezeailab/squeezellm', 0.5039941072463989, 'llm', 0), ('llmware-ai/llmware', 0.5037044882774353, 'llm', 1), ('sharonzhou/long_stable_diffusion', 0.5007908344268799, 'diffusion', 0), ('plasticityai/magnitude', 0.500442385673523, 'nlp', 1)]
5
2
null
0
1
1
47
34
0
0
0
1
1
90
1
30
848
profiling
https://github.com/jiffyclub/snakeviz
[]
null
[]
[]
null
null
null
jiffyclub/snakeviz
snakeviz
2,156
133
22
Python
https://jiffyclub.github.io/snakeviz/
An in-browser Python profile viewer
jiffyclub
2024-01-11
2012-06-26
605
3.563636
null
An in-browser Python profile viewer
[]
[]
2023-05-14
[('landscapeio/prospector', 0.582079291343689, 'util', 0), ('bokeh/bokeh', 0.5664529204368591, 'viz', 0), ('joerick/pyinstrument', 0.5636839866638184, 'profiling', 0), ('pyutils/line_profiler', 0.563589870929718, 'profiling', 0), ('gaogaotiantian/viztracer', 0.5514275431632996, 'profiling', 0), ('benfred/py-spy', 0.5489193797111511, 'profiling', 0), ('webpy/webpy', 0.5397558808326721, 'web', 0), ('urwid/urwid', 0.5396429300308228, 'term', 0), ('sumerc/yappi', 0.5380180478096008, 'profiling', 0), ('psf/requests', 0.5308777093887329, 'web', 0), ('pympler/pympler', 0.5296313762664795, 'perf', 0), ('roniemartinez/dude', 0.5278874635696411, 'util', 0), ('hoffstadt/dearpygui', 0.5256134867668152, 'gui', 0), ('seleniumbase/seleniumbase', 0.5255619287490845, 'testing', 0), ('eleutherai/pyfra', 0.5175898671150208, 'ml', 0), ('nedbat/coveragepy', 0.5139472484588623, 'testing', 0), ('pythonspeed/filprofiler', 0.5121504664421082, 'profiling', 0), ('scrapy/scrapy', 0.5070153474807739, 'data', 0), ('r0x0r/pywebview', 0.5045416951179504, 'gui', 0), ('pyglet/pyglet', 0.5042890310287476, 'gamedev', 0)]
26
7
null
0.23
1
0
141
8
0
2
2
1
0
90
0
30
1,049
util
https://github.com/kalliope-project/kalliope
[]
null
[]
[]
null
null
null
kalliope-project/kalliope
kalliope
1,683
241
82
Python
https://kalliope-project.github.io/
Kalliope is a framework that will help you to create your own personal assistant.
kalliope-project
2024-01-13
2016-10-11
381
4.417323
https://avatars.githubusercontent.com/u/22769353?v=4
Kalliope is a framework that will help you to create your own personal assistant.
['bot', 'bot-creation', 'home-automation', 'jarvis', 'linux', 'personal-assistant', 'raspberry', 'speech-recognition', 'speech-synthesis', 'speech-to-text']
['bot', 'bot-creation', 'home-automation', 'jarvis', 'linux', 'personal-assistant', 'raspberry', 'speech-recognition', 'speech-synthesis', 'speech-to-text']
2022-03-06
[('rasahq/rasa', 0.5666339993476868, 'llm', 1), ('togethercomputer/openchatkit', 0.5493156909942627, 'nlp', 0), ('cheshire-cat-ai/core', 0.5292161107063293, 'llm', 0), ('speechbrain/speechbrain', 0.5283302664756775, 'nlp', 2), ('gunthercox/chatterbot', 0.518312394618988, 'nlp', 1), ('lucidrains/toolformer-pytorch', 0.5108852982521057, 'llm', 0), ('minimaxir/simpleaichat', 0.5094994902610779, 'llm', 0), ('willmcgugan/textual', 0.5060406923294067, 'term', 0)]
29
2
null
0
4
2
88
23
0
3
3
4
4
90
1
30
1,544
util
https://github.com/konradhalas/dacite
[]
null
[]
[]
null
null
null
konradhalas/dacite
dacite
1,577
95
14
Python
null
Simple creation of data classes from dictionaries.
konradhalas
2024-01-12
2018-03-03
308
5.113015
null
Simple creation of data classes from dictionaries.
['dataclasses']
['dataclasses']
2023-05-12
[('lidatong/dataclasses-json', 0.630731999874115, 'util', 1), ('fabiocaccamo/python-benedict', 0.5441532731056213, 'util', 0), ('marshmallow-code/marshmallow', 0.5163299441337585, 'util', 0)]
11
4
null
0.06
5
0
71
8
2
7
2
5
1
90
0.2
30
458
nlp
https://github.com/google-research/language
[]
null
[]
[]
null
null
null
google-research/language
language
1,536
349
62
Python
https://ai.google/research/teams/language/
Shared repository for open-sourced projects from the Google AI Language team.
google-research
2024-01-12
2018-10-16
276
5.565217
https://avatars.githubusercontent.com/u/43830688?v=4
Shared repository for open-sourced projects from the Google AI Language team.
['machine-learning', 'natural-language-processing', 'research']
['machine-learning', 'natural-language-processing', 'research']
2023-10-19
[('google-research/google-research', 0.6985517740249634, 'ml', 2), ('alirezadir/machine-learning-interview-enlightener', 0.6070800423622131, 'study', 1), ('googlecloudplatform/vertex-ai-samples', 0.6063291430473328, 'ml', 0), ('antonosika/gpt-engineer', 0.5954734683036804, 'llm', 0), ('rasahq/rasa', 0.5900284051895142, 'llm', 2), ('transformeroptimus/superagi', 0.5880876779556274, 'llm', 0), ('mlflow/mlflow', 0.5879070162773132, 'ml-ops', 1), ('tensorflow/tensorflow', 0.5603903532028198, 'ml-dl', 1), ('tensorflow/tensor2tensor', 0.5586530566215515, 'ml', 1), ('krohling/bondai', 0.5564771294593811, 'llm', 0), ('mindsdb/mindsdb', 0.5518535375595093, 'data', 1), ('argilla-io/argilla', 0.5392791628837585, 'nlp', 2), ('deeppavlov/deeppavlov', 0.5389516949653625, 'nlp', 1), ('unity-technologies/ml-agents', 0.5368104577064514, 'ml-rl', 1), ('aiwaves-cn/agents', 0.5324529409408569, 'nlp', 0), ('yueyu1030/attrprompt', 0.5311223864555359, 'llm', 1), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5293827652931213, 'study', 1), ('rasbt/machine-learning-book', 0.5288284420967102, 'study', 1), ('doccano/doccano', 0.5283976197242737, 'nlp', 2), ('merantix-momentum/squirrel-core', 0.5260434150695801, 'ml', 2), ('bentoml/bentoml', 0.5239987969398499, 'ml-ops', 1), ('mlc-ai/mlc-llm', 0.5201672911643982, 'llm', 0), ('prefecthq/marvin', 0.5198028087615967, 'nlp', 0), ('nltk/nltk', 0.5192822217941284, 'nlp', 2), ('allenai/allennlp', 0.5185959935188293, 'nlp', 1), ('iterative/dvc', 0.5162245631217957, 'ml-ops', 1), ('microsoft/generative-ai-for-beginners', 0.5157017111778259, 'study', 0), ('patchy631/machine-learning', 0.5135775804519653, 'ml', 0), ('openlm-research/open_llama', 0.5121092796325684, 'llm', 0), ('oegedijk/explainerdashboard', 0.5075442790985107, 'ml-interpretability', 0), ('netflix/metaflow', 0.5073051452636719, 'ml-ops', 1), ('embedchain/embedchain', 0.5062578916549683, 'llm', 0), ('databrickslabs/dolly', 0.5051336288452148, 'llm', 0), ('aimhubio/aim', 0.5032878518104553, 'ml-ops', 1), ('lucidrains/toolformer-pytorch', 0.5021114945411682, 'llm', 0), ('microsoft/nni', 0.5012085437774658, 'ml', 1)]
10
3
null
0
21
3
64
3
0
0
0
21
3
90
0.1
30
1,309
study
https://github.com/chandlerbang/awesome-self-supervised-gnn
['awesome']
null
[]
[]
null
null
null
chandlerbang/awesome-self-supervised-gnn
awesome-self-supervised-gnn
1,366
157
50
Python
null
Papers about pretraining and self-supervised learning on Graph Neural Networks (GNN).
chandlerbang
2024-01-10
2020-05-27
191
7.119881
null
Papers about pretraining and self-supervised learning on Graph Neural Networks (GNN).
['deep-learning', 'graph-mining', 'graph-neural-networks', 'graph-self-supervised-learning', 'machine-learning', 'pre-training', 'pretraining', 'self-supervised-learning']
['awesome', 'deep-learning', 'graph-mining', 'graph-neural-networks', 'graph-self-supervised-learning', 'machine-learning', 'pre-training', 'pretraining', 'self-supervised-learning']
2023-07-10
[('stellargraph/stellargraph', 0.6943688988685608, 'graph', 3), ('danielegrattarola/spektral', 0.6770707964897156, 'ml-dl', 2), ('pyg-team/pytorch_geometric', 0.6452118158340454, 'ml-dl', 2), ('dmlc/dgl', 0.593945324420929, 'ml-dl', 2), ('google-deepmind/materials_discovery', 0.5740145444869995, 'sim', 0), ('rampasek/graphgps', 0.5653940439224243, 'graph', 0), ('googlecloudplatform/vertex-ai-samples', 0.5588842034339905, 'ml', 0), ('benedekrozemberczki/tigerlily', 0.5460976362228394, 'ml-dl', 2), ('microsoft/unilm', 0.5360260605812073, 'nlp', 0), ('accenture/ampligraph', 0.5335105061531067, 'data', 1), ('a-r-j/graphein', 0.5173624753952026, 'sim', 2), ('christoschristofidis/awesome-deep-learning', 0.5087785124778748, 'study', 3), ('graphistry/pygraphistry', 0.5049978494644165, 'data', 0)]
19
5
null
0.33
1
0
44
6
0
0
0
1
0
90
0
30
1,094
data
https://github.com/eleutherai/the-pile
['training-data', 'llm']
The Pile is a large, diverse, open source language modelling data set that consists of many smaller datasets combined together.
[]
[]
null
null
null
eleutherai/the-pile
the-pile
1,334
112
31
Python
null
null
eleutherai
2024-01-12
2020-08-26
178
7.458466
https://avatars.githubusercontent.com/u/68924597?v=4
The Pile is a large, diverse, open source language modelling data set that consists of many smaller datasets combined together.
[]
['llm', 'training-data']
2021-06-16
[('salesforce/xgen', 0.6535871624946594, 'llm', 1), ('togethercomputer/redpajama-data', 0.6279685497283936, 'llm', 0), ('infinitylogesh/mutate', 0.6196421980857849, 'nlp', 0), ('hannibal046/awesome-llm', 0.6086982488632202, 'study', 0), ('cg123/mergekit', 0.607460081577301, 'llm', 1), ('yueyu1030/attrprompt', 0.5999411940574646, 'llm', 0), ('juncongmoo/pyllama', 0.5945956707000732, 'llm', 0), ('databrickslabs/dolly', 0.5931678414344788, 'llm', 0), ('neuml/txtai', 0.5822166800498962, 'nlp', 1), ('mooler0410/llmspracticalguide', 0.5788910984992981, 'study', 0), ('paddlepaddle/paddlenlp', 0.5773162841796875, 'llm', 1), ('explosion/spacy-llm', 0.5771530270576477, 'llm', 1), ('lianjiatech/belle', 0.5712957978248596, 'llm', 0), ('lm-sys/fastchat', 0.568549394607544, 'llm', 0), ('young-geng/easylm', 0.5631842613220215, 'llm', 0), ('llmware-ai/llmware', 0.5548039078712463, 'llm', 0), ('night-chen/toolqa', 0.5525684952735901, 'llm', 0), ('tatsu-lab/stanford_alpaca', 0.5507524013519287, 'llm', 0), ('ai21labs/lm-evaluation', 0.5482072830200195, 'llm', 0), ('freedomintelligence/llmzoo', 0.5475942492485046, 'llm', 0), ('bobazooba/xllm', 0.5469703674316406, 'llm', 1), ('argilla-io/argilla', 0.542231023311615, 'nlp', 1), ('bigscience-workshop/biomedical', 0.5412442684173584, 'data', 0), ('salesforce/codet5', 0.5400211811065674, 'nlp', 0), ('thudm/chatglm2-6b', 0.5338200330734253, 'llm', 1), ('deepset-ai/haystack', 0.5290297269821167, 'llm', 0), ('nebuly-ai/nebullvm', 0.528251588344574, 'perf', 1), ('dylanhogg/llmgraph', 0.5278661847114563, 'ml', 1), ('ctlllll/llm-toolmaker', 0.5270031690597534, 'llm', 0), ('epfllm/meditron', 0.5269107818603516, 'llm', 0), ('koaning/embetter', 0.5203182101249695, 'data', 1), ('openlm-research/open_llama', 0.5138996839523315, 'llm', 0), ('aiwaves-cn/agents', 0.5101150274276733, 'nlp', 1), ('nomic-ai/gpt4all', 0.5064859986305237, 'llm', 0), ('huggingface/text-generation-inference', 0.5064693093299866, 'llm', 0), ('optimalscale/lmflow', 0.5063433647155762, 'llm', 0), ('conceptofmind/toolformer', 0.5042285919189453, 'llm', 0), ('bigscience-workshop/petals', 0.5029622316360474, 'data', 0), ('tigerlab-ai/tiger', 0.5005179643630981, 'llm', 1)]
7
3
null
0
5
0
41
31
0
0
0
5
8
90
1.6
30
1,186
ml-rl
https://github.com/anthropics/hh-rlhf
['rlhf', 'dataset']
null
[]
[]
null
null
null
anthropics/hh-rlhf
hh-rlhf
1,304
99
19
null
https://arxiv.org/abs/2204.05862
Human preference data for "Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback"
anthropics
2024-01-12
2022-04-10
94
13.830303
https://avatars.githubusercontent.com/u/76263028?v=4
Human preference data for "Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback"
[]
['dataset', 'rlhf']
2023-09-19
[]
4
2
null
0.04
0
0
21
4
0
0
0
0
0
90
0
30
650
web
https://github.com/magicstack/httptools
[]
null
[]
[]
null
null
null
magicstack/httptools
httptools
1,148
76
41
Python
null
Fast HTTP parser
magicstack
2024-01-04
2016-04-25
405
2.833568
https://avatars.githubusercontent.com/u/14324950?v=4
Fast HTTP parser
[]
[]
2023-10-16
[('aio-libs/yarl', 0.5892772674560547, 'util', 0), ('psf/requests', 0.5530205965042114, 'web', 0)]
15
6
null
0.12
5
4
94
3
2
2
2
2
0
90
0
30
219
template
https://github.com/tezromach/python-package-template
[]
null
[]
[]
1
null
null
tezromach/python-package-template
python-package-template
1,056
147
9
Python
null
🚀 Your next Python package needs a bleeding-edge project structure.
tezromach
2024-01-13
2020-04-15
197
5.337184
null
🚀 Your next Python package needs a bleeding-edge project structure.
['best-practices', 'codestyle', 'cookiecutter', 'formatters', 'makefile', 'poetry', 'python-packages', 'semantic-versions', 'template']
['best-practices', 'codestyle', 'cookiecutter', 'formatters', 'makefile', 'poetry', 'python-packages', 'semantic-versions', 'template']
2022-05-18
[('tedivm/robs_awesome_python_template', 0.647948682308197, 'template', 0), ('python-poetry/poetry', 0.6311818361282349, 'util', 1), ('pypa/hatch', 0.6175110936164856, 'util', 0), ('lyz-code/cookiecutter-python-project', 0.5960633754730225, 'template', 1), ('pypa/flit', 0.5902042984962463, 'util', 0), ('pypa/build', 0.5865764021873474, 'util', 0), ('mitsuhiko/rye', 0.5775073170661926, 'util', 0), ('jazzband/pip-tools', 0.5716038346290588, 'util', 0), ('regebro/pyroma', 0.5707094073295593, 'util', 0), ('pdm-project/pdm', 0.5643466114997864, 'util', 0), ('indygreg/pyoxidizer', 0.5635542273521423, 'util', 0), ('giswqs/pypackage', 0.5540108680725098, 'template', 2), ('pyscaffold/pyscaffold', 0.553695797920227, 'template', 0), ('asottile/reorder-python-imports', 0.5504276156425476, 'util', 0), ('pypa/pipenv', 0.5377501249313354, 'util', 0), ('pypi/warehouse', 0.5265879034996033, 'util', 0), ('tiangolo/poetry-version-plugin', 0.5260007977485657, 'util', 0), ('cookiecutter/cookiecutter', 0.5202876925468445, 'template', 1), ('eugeneyan/python-collab-template', 0.518621563911438, 'template', 1), ('pyodide/micropip', 0.5130401253700256, 'util', 0)]
13
2
null
0
3
0
46
20
0
6
6
3
3
90
1
30
204
debug
https://github.com/alexmojaki/snoop
[]
null
[]
[]
null
null
null
alexmojaki/snoop
snoop
1,042
33
20
Python
null
A powerful set of Python debugging tools, based on PySnooper
alexmojaki
2024-01-07
2019-05-13
246
4.233314
null
A powerful set of Python debugging tools, based on PySnooper
['debugger', 'debugging', 'debugging-tools', 'logging']
['debugger', 'debugging', 'debugging-tools', 'logging']
2022-12-22
[('samuelcolvin/python-devtools', 0.7110832929611206, 'debug', 0), ('alexmojaki/heartrate', 0.6388193964958191, 'debug', 1), ('gaogaotiantian/viztracer', 0.623710036277771, 'profiling', 2), ('inducer/pudb', 0.61795973777771, 'debug', 1), ('nedbat/coveragepy', 0.6032272577285767, 'testing', 0), ('metachris/logzero', 0.601128876209259, 'util', 1), ('alexmojaki/birdseye', 0.6003603935241699, 'debug', 2), ('pympler/pympler', 0.5967013835906982, 'perf', 0), ('hoffstadt/dearpygui', 0.5897102952003479, 'gui', 0), ('ionelmc/python-hunter', 0.5830564498901367, 'debug', 2), ('beeware/toga', 0.5817451477050781, 'gui', 0), ('reloadware/reloadium', 0.5736259818077087, 'profiling', 0), ('delgan/loguru', 0.5699717998504639, 'util', 1), ('pypy/pypy', 0.5637267827987671, 'util', 0), ('gotcha/ipdb', 0.5553923845291138, 'debug', 1), ('urwid/urwid', 0.5546684265136719, 'term', 0), ('pyston/pyston', 0.5509077310562134, 'util', 0), ('landscapeio/prospector', 0.5469942688941956, 'util', 0), ('trailofbits/pip-audit', 0.5462668538093567, 'security', 0), ('p403n1x87/austin', 0.5450026392936707, 'profiling', 1), ('secdev/scapy', 0.5415452122688293, 'util', 0), ('pyglet/pyglet', 0.5321446061134338, 'gamedev', 0), ('pyutils/line_profiler', 0.5304473638534546, 'profiling', 0), ('python/cpython', 0.5296629667282104, 'util', 0), ('willmcgugan/textual', 0.5284596681594849, 'term', 0), ('ionelmc/pytest-benchmark', 0.5151593685150146, 'testing', 0), ('faster-cpython/ideas', 0.5135080814361572, 'perf', 0), ('pytoolz/toolz', 0.5116428732872009, 'util', 0), ('teamhg-memex/eli5', 0.5058972835540771, 'ml', 0), ('micropython/micropython', 0.505521297454834, 'util', 0), ('pytest-dev/pytest-bdd', 0.5047500133514404, 'testing', 0), ('amaargiru/pyroad', 0.5022026896476746, 'study', 0), ('eleutherai/pyfra', 0.5008596777915955, 'ml', 0), ('klen/pylama', 0.500612735748291, 'util', 0)]
22
5
null
0
1
0
57
13
0
1
1
1
1
90
1
30
627
util
https://github.com/pyca/pynacl
[]
null
[]
[]
null
null
null
pyca/pynacl
pynacl
1,009
228
28
C
https://pynacl.readthedocs.io/
Python binding to the Networking and Cryptography (NaCl) library
pyca
2024-01-13
2013-02-22
570
1.768403
https://avatars.githubusercontent.com/u/5615737?v=4
Python binding to the Networking and Cryptography (NaCl) library
['cryptography', 'libsodium', 'nacl']
['cryptography', 'libsodium', 'nacl']
2023-12-17
[('legrandin/pycryptodome', 0.7229923605918884, 'util', 1), ('pyca/cryptography', 0.659361720085144, 'util', 1), ('1200wd/bitcoinlib', 0.5711807608604431, 'crypto', 0), ('primal100/pybitcointools', 0.56072998046875, 'crypto', 0), ('secdev/scapy', 0.5417189002037048, 'util', 0), ('man-c/pycoingecko', 0.5348667502403259, 'crypto', 0), ('nvidia/cuda-python', 0.5136300921440125, 'ml', 0), ('paramiko/paramiko', 0.5029951930046082, 'util', 0)]
67
2
null
0.27
9
7
133
1
0
1
1
9
8
90
0.9
30
346
nlp
https://github.com/norskregnesentral/skweak
[]
null
[]
[]
null
null
null
norskregnesentral/skweak
skweak
902
74
28
Python
null
skweak: A software toolkit for weak supervision applied to NLP tasks
norskregnesentral
2024-01-09
2021-03-16
150
6.013333
https://avatars.githubusercontent.com/u/17080513?v=4
skweak: A software toolkit for weak supervision applied to NLP tasks
['data-science', 'distant-supervision', 'natural-language-processing', 'nlp-library', 'nlp-machine-learning', 'spacy', 'training-data', 'weak-supervision']
['data-science', 'distant-supervision', 'natural-language-processing', 'nlp-library', 'nlp-machine-learning', 'spacy', 'training-data', 'weak-supervision']
2023-09-26
[('alibaba/easynlp', 0.6338717341423035, 'nlp', 0), ('argilla-io/argilla', 0.6235673427581787, 'nlp', 2), ('explosion/spacy', 0.6230126619338989, 'nlp', 4), ('explosion/spacy-models', 0.608527660369873, 'nlp', 2), ('nltk/nltk', 0.608248770236969, 'nlp', 1), ('flairnlp/flair', 0.602255642414093, 'nlp', 1), ('allenai/allennlp', 0.5997143387794495, 'nlp', 2), ('explosion/spacy-llm', 0.5937286615371704, 'llm', 2), ('paddlepaddle/paddlenlp', 0.592394232749939, 'llm', 0), ('sloria/textblob', 0.5448392033576965, 'nlp', 1), ('infinitylogesh/mutate', 0.5382066965103149, 'nlp', 1), ('explosion/spacy-stanza', 0.5375661849975586, 'nlp', 3), ('openai/whisper', 0.5360553860664368, 'ml-dl', 0), ('graykode/nlp-tutorial', 0.5352105498313904, 'study', 1), ('huggingface/text-generation-inference', 0.5326890349388123, 'llm', 0), ('lexpredict/lexpredict-lexnlp', 0.5267290472984314, 'nlp', 0), ('rasahq/rasa', 0.5265606641769409, 'llm', 2), ('deepset-ai/farm', 0.5261529088020325, 'nlp', 1), ('keras-team/keras-nlp', 0.5260323882102966, 'nlp', 1), ('bytedance/lightseq', 0.5218310952186584, 'nlp', 0), ('llmware-ai/llmware', 0.5207846760749817, 'llm', 0), ('makcedward/nlpaug', 0.5184004902839661, 'nlp', 2), ('maartengr/bertopic', 0.5178706645965576, 'nlp', 0), ('databrickslabs/dolly', 0.5073420405387878, 'llm', 0), ('lm-sys/fastchat', 0.5055734515190125, 'llm', 0), ('jonasgeiping/cramming', 0.505377471446991, 'nlp', 0), ('yueyu1030/attrprompt', 0.5007184743881226, 'llm', 1), ('minimaxir/aitextgen', 0.5007104873657227, 'llm', 0)]
12
5
null
0.29
1
0
34
4
0
1
1
1
0
90
0
30
1,674
util
https://github.com/fastai/fastcore
[]
null
[]
[]
null
null
null
fastai/fastcore
fastcore
880
256
19
Jupyter Notebook
http://fastcore.fast.ai
Python supercharged for the fastai library
fastai
2024-01-07
2019-12-02
217
4.052632
https://avatars.githubusercontent.com/u/20547620?v=4
Python supercharged for the fastai library
['data-structures', 'developer-tools', 'dispatch', 'documentation-generator', 'fastai', 'functional-programming', 'languages', 'parallel-processing']
['data-structures', 'developer-tools', 'dispatch', 'documentation-generator', 'fastai', 'functional-programming', 'languages', 'parallel-processing']
2023-06-25
[('pypy/pypy', 0.6839970946311951, 'util', 0), ('asacristani/fastapi-rocket-boilerplate', 0.6752527952194214, 'template', 0), ('pyston/pyston', 0.6732315421104431, 'util', 0), ('pytoolz/toolz', 0.6410788297653198, 'util', 0), ('cython/cython', 0.6373258829116821, 'util', 0), ('tiangolo/fastapi', 0.63350909948349, 'web', 0), ('dylanhogg/awesome-python', 0.6330905556678772, 'study', 0), ('exaloop/codon', 0.6250977516174316, 'perf', 0), ('rawheel/fastapi-boilerplate', 0.6172206997871399, 'web', 0), ('gradio-app/gradio', 0.6137790679931641, 'viz', 0), ('timofurrer/awesome-asyncio', 0.6136905550956726, 'study', 0), ('s3rius/fastapi-template', 0.6101469993591309, 'web', 0), ('dagworks-inc/hamilton', 0.603600263595581, 'ml-ops', 0), ('klen/py-frameworks-bench', 0.6014686226844788, 'perf', 0), ('joblib/joblib', 0.6007087826728821, 'util', 0), ('faster-cpython/tools', 0.5940293669700623, 'perf', 0), ('pandas-dev/pandas', 0.5918874144554138, 'pandas', 0), ('intel/intel-extension-for-pytorch', 0.5917688012123108, 'perf', 0), ('ploomber/ploomber', 0.5885465741157532, 'ml-ops', 0), ('parallel-domain/pd-sdk', 0.5881737470626831, 'data', 0), ('vaexio/vaex', 0.5877453088760376, 'perf', 0), ('klen/muffin', 0.5848855376243591, 'web', 0), ('eleutherai/pyfra', 0.5840798616409302, 'ml', 0), ('pytorch/data', 0.5834670066833496, 'data', 0), ('python/cpython', 0.5814699530601501, 'util', 0), ('evhub/coconut', 0.5812950730323792, 'util', 1), ('willmcgugan/textual', 0.5812305808067322, 'term', 0), ('reloadware/reloadium', 0.5807570219039917, 'profiling', 0), ('tobymao/sqlglot', 0.5786949396133423, 'data', 0), ('micropython/micropython', 0.5780920386314392, 'util', 0), ('openai/openai-python', 0.5748746991157532, 'util', 0), ('eventual-inc/daft', 0.572355329990387, 'pandas', 0), ('merantix-momentum/squirrel-core', 0.572002649307251, 'ml', 0), ('backtick-se/cowait', 0.5709444284439087, 'util', 0), ('hoffstadt/dearpygui', 0.5673369765281677, 'gui', 0), ('ibis-project/ibis', 0.566156804561615, 'data', 0), ('vitalik/django-ninja', 0.5651664137840271, 'web', 0), ('sumerc/yappi', 0.5639339685440063, 'profiling', 0), ('collerek/ormar', 0.5605081915855408, 'data', 0), ('kubeflow/fairing', 0.5604775547981262, 'ml-ops', 0), ('neoteroi/blacksheep', 0.5601794719696045, 'web', 0), ('1200wd/bitcoinlib', 0.5587186813354492, 'crypto', 0), ('google/gin-config', 0.5576726198196411, 'util', 0), ('pytables/pytables', 0.5568447113037109, 'data', 0), ('google/pyglove', 0.5538975596427917, 'util', 0), ('tiangolo/sqlmodel', 0.5534236431121826, 'data', 0), ('faster-cpython/ideas', 0.5519487857818604, 'perf', 0), ('ipython/ipyparallel', 0.5499588251113892, 'perf', 0), ('python-trio/trio', 0.5491400361061096, 'perf', 0), ('lucidrains/toolformer-pytorch', 0.5489647388458252, 'llm', 0), ('samuelcolvin/fastui', 0.546245813369751, 'gui', 0), ('pyparsing/pyparsing', 0.5457038283348083, 'util', 0), ('alphasecio/langchain-examples', 0.5439481735229492, 'llm', 0), ('plotly/dash', 0.5438128113746643, 'viz', 0), ('falconry/falcon', 0.5430771708488464, 'web', 0), ('ashleve/lightning-hydra-template', 0.5420973300933838, 'util', 0), ('malloydata/malloy-py', 0.5410973429679871, 'data', 0), ('krzjoa/awesome-python-data-science', 0.5385904908180237, 'study', 0), ('plasma-umass/scalene', 0.5373175144195557, 'profiling', 0), ('holoviz/panel', 0.5372098684310913, 'viz', 0), ('explosion/thinc', 0.5361101627349854, 'ml-dl', 1), ('erotemic/ubelt', 0.5355119705200195, 'util', 0), ('libtcod/python-tcod', 0.5340726375579834, 'gamedev', 0), ('python-restx/flask-restx', 0.5335445404052734, 'web', 0), ('facebookincubator/cinder', 0.5330604910850525, 'perf', 0), ('google/tf-quant-finance', 0.5327866077423096, 'finance', 0), ('polyaxon/datatile', 0.5320842266082764, 'pandas', 0), ('lk-geimfari/mimesis', 0.5298691987991333, 'data', 0), ('ray-project/ray', 0.528685986995697, 'ml-ops', 0), ('airtai/faststream', 0.5284400582313538, 'perf', 0), ('renpy/renpy', 0.5279468894004822, 'viz', 0), ('fugue-project/fugue', 0.527552604675293, 'pandas', 0), ('dgilland/cacheout', 0.5273230671882629, 'perf', 0), ('huggingface/huggingface_hub', 0.5268593430519104, 'ml', 0), ('beeware/toga', 0.5267270803451538, 'gui', 0), ('scrapy/scrapy', 0.5240939855575562, 'data', 0), ('ml-tooling/opyrator', 0.5239315629005432, 'viz', 0), ('spotify/luigi', 0.5237264037132263, 'ml-ops', 0), ('agronholm/apscheduler', 0.5230339765548706, 'util', 0), ('pympler/pympler', 0.5204732418060303, 'perf', 0), ('pyinfra-dev/pyinfra', 0.5203496217727661, 'util', 0), ('python-cachier/cachier', 0.5200280547142029, 'perf', 0), ('python-odin/odin', 0.5195226669311523, 'util', 1), ('bottlepy/bottle', 0.5190497040748596, 'web', 0), ('lcompilers/lpython', 0.5177335739135742, 'util', 0), ('panda3d/panda3d', 0.5172508955001831, 'gamedev', 0), ('wxwidgets/phoenix', 0.5171084403991699, 'gui', 0), ('pypa/hatch', 0.5164702534675598, 'util', 0), ('starlite-api/starlite', 0.5158090591430664, 'web', 0), ('huggingface/datasets', 0.5157922506332397, 'nlp', 0), ('explosion/spacy', 0.5157615542411804, 'nlp', 0), ('cherrypy/cherrypy', 0.5150647759437561, 'web', 0), ('amaargiru/pyroad', 0.5148802995681763, 'study', 0), ('samuelcolvin/arq', 0.5146878957748413, 'data', 0), ('alirn76/panther', 0.5143014788627625, 'web', 0), ('python-rope/rope', 0.5134739875793457, 'util', 0), ('jmcarpenter2/swifter', 0.5132153034210205, 'pandas', 0), ('locustio/locust', 0.5126659870147705, 'testing', 0), ('marshmallow-code/marshmallow', 0.5120862722396851, 'util', 0), ('pallets/quart', 0.5118736624717712, 'web', 0), ('pallets/flask', 0.5115838050842285, 'web', 0), ('astronomer/astro-sdk', 0.5107561945915222, 'ml-ops', 0), ('pola-rs/polars', 0.5103496313095093, 'pandas', 0), ('fluentpython/example-code-2e', 0.5095949769020081, 'study', 0), ('fastapi-admin/fastapi-admin', 0.5095018148422241, 'web', 0), ('kestra-io/kestra', 0.5094014406204224, 'ml-ops', 0), ('magicstack/uvloop', 0.5093868970870972, 'util', 0), ('pytorch/glow', 0.509026288986206, 'ml', 0), ('huggingface/transformers', 0.5071895718574524, 'nlp', 0), ('rustpython/rustpython', 0.5066707134246826, 'util', 0), ('goldmansachs/gs-quant', 0.5064576268196106, 'finance', 0), ('ethereum/py-evm', 0.5062366724014282, 'crypto', 0), ('ta-lib/ta-lib-python', 0.5056002140045166, 'finance', 0), ('geeogi/async-python-lambda-template', 0.504927396774292, 'template', 0), ('nteract/papermill', 0.5034418106079102, 'jupyter', 0), ('adafruit/circuitpython', 0.5033023953437805, 'util', 0), ('kubeflow-kale/kale', 0.5032058358192444, 'ml-ops', 0), ('pyqtgraph/pyqtgraph', 0.5031821727752686, 'viz', 0), ('nvidia/warp', 0.5028382539749146, 'sim', 0), ('lianjiatech/belle', 0.502812385559082, 'llm', 0), ('uber/petastorm', 0.5022857189178467, 'data', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5009275078773499, 'study', 0), ('wesm/pydata-book', 0.5009101629257202, 'study', 0), ('astral-sh/ruff', 0.5008984804153442, 'util', 0), ('orchest/orchest', 0.5004292130470276, 'ml-ops', 0), ('mamba-org/mamba', 0.5001938343048096, 'util', 0)]
56
5
null
0.27
3
0
50
7
2
18
2
3
0
90
0
30
633
ml
https://github.com/dask/dask-ml
[]
null
[]
[]
null
null
null
dask/dask-ml
dask-ml
872
245
41
Python
http://ml.dask.org
Scalable Machine Learning with Dask
dask
2024-01-04
2017-06-15
345
2.522314
https://avatars.githubusercontent.com/u/17131925?v=4
Scalable Machine Learning with Dask
[]
[]
2023-03-24
[('scikit-learn-contrib/lightning', 0.5908797979354858, 'ml', 0), ('prefecthq/prefect-dask', 0.5907831192016602, 'util', 0), ('dmlc/xgboost', 0.5699902176856995, 'ml', 0), ('autoviml/auto_ts', 0.5662448406219482, 'time-series', 0), ('dask/distributed', 0.5617966055870056, 'perf', 0), ('scikit-learn-contrib/metric-learn', 0.5469420552253723, 'ml', 0), ('optuna/optuna', 0.5394331216812134, 'ml', 0), ('catboost/catboost', 0.5368636250495911, 'ml', 0), ('ray-project/ray', 0.5340972542762756, 'ml-ops', 0), ('rasbt/machine-learning-book', 0.5278743505477905, 'study', 0), ('dask/dask', 0.526610255241394, 'perf', 0), ('scikit-learn-contrib/imbalanced-learn', 0.5264381170272827, 'ml', 0), ('paddlepaddle/paddle', 0.5259979963302612, 'ml-dl', 0), ('determined-ai/determined', 0.5248952507972717, 'ml-ops', 0), ('huggingface/evaluate', 0.5205085873603821, 'ml', 0), ('kubeflow-kale/kale', 0.5168511867523193, 'ml-ops', 0), ('tensorflow/data-validation', 0.5110467076301575, 'ml-ops', 0), ('koaning/scikit-lego', 0.5104072093963623, 'ml', 0), ('huggingface/datasets', 0.5084608197212219, 'nlp', 0), ('kubeflow/fairing', 0.5057757496833801, 'ml-ops', 0), ('automl/auto-sklearn', 0.5055193305015564, 'ml', 0), ('tensorflow/tensorflow', 0.5045599937438965, 'ml-dl', 0), ('nvidia/apex', 0.5042513608932495, 'ml-dl', 0)]
77
6
null
0.06
5
1
80
10
1
6
1
5
4
90
0.8
30
731
perf
https://github.com/zerointensity/pointers.py
[]
null
[]
[]
null
null
null
zerointensity/pointers.py
pointers.py
851
12
5
Python
https://pointers.zintensity.dev/
Bringing the hell of pointers to Python.
zerointensity
2024-01-08
2022-03-09
98
8.608382
null
Bringing the hell of pointers to Python.
['pointers', 'python-pointers']
['pointers', 'python-pointers']
2023-11-29
[('pyston/pyston', 0.523978590965271, 'util', 0), ('google/jax', 0.5109991431236267, 'ml', 0)]
8
2
null
0.06
1
1
22
2
1
4
1
1
0
90
0
30
418
util
https://github.com/sethmmorton/natsort
[]
null
[]
[]
null
null
null
sethmmorton/natsort
natsort
819
48
17
Python
https://pypi.org/project/natsort/
Simple yet flexible natural sorting in Python.
sethmmorton
2024-01-06
2012-05-03
612
1.336675
null
Simple yet flexible natural sorting in Python.
['natsort', 'natural-sort', 'sorting', 'sorting-interface']
['natsort', 'natural-sort', 'sorting', 'sorting-interface']
2023-06-20
[('pycqa/isort', 0.5276709794998169, 'util', 0)]
21
4
null
0.92
2
2
142
7
0
5
5
2
4
90
2
30
981
llm
https://github.com/muennighoff/sgpt
[]
null
[]
[]
null
null
null
muennighoff/sgpt
sgpt
761
49
8
Jupyter Notebook
https://arxiv.org/abs/2202.08904
SGPT: GPT Sentence Embeddings for Semantic Search
muennighoff
2024-01-12
2022-02-11
102
7.41922
null
SGPT: GPT Sentence Embeddings for Semantic Search
['gpt', 'information-retrieval', 'language-model', 'large-language-models', 'neural-search', 'retrieval', 'semantic-search', 'sentence-embeddings', 'sgpt', 'text-embedding']
['gpt', 'information-retrieval', 'language-model', 'large-language-models', 'neural-search', 'retrieval', 'semantic-search', 'sentence-embeddings', 'sgpt', 'text-embedding']
2023-07-06
[('neuml/txtai', 0.6413739323616028, 'nlp', 6), ('intellabs/fastrag', 0.6058968305587769, 'nlp', 2), ('ddangelov/top2vec', 0.5922024846076965, 'nlp', 1), ('ukplab/sentence-transformers', 0.5446346402168274, 'nlp', 3), ('jina-ai/clip-as-service', 0.5414046049118042, 'nlp', 1), ('llmware-ai/llmware', 0.5382522940635681, 'llm', 3), ('weaviate/demo-text2vec-openai', 0.5382280945777893, 'util', 0), ('paddlepaddle/rocketqa', 0.5352213978767395, 'nlp', 1), ('amansrivastava17/embedding-as-service', 0.5335803627967834, 'nlp', 0), ('ai21labs/in-context-ralm', 0.5289058685302734, 'llm', 1), ('paddlepaddle/paddlenlp', 0.5275580286979675, 'llm', 1), ('weaviate/semantic-search-through-wikipedia-with-weaviate', 0.5272648334503174, 'data', 0), ('hannibal046/awesome-llm', 0.5209395885467529, 'study', 2), ('huggingface/text-generation-inference', 0.519349992275238, 'llm', 1), ('plasticityai/magnitude', 0.5156716704368591, 'nlp', 0), ('jina-ai/finetuner', 0.512883186340332, 'ml', 1), ('koaning/whatlies', 0.5074957013130188, 'nlp', 0), ('sebischair/lbl2vec', 0.5040941834449768, 'nlp', 0), ('bigscience-workshop/megatron-deepspeed', 0.5024375915527344, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5024375915527344, 'llm', 0)]
3
2
null
0.12
3
0
23
6
0
0
0
3
5
90
1.7
30
473
viz
https://github.com/holoviz/holoviz
[]
null
[]
[]
1
null
null
holoviz/holoviz
holoviz
756
120
36
Shell
https://holoviz.org/
High-level tools to simplify visualization in Python.
holoviz
2024-01-13
2017-09-22
331
2.280052
https://avatars.githubusercontent.com/u/51678735?v=4
High-level tools to simplify visualization in Python.
['colorcet', 'datashader', 'geoviews', 'holoviews', 'holoviz', 'hvplot', 'panel']
['colorcet', 'datashader', 'geoviews', 'holoviews', 'holoviz', 'hvplot', 'panel']
2023-12-04
[('holoviz/panel', 0.7308956384658813, 'viz', 4), ('holoviz/geoviews', 0.7218708992004395, 'gis', 3), ('altair-viz/altair', 0.7110622525215149, 'viz', 0), ('man-group/dtale', 0.7002979516983032, 'viz', 0), ('residentmario/geoplot', 0.6968002319335938, 'gis', 0), ('pyqtgraph/pyqtgraph', 0.6720275282859802, 'viz', 0), ('holoviz/hvplot', 0.6662247776985168, 'pandas', 3), ('bokeh/bokeh', 0.6567468047142029, 'viz', 0), ('scitools/iris', 0.6550614833831787, 'gis', 0), ('giswqs/geemap', 0.6438645124435425, 'gis', 0), ('contextlab/hypertools', 0.6432879567146301, 'ml', 0), ('kanaries/pygwalker', 0.6368023753166199, 'pandas', 0), ('mwaskom/seaborn', 0.6366784572601318, 'viz', 0), ('enthought/mayavi', 0.6358242630958557, 'viz', 0), ('matplotlib/matplotlib', 0.6354397535324097, 'viz', 0), ('plotly/plotly.py', 0.6298113465309143, 'viz', 0), ('has2k1/plotnine', 0.6090349555015564, 'viz', 0), ('opengeos/leafmap', 0.6019681692123413, 'gis', 0), ('vispy/vispy', 0.6010532379150391, 'viz', 0), ('maartenbreddels/ipyvolume', 0.6008582711219788, 'jupyter', 0), ('holoviz/datashader', 0.5855922698974609, 'gis', 2), ('holoviz/holoviews', 0.585200309753418, 'viz', 2), ('pyglet/pyglet', 0.5789063572883606, 'gamedev', 0), ('pyvista/pyvista', 0.5743590593338013, 'viz', 0), ('alexmojaki/heartrate', 0.573762834072113, 'debug', 0), ('vizzuhq/ipyvizzu', 0.5736362338066101, 'jupyter', 0), ('graphistry/pygraphistry', 0.5680197477340698, 'data', 0), ('gaogaotiantian/viztracer', 0.5649738311767578, 'profiling', 0), ('gregorhd/mapcompare', 0.5640184879302979, 'gis', 0), ('hoffstadt/dearpygui', 0.5614981651306152, 'gui', 0), ('lux-org/lux', 0.5574216246604919, 'viz', 0), ('jakevdp/pythondatasciencehandbook', 0.5567380785942078, 'study', 0), ('cuemacro/chartpy', 0.5522693395614624, 'viz', 0), ('plotly/dash', 0.5496276617050171, 'viz', 0), ('mckinsey/vizro', 0.5490374565124512, 'viz', 0), ('beeware/toga', 0.5480042099952698, 'gui', 0), ('dfki-ric/pytransform3d', 0.5455291867256165, 'math', 0), ('marcomusy/vedo', 0.5432279706001282, 'viz', 0), ('artelys/geonetworkx', 0.5396808385848999, 'gis', 0), ('federicoceratto/dashing', 0.5380876064300537, 'term', 0), ('westhealth/pyvis', 0.5358419418334961, 'graph', 0), ('raphaelquast/eomaps', 0.5355204343795776, 'gis', 0), ('parthjadhav/tkinter-designer', 0.5346206426620483, 'gui', 0), ('scitools/cartopy', 0.5334916114807129, 'gis', 0), ('vaexio/vaex', 0.5222266316413879, 'perf', 0), ('pygraphviz/pygraphviz', 0.5206543207168579, 'viz', 0), ('wesm/pydata-book', 0.5204950571060181, 'study', 0), ('imageio/imageio', 0.5204654335975647, 'util', 0), ('eleutherai/pyfra', 0.5192615985870361, 'ml', 0), ('visgl/deck.gl', 0.5192416310310364, 'viz', 0), ('brandtbucher/specialist', 0.5191949605941772, 'perf', 0), ('bmabey/pyldavis', 0.518200159072876, 'ml', 0), ('ipython/ipyparallel', 0.5176970362663269, 'perf', 0), ('pandas-dev/pandas', 0.5176126956939697, 'pandas', 0), ('nomic-ai/deepscatter', 0.5163466930389404, 'viz', 0), ('geopandas/geopandas', 0.515374481678009, 'gis', 0), ('wxwidgets/phoenix', 0.5125094652175903, 'gui', 0), ('makepath/xarray-spatial', 0.510444700717926, 'gis', 1), ('earthlab/earthpy', 0.5084066987037659, 'gis', 0), ('amaargiru/pyroad', 0.5063855648040771, 'study', 0), ('quantopian/qgrid', 0.5044505596160889, 'jupyter', 0), ('jalammar/ecco', 0.5038740634918213, 'ml-interpretability', 0), ('gradio-app/gradio', 0.5025941729545593, 'viz', 0), ('pyston/pyston', 0.5020092725753784, 'util', 0)]
23
2
null
0.4
11
3
77
1
1
13
1
11
10
90
0.9
30
1,680
util
https://github.com/pycqa/mccabe
[]
null
[]
[]
null
null
null
pycqa/mccabe
mccabe
615
58
17
Python
pypi.python.org/pypi/mccabe
McCabe complexity checker for Python
pycqa
2024-01-12
2013-02-20
570
1.077327
https://avatars.githubusercontent.com/u/8749848?v=4
McCabe complexity checker for Python
['complexity', 'complexity-analysis', 'flake8', 'flake8-extensions', 'flake8-plugin', 'linter-flake8', 'linter-plugin', 'mccabe']
['complexity', 'complexity-analysis', 'flake8', 'flake8-extensions', 'flake8-plugin', 'linter-flake8', 'linter-plugin', 'mccabe']
2023-12-03
[('pycqa/flake8', 0.6619266867637634, 'util', 3), ('facebook/pyre-check', 0.5869566202163696, 'typing', 0), ('google/pytype', 0.5844917893409729, 'typing', 0), ('agronholm/typeguard', 0.5824611186981201, 'typing', 0), ('pycqa/pycodestyle', 0.5681533813476562, 'util', 3), ('rubik/radon', 0.5480080842971802, 'util', 0), ('microsoft/pyright', 0.5418702960014343, 'typing', 0), ('pytoolz/toolz', 0.521766722202301, 'util', 0), ('astral-sh/ruff', 0.509772777557373, 'util', 0)]
24
7
null
0.04
8
8
133
1
0
1
1
8
6
90
0.8
30
1,483
util
https://github.com/ivankorobkov/python-inject
['dependency-injection']
null
[]
[]
null
null
null
ivankorobkov/python-inject
python-inject
607
98
17
Python
null
Python dependency injection
ivankorobkov
2024-01-12
2010-02-08
729
0.832484
null
Python dependency injection
[]
['dependency-injection']
2023-11-23
[('python-injector/injector', 0.7356547713279724, 'util', 1), ('allrod5/injectable', 0.640688955783844, 'util', 1), ('ets-labs/python-dependency-injector', 0.6299859881401062, 'util', 1), ('mitsuhiko/rye', 0.5525853037834167, 'util', 0), ('proofit404/dependencies', 0.547492265701294, 'util', 1), ('python-poetry/poetry', 0.534679651260376, 'util', 0)]
29
5
null
0.31
10
7
170
2
0
2
2
10
21
90
2.1
30
522
gis
https://github.com/toblerity/rtree
[]
null
[]
[]
null
null
null
toblerity/rtree
rtree
582
126
31
Python
https://rtree.readthedocs.io/en/latest/
Rtree: spatial index for Python GIS
toblerity
2024-01-04
2011-06-19
658
0.884115
https://avatars.githubusercontent.com/u/859968?v=4
Rtree: spatial index for Python GIS
[]
[]
2023-12-19
[('pysal/pysal', 0.6110436320304871, 'gis', 0), ('uber/h3-py', 0.6043885350227356, 'gis', 0), ('artelys/geonetworkx', 0.597081184387207, 'gis', 0), ('makepath/xarray-spatial', 0.5867227911949158, 'gis', 0), ('pinecone-io/pinecone-python-client', 0.5536699295043945, 'data', 0), ('geopandas/geopandas', 0.5479511618614197, 'gis', 0), ('opengeos/leafmap', 0.5405087471008301, 'gis', 0), ('earthlab/earthpy', 0.5261022448539734, 'gis', 0), ('gregorhd/mapcompare', 0.5135495662689209, 'gis', 0)]
41
3
null
0.63
13
10
153
1
1
1
1
13
23
90
1.8
30
1,320
util
https://github.com/pycqa/pylint-django
['django', 'pylint', 'linter']
null
[]
[]
null
null
null
pycqa/pylint-django
pylint-django
575
121
16
Python
null
Pylint plugin for improving code analysis for when using Django
pycqa
2024-01-12
2013-10-01
539
1.06679
https://avatars.githubusercontent.com/u/121692054?v=4
Pylint plugin for improving code analysis for when using Django
[]
['django', 'linter', 'pylint']
2023-11-04
[('psf/black', 0.5581016540527344, 'util', 0), ('pygments/pygments', 0.5438166856765747, 'util', 0), ('grantjenks/blue', 0.5386630892753601, 'util', 0), ('google/pytype', 0.5338144898414612, 'typing', 1), ('pycqa/flake8', 0.5301540493965149, 'util', 1), ('pylons/pyramid', 0.5214040279388428, 'web', 0), ('hhatto/autopep8', 0.5179296731948853, 'util', 0), ('klen/pylama', 0.5170671939849854, 'util', 1), ('landscapeio/prospector', 0.5079518556594849, 'util', 0), ('bottlepy/bottle', 0.5043782591819763, 'web', 0), ('feincms/feincms', 0.5040256381034851, 'web', 0)]
70
3
null
0.6
23
14
125
2
1
5
1
23
28
90
1.2
30
485
gis
https://github.com/fatiando/verde
[]
null
[]
[]
null
null
null
fatiando/verde
verde
550
69
21
Python
https://www.fatiando.org/verde
Processing and gridding spatial data, machine-learning style
fatiando
2024-01-12
2018-04-25
300
1.82811
https://avatars.githubusercontent.com/u/8174113?v=4
Processing and gridding spatial data, machine-learning style
['earth-science', 'fatiando-a-terra', 'geophysics', 'geoscience', 'geospatial', 'interpolation', 'machine-learning', 'scipy', 'scipy-stack']
['earth-science', 'fatiando-a-terra', 'geophysics', 'geoscience', 'geospatial', 'interpolation', 'machine-learning', 'scipy', 'scipy-stack']
2023-10-25
[('osgeo/grass', 0.6331599950790405, 'gis', 2), ('krzjoa/awesome-python-data-science', 0.559866726398468, 'study', 1), ('microsoft/torchgeo', 0.5598282217979431, 'gis', 1), ('ddbourgin/numpy-ml', 0.5586436986923218, 'ml', 1), ('automl/auto-sklearn', 0.5549225807189941, 'ml', 0), ('scikit-learn/scikit-learn', 0.5504959225654602, 'ml', 1), ('developmentseed/label-maker', 0.5453664660453796, 'gis', 0), ('sentinel-hub/eo-learn', 0.5445219874382019, 'gis', 1), ('feast-dev/feast', 0.5436317324638367, 'ml-ops', 1), ('remotesensinglab/raster4ml', 0.5404156446456909, 'gis', 1), ('plant99/felicette', 0.533496618270874, 'gis', 2), ('scikit-mobility/scikit-mobility', 0.531174898147583, 'gis', 0), ('online-ml/river', 0.531051754951477, 'ml', 1), ('awslabs/autogluon', 0.5272731781005859, 'ml', 1), ('polyaxon/datatile', 0.5251547694206238, 'pandas', 0), ('opengeos/segment-geospatial', 0.5204988121986389, 'gis', 2), ('scitools/iris', 0.5199081301689148, 'gis', 1), ('firmai/industry-machine-learning', 0.5189895629882812, 'study', 1), ('milvus-io/bootcamp', 0.5155651569366455, 'data', 0), ('skops-dev/skops', 0.513488233089447, 'ml-ops', 1), ('earthlab/earthpy', 0.5133398771286011, 'gis', 0), ('r-barnes/richdem', 0.5110668540000916, 'gis', 1), ('geopandas/geopandas', 0.5108627080917358, 'gis', 1), ('sloria/textblob', 0.5090445876121521, 'nlp', 0), ('gradio-app/gradio', 0.5083851218223572, 'viz', 1), ('raphaelquast/eomaps', 0.5024335384368896, 'gis', 1)]
13
8
null
0.13
4
2
70
3
1
2
1
4
4
90
1
30
1,797
jupyter
https://github.com/rapidsai/jupyterlab-nvdashboard
['gpu']
null
[]
[]
null
null
null
rapidsai/jupyterlab-nvdashboard
jupyterlab-nvdashboard
531
74
16
TypeScript
null
A JupyterLab extension for displaying dashboards of GPU usage.
rapidsai
2024-01-04
2019-08-12
233
2.277574
https://avatars.githubusercontent.com/u/43887749?v=4
A JupyterLab extension for displaying dashboards of GPU usage.
[]
['gpu']
2024-01-12
[('federicoceratto/dashing', 0.6266454458236694, 'term', 0), ('nvidia/warp', 0.5572924017906189, 'sim', 1), ('vizzuhq/ipyvizzu', 0.5411252975463867, 'jupyter', 0), ('datapane/datapane', 0.5317434668540955, 'viz', 0), ('holoviz/panel', 0.5303380489349365, 'viz', 0), ('voila-dashboards/voila', 0.5271745920181274, 'jupyter', 0), ('plotly/plotly.py', 0.5129841566085815, 'viz', 0), ('maartenbreddels/ipyvolume', 0.5118504762649536, 'jupyter', 0), ('xiaohk/stickyland', 0.5069721937179565, 'jupyter', 0), ('jupyterlab/jupyterlab-desktop', 0.5053638815879822, 'jupyter', 0), ('graphistry/pygraphistry', 0.503430187702179, 'data', 1)]
19
2
null
0.27
7
5
54
0
2
6
2
7
4
90
0.6
30
1,669
testing
https://github.com/lundberg/respx
['mocking', 'httpx']
null
[]
[]
null
null
null
lundberg/respx
respx
523
38
4
Python
https://lundberg.github.io/respx
Mock HTTPX with awesome request patterns and response side effects 🦋
lundberg
2024-01-12
2019-11-13
219
2.378817
null
Mock HTTPX with awesome request patterns and response side effects 🦋
['httpx', 'mock', 'pytest', 'testing']
['httpx', 'mock', 'mocking', 'pytest', 'testing']
2023-07-20
[('kevin1024/vcrpy', 0.6465907692909241, 'testing', 2), ('jamielennox/requests-mock', 0.6144221425056458, 'testing', 1), ('pytest-dev/pytest-mock', 0.5953378081321716, 'testing', 2), ('getsentry/responses', 0.5848559737205505, 'testing', 1), ('taverntesting/tavern', 0.5600868463516235, 'testing', 2)]
24
7
null
0.15
5
0
51
6
1
11
1
5
6
90
1.2
30
921
util
https://github.com/heuer/segno
[]
null
[]
[]
null
null
null
heuer/segno
segno
507
47
13
Python
https://pypi.org/project/segno/
Python QR Code and Micro QR Code encoder
heuer
2024-01-08
2016-08-04
390
1.297623
null
Python QR Code and Micro QR Code encoder
['barcode', 'iso-18004', 'matrix-barcode', 'micro-qr-code', 'micro-qrcode', 'python-qrcode', 'qr-code', 'qr-generator', 'qrcode', 'segno', 'structured-append']
['barcode', 'iso-18004', 'matrix-barcode', 'micro-qr-code', 'micro-qrcode', 'python-qrcode', 'qr-code', 'qr-generator', 'qrcode', 'segno', 'structured-append']
2023-11-30
[('mnooner256/pyqrcode', 0.7471798658370972, 'util', 0)]
11
3
null
1.46
12
10
91
1
2
6
2
12
19
90
1.6
30
830
gis
https://github.com/perrygeo/python-rasterstats
[]
null
[]
[]
null
null
null
perrygeo/python-rasterstats
python-rasterstats
504
165
34
Python
null
Summary statistics of geospatial raster datasets based on vector geometries.
perrygeo
2024-01-12
2013-09-18
540
0.931854
null
Summary statistics of geospatial raster datasets based on vector geometries.
[]
[]
2023-10-05
[('osgeo/gdal', 0.5707691311836243, 'gis', 0), ('remotesensinglab/raster4ml', 0.5588922500610352, 'gis', 0), ('osgeo/grass', 0.5056399703025818, 'gis', 0), ('makepath/xarray-spatial', 0.5050948262214661, 'gis', 0)]
31
7
null
0.38
5
2
126
3
1
2
1
5
9
90
1.8
30
291
util
https://github.com/fastai/ghapi
[]
null
[]
[]
null
null
null
fastai/ghapi
ghapi
496
55
9
Jupyter Notebook
https://ghapi.fast.ai/
A delightful and complete interface to GitHub's amazing API
fastai
2024-01-12
2020-11-21
166
2.980258
https://avatars.githubusercontent.com/u/20547620?v=4
A delightful and complete interface to GitHub's amazing API
['api-client', 'github', 'github-api', 'nbdev', 'openapi']
['api-client', 'github', 'github-api', 'nbdev', 'openapi']
2023-06-14
[('fauxpilot/fauxpilot', 0.5876653790473938, 'llm', 0), ('vitalik/django-ninja', 0.58127361536026, 'web', 1), ('openai/openai-python', 0.5810590982437134, 'util', 0), ('langchain-ai/opengpts', 0.5734665393829346, 'llm', 0), ('hugapi/hug', 0.5626925230026245, 'util', 0), ('pygithub/pygithub', 0.5488420724868774, 'util', 2), ('github/innovationgraph', 0.5455352067947388, 'data', 1), ('shishirpatil/gorilla', 0.5438264012336731, 'llm', 0), ('starlite-api/starlite', 0.5345987677574158, 'web', 1), ('googleapis/google-api-python-client', 0.5308494567871094, 'util', 0), ('tiangolo/fastapi', 0.5305969715118408, 'web', 1), ('prefecthq/server', 0.5246346592903137, 'util', 0), ('python-restx/flask-restx', 0.5162189602851868, 'web', 0), ('simple-salesforce/simple-salesforce', 0.5124199986457825, 'data', 1), ('kivy/kivy', 0.5002898573875427, 'util', 0)]
16
7
null
0.02
4
1
38
7
0
6
6
4
2
90
0.5
30
1,273
ml
https://github.com/intellabs/bayesian-torch
[]
null
[]
[]
null
null
null
intellabs/bayesian-torch
bayesian-torch
402
57
17
Python
null
A library for Bayesian neural network layers and uncertainty estimation in Deep Learning extending the core of PyTorch
intellabs
2024-01-14
2020-12-17
162
2.470588
https://avatars.githubusercontent.com/u/1492758?v=4
A library for Bayesian neural network layers and uncertainty estimation in Deep Learning extending the core of PyTorch
['bayesian-deep-learning', 'bayesian-inference', 'bayesian-layers', 'bayesian-neural-networks', 'deep-learning', 'deep-neural-networks', 'pytorch', 'stochastic-variational-inference', 'uncertainty-estimation', 'uncertainty-neural-networks', 'uncertainty-quantification']
['bayesian-deep-learning', 'bayesian-inference', 'bayesian-layers', 'bayesian-neural-networks', 'deep-learning', 'deep-neural-networks', 'pytorch', 'stochastic-variational-inference', 'uncertainty-estimation', 'uncertainty-neural-networks', 'uncertainty-quantification']
2024-01-02
[('pyro-ppl/pyro', 0.6956607699394226, 'ml-dl', 3), ('pytorch/ignite', 0.6580493450164795, 'ml-dl', 2), ('pytorch/botorch', 0.6108170747756958, 'ml-dl', 0), ('mrdbourke/pytorch-deep-learning', 0.5984524488449097, 'study', 2), ('rasbt/machine-learning-book', 0.5859395861625671, 'study', 2), ('intel/intel-extension-for-pytorch', 0.582083523273468, 'perf', 2), ('pyg-team/pytorch_geometric', 0.5782586932182312, 'ml-dl', 2), ('skorch-dev/skorch', 0.5576133131980896, 'ml-dl', 1), ('denys88/rl_games', 0.5465734004974365, 'ml-rl', 2), ('tensorlayer/tensorlayer', 0.5386697053909302, 'ml-rl', 1), ('thu-ml/tianshou', 0.5311893820762634, 'ml-rl', 1), ('nvidia/apex', 0.5274893045425415, 'ml-dl', 0), ('tensorflow/tensor2tensor', 0.5250702500343323, 'ml', 1), ('karpathy/micrograd', 0.5212419629096985, 'study', 0), ('keras-team/keras', 0.5210490822792053, 'ml-dl', 2), ('nvidia/deeplearningexamples', 0.5206497311592102, 'ml-dl', 2), ('aistream-peelout/flow-forecast', 0.518251359462738, 'time-series', 3), ('calculatedcontent/weightwatcher', 0.51715487241745, 'ml-dl', 0), ('rasbt/deeplearning-models', 0.516359806060791, 'ml-dl', 0), ('huggingface/transformers', 0.5125004053115845, 'nlp', 2), ('pytorch/rl', 0.5093467831611633, 'ml-rl', 1), ('udlbook/udlbook', 0.5086169838905334, 'study', 1), ('microsoft/deepspeed', 0.5001977682113647, 'ml-dl', 2)]
6
2
null
0.63
8
7
37
0
2
2
2
8
10
90
1.2
30
1,230
perf
https://github.com/dgilland/cacheout
[]
null
[]
[]
null
null
null
dgilland/cacheout
cacheout
392
42
13
Python
https://cacheout.readthedocs.io
A caching library for Python
dgilland
2024-01-03
2018-01-12
315
1.242191
null
A caching library for Python
['caching', 'fifo', 'lfu', 'lifo', 'lru', 'memoization', 'mru', 'rr']
['caching', 'fifo', 'lfu', 'lifo', 'lru', 'memoization', 'mru', 'rr']
2023-12-22
[('python-cachier/cachier', 0.7924980521202087, 'perf', 2), ('erotemic/ubelt', 0.6818086504936218, 'util', 0), ('joblib/joblib', 0.6794201135635376, 'util', 2), ('grantjenks/python-diskcache', 0.6435301899909973, 'util', 0), ('pythonspeed/filprofiler', 0.6149056553840637, 'profiling', 0), ('pytoolz/toolz', 0.6084659695625305, 'util', 0), ('pympler/pympler', 0.6028500199317932, 'perf', 0), ('spotify/annoy', 0.5922878980636597, 'ml', 0), ('pypy/pypy', 0.5562092661857605, 'util', 0), ('pythonprofilers/memory_profiler', 0.555606484413147, 'profiling', 0), ('pyston/pyston', 0.5537205338478088, 'util', 0), ('aio-libs/aiocache', 0.5477664470672607, 'data', 0), ('zilliztech/gptcache', 0.540678858757019, 'llm', 0), ('pytables/pytables', 0.5385268926620483, 'data', 0), ('klen/py-frameworks-bench', 0.5362305641174316, 'perf', 0), ('fastai/fastcore', 0.5273230671882629, 'util', 0), ('long2ice/fastapi-cache', 0.5193830728530884, 'web', 0), ('python-trio/trio', 0.5188122987747192, 'perf', 0), ('libtcod/python-tcod', 0.5180550813674927, 'gamedev', 0), ('qdrant/fastembed', 0.5054611563682556, 'ml', 0), ('dosisod/refurb', 0.5029307007789612, 'util', 0), ('sumerc/yappi', 0.5023199915885925, 'profiling', 0)]
6
1
null
0.79
10
10
73
1
0
4
4
10
34
90
3.4
30
1,548
llm
https://github.com/eugeneyan/obsidian-copilot
[]
null
[]
[]
null
null
null
eugeneyan/obsidian-copilot
obsidian-copilot
342
23
6
Python
https://eugeneyan.com/writing/obsidian-copilot/
🤖 A prototype assistant for writing and thinking
eugeneyan
2024-01-12
2023-06-11
33
10.274678
null
🤖 A prototype assistant for writing and thinking
['assistant', 'generative-ai', 'large-language-models', 'llm', 'obsidian-plugin', 'retrieval-augmented-generation']
['assistant', 'generative-ai', 'large-language-models', 'llm', 'obsidian-plugin', 'retrieval-augmented-generation']
2024-01-11
[('kyegomez/tree-of-thoughts', 0.6086257100105286, 'llm', 0), ('microsoft/generative-ai-for-beginners', 0.5925748348236084, 'study', 1), ('llmware-ai/llmware', 0.5871189832687378, 'llm', 3), ('paddlepaddle/paddlenlp', 0.5580410361289978, 'llm', 1), ('lucidrains/toolformer-pytorch', 0.5504752397537231, 'llm', 0), ('lupantech/chameleon-llm', 0.5486295819282532, 'llm', 1), ('openlmlab/moss', 0.5385111570358276, 'llm', 1), ('intellabs/fastrag', 0.5370295643806458, 'nlp', 2), ('huggingface/text-generation-inference', 0.5260320901870728, 'llm', 0), ('ofa-sys/ofa', 0.5171679854393005, 'llm', 0), ('lm-sys/fastchat', 0.5163758993148804, 'llm', 0), ('srush/minichain', 0.5138395428657532, 'llm', 0), ('ctlllll/llm-toolmaker', 0.5133623480796814, 'llm', 0), ('microsoft/lmops', 0.5132716298103333, 'llm', 1), ('rcgai/simplyretrieve', 0.5125769972801208, 'llm', 3), ('thilinarajapakse/simpletransformers', 0.5094960927963257, 'nlp', 0), ('reasoning-machines/pal', 0.5085762739181519, 'llm', 1), ('deepset-ai/haystack', 0.5081061124801636, 'llm', 2), ('prefecthq/marvin', 0.5069007277488708, 'nlp', 1), ('cheshire-cat-ai/core', 0.5033305287361145, 'llm', 2), ('lianjiatech/belle', 0.5000393390655518, 'llm', 0)]
5
2
null
0.35
1
1
7
0
0
0
0
1
0
90
0
30
306
crypto
https://github.com/ethereum/eth-utils
[]
null
[]
[]
null
null
null
ethereum/eth-utils
eth-utils
297
151
19
Python
https://eth-utils.readthedocs.io/en/latest/
Utility functions for working with ethereum related codebases.
ethereum
2024-01-03
2017-02-07
364
0.815934
https://avatars.githubusercontent.com/u/6250754?v=4
Utility functions for working with ethereum related codebases.
['ethereum', 'utility-library']
['ethereum', 'utility-library']
2024-01-10
[('pytoolz/toolz', 0.525811493396759, 'util', 0), ('suor/funcy', 0.5216156244277954, 'util', 0), ('tiiuae/sbomnix', 0.5169852375984192, 'util', 0)]
37
2
null
1.9
17
11
84
0
0
10
10
17
8
90
0.5
30
1,725
study
https://github.com/ray-project/ray-educational-materials
[]
null
[]
[]
null
null
null
ray-project/ray-educational-materials
ray-educational-materials
232
42
11
Jupyter Notebook
null
This is suite of the hands-on training materials that shows how to scale CV, NLP, time-series forecasting workloads with Ray.
ray-project
2024-01-10
2022-09-16
71
3.241517
https://avatars.githubusercontent.com/u/22125274?v=4
This is suite of the hands-on training materials that shows how to scale CV, NLP, time-series forecasting workloads with Ray.
['deep-learning', 'distributed-machine-learning', 'generative-ai', 'llm', 'llm-inference', 'llm-serving', 'ray', 'ray-data', 'ray-distributed', 'ray-serve', 'ray-train', 'ray-tune']
['deep-learning', 'distributed-machine-learning', 'generative-ai', 'llm', 'llm-inference', 'llm-serving', 'ray', 'ray-data', 'ray-distributed', 'ray-serve', 'ray-train', 'ray-tune']
2024-01-09
[('ray-project/ray', 0.7717517614364624, 'ml-ops', 3), ('ray-project/ray-llm', 0.6102384924888611, 'llm', 4), ('alpa-projects/alpa', 0.5506226420402527, 'ml-dl', 2), ('horovod/horovod', 0.5418562293052673, 'ml-ops', 2), ('aistream-peelout/flow-forecast', 0.5015262365341187, 'time-series', 1)]
8
2
null
0.98
22
19
16
0
2
3
2
22
7
90
0.3
30
1,478
web
https://github.com/alirn76/panther
[]
null
[]
[]
null
null
null
alirn76/panther
panther
226
12
7
Python
https://pantherpy.github.io
Fast & Friendly Web Framework For Building Async APIs With Python 3.10+
alirn76
2024-01-13
2022-02-23
100
2.240793
null
Fast & Friendly Web Framework For Building Async APIs With Python 3.10+
['framework', 'panther']
['framework', 'panther']
2024-01-04
[('pallets/quart', 0.7484593391418457, 'web', 0), ('neoteroi/blacksheep', 0.7121951580047607, 'web', 1), ('aio-libs/aiohttp', 0.7044265270233154, 'web', 0), ('encode/httpx', 0.6786492466926575, 'web', 0), ('klen/muffin', 0.6565958857536316, 'web', 0), ('python-trio/trio', 0.6534282565116882, 'perf', 0), ('geeogi/async-python-lambda-template', 0.6337937712669373, 'template', 0), ('python-restx/flask-restx', 0.6230086088180542, 'web', 0), ('encode/uvicorn', 0.6067794561386108, 'web', 0), ('huge-success/sanic', 0.6031531095504761, 'web', 1), ('magicstack/uvloop', 0.5940344929695129, 'util', 0), ('encode/starlette', 0.5935547351837158, 'web', 0), ('agronholm/anyio', 0.5871341824531555, 'perf', 0), ('timofurrer/awesome-asyncio', 0.5865374207496643, 'study', 0), ('tiangolo/asyncer', 0.5792798399925232, 'perf', 0), ('falconry/falcon', 0.5779109001159668, 'web', 1), ('samuelcolvin/arq', 0.5734840035438538, 'data', 0), ('klen/py-frameworks-bench', 0.564853310585022, 'perf', 0), ('starlite-api/starlite', 0.5622544288635254, 'web', 0), ('vitalik/django-ninja', 0.5587133169174194, 'web', 0), ('masoniteframework/masonite', 0.5462374091148376, 'web', 1), ('pallets/flask', 0.5419907569885254, 'web', 0), ('airtai/faststream', 0.5416358709335327, 'perf', 0), ('samuelcolvin/aioaws', 0.5380411148071289, 'data', 0), ('sumerc/yappi', 0.5367398858070374, 'profiling', 0), ('tornadoweb/tornado', 0.5357459187507629, 'web', 0), ('tiangolo/fastapi', 0.5322808027267456, 'web', 1), ('asacristani/fastapi-rocket-boilerplate', 0.5177244544029236, 'template', 0), ('hugapi/hug', 0.5171224474906921, 'util', 0), ('ets-labs/python-dependency-injector', 0.516931414604187, 'util', 0), ('jordaneremieff/mangum', 0.5160053372383118, 'web', 0), ('fastai/fastcore', 0.5143014788627625, 'util', 0), ('bottlepy/bottle', 0.5107240676879883, 'web', 0), ('nficano/python-lambda', 0.5092719793319702, 'util', 0), ('pylons/pyramid', 0.5073546767234802, 'web', 0), ('hyperopt/hyperopt', 0.5043962597846985, 'ml', 0)]
6
1
null
5.27
22
18
23
0
0
40
40
22
4
90
0.2
30
1,173
data
https://github.com/pinecone-io/pinecone-python-client
['vector-search']
null
[]
[]
null
null
null
pinecone-io/pinecone-python-client
pinecone-python-client
205
50
21
Python
https://www.pinecone.io/docs
The Pinecone Python client
pinecone-io
2024-01-12
2021-09-16
123
1.657044
https://avatars.githubusercontent.com/u/54333248?v=4
The Pinecone Python client
[]
['vector-search']
2024-01-14
[('qdrant/qdrant-client', 0.6546476483345032, 'util', 1), ('weaviate/weaviate-python-client', 0.5670716762542725, 'util', 1), ('toblerity/rtree', 0.5536699295043945, 'gis', 0), ('qdrant/qdrant-haystack', 0.5180879831314087, 'data', 0), ('qdrant/vector-db-benchmark', 0.512586772441864, 'perf', 1), ('facebookresearch/faiss', 0.5026112794876099, 'ml', 1)]
28
2
null
2.27
71
56
28
0
3
18
3
70
20
90
0.3
30
1,865
llm
https://github.com/lamini-ai/llm-classifier
['classifier']
null
[]
[]
null
null
null
lamini-ai/llm-classifier
llm-classifier
124
13
4
Python
null
Classify data instantly using an LLM
lamini-ai
2024-01-12
2023-09-20
18
6.575758
https://avatars.githubusercontent.com/u/130713213?v=4
Classify data instantly using an LLM
[]
['classifier']
2023-12-14
[('microsoft/jarvis', 0.5053083300590515, 'llm', 0)]
6
1
null
0.96
2
0
4
1
0
0
0
2
6
90
3
30
1,557
util
https://github.com/tiiuae/sbomnix
[]
null
[]
[]
null
null
null
tiiuae/sbomnix
sbomnix
72
18
8
Python
null
A suite of utilities to help with software supply chain challenges on nix targets
tiiuae
2024-01-04
2022-12-08
59
1.205742
https://avatars.githubusercontent.com/u/59836348?v=4
A suite of utilities to help with software supply chain challenges on nix targets
['bill-of-materials', 'cpe', 'cyclonedx', 'dependencies', 'nix', 'purl', 'sbom', 'sbom-generator', 'sbom-tool', 'security', 'software-bill-of-materials', 'software-supply-chain', 'software-supply-chain-security', 'spdx-sbom', 'static-analysis', 'vulnerability-scanners']
['bill-of-materials', 'cpe', 'cyclonedx', 'dependencies', 'nix', 'purl', 'sbom', 'sbom-generator', 'sbom-tool', 'security', 'software-bill-of-materials', 'software-supply-chain', 'software-supply-chain-security', 'spdx-sbom', 'static-analysis', 'vulnerability-scanners']
2024-01-03
[('spack/spack', 0.5559228658676147, 'util', 0), ('trailofbits/pip-audit', 0.5466781258583069, 'security', 1), ('conda/conda', 0.5382207632064819, 'util', 0), ('aquasecurity/trivy', 0.5336388945579529, 'security', 2), ('chaostoolkit/chaostoolkit', 0.5200450420379639, 'util', 0), ('mamba-org/mamba', 0.5184597373008728, 'util', 0), ('ethereum/eth-utils', 0.5169852375984192, 'crypto', 0), ('aswinnnn/pyscan', 0.5072173476219177, 'security', 2)]
9
5
null
3.15
17
16
13
1
12
11
12
17
13
90
0.8
30
760
study
https://github.com/fluentpython/example-code-2e
[]
null
[]
[]
null
null
null
fluentpython/example-code-2e
example-code-2e
2,683
763
68
Python
https://amzn.to/3J48u2J
Example code for Fluent Python, 2nd edition (O'Reilly 2022)
fluentpython
2024-01-13
2019-03-21
253
10.574887
https://avatars.githubusercontent.com/u/9216311?v=4
Example code for Fluent Python, 2nd edition (O'Reilly 2022)
['concurrency', 'iterators', 'metaprogramming', 'special-methods']
['concurrency', 'iterators', 'metaprogramming', 'special-methods']
2022-04-24
[('more-itertools/more-itertools', 0.5874441862106323, 'util', 0), ('python-trio/trio', 0.5376577377319336, 'perf', 0), ('python-greenlet/greenlet', 0.514401912689209, 'perf', 0), ('evhub/coconut', 0.5133896470069885, 'util', 0), ('fastai/fastcore', 0.5095949769020081, 'util', 0), ('pytoolz/toolz', 0.5072869062423706, 'util', 0), ('nteract/papermill', 0.5064553022384644, 'jupyter', 0), ('sumerc/yappi', 0.5051793456077576, 'profiling', 0), ('joblib/joblib', 0.5024613738059998, 'util', 0), ('koaning/clumper', 0.5001460909843445, 'util', 0)]
7
1
null
0
3
1
59
21
0
0
0
3
1
90
0.3
29
1,343
util
https://github.com/cdgriffith/box
[]
null
[]
[]
null
null
null
cdgriffith/box
Box
2,308
104
35
Python
https://github.com/cdgriffith/Box/wiki
Python dictionaries with advanced dot notation access
cdgriffith
2024-01-12
2017-03-11
359
6.421304
null
Python dictionaries with advanced dot notation access
['addict', 'box', 'bunch', 'dictionaries', 'helper', 'object', 'python-box', 'python-types']
['addict', 'box', 'bunch', 'dictionaries', 'helper', 'object', 'python-box', 'python-types']
2023-08-26
[]
1
0
null
0.08
3
0
83
5
9
9
9
3
3
90
1
29
1,474
util
https://github.com/ianmiell/shutit
[]
null
[]
[]
null
null
null
ianmiell/shutit
shutit
2,143
130
67
Python
http://ianmiell.github.io/shutit/
Automation framework for programmers
ianmiell
2024-01-13
2014-03-25
514
4.169261
null
Automation framework for programmers
['docker', 'pexpect', 'vagrant']
['docker', 'pexpect', 'vagrant']
2022-06-29
[('tox-dev/tox', 0.5560944080352783, 'testing', 0), ('pypa/pipenv', 0.549948513507843, 'util', 0), ('backtick-se/cowait', 0.5379471182823181, 'util', 1), ('martinheinz/python-project-blueprint', 0.5357551574707031, 'template', 1), ('pexpect/pexpect', 0.5116491317749023, 'util', 0), ('willmcgugan/textual', 0.5011722445487976, 'term', 0)]
24
6
null
0
0
0
119
19
0
3
3
0
0
90
0
29
707
gis
https://github.com/mcordts/cityscapesscripts
[]
null
[]
[]
null
null
null
mcordts/cityscapesscripts
cityscapesScripts
2,053
608
45
Python
null
README and scripts for the Cityscapes Dataset
mcordts
2024-01-12
2016-02-20
414
4.953809
null
README and scripts for the Cityscapes Dataset
[]
[]
2023-05-07
[('udst/urbansim', 0.6591488718986511, 'sim', 0), ('pysal/momepy', 0.564961314201355, 'gis', 0), ('gregorhd/mapcompare', 0.5555253624916077, 'gis', 0), ('mattbierbaum/arxiv-public-datasets', 0.5378220677375793, 'data', 0), ('spatialucr/geosnap', 0.5296457409858704, 'gis', 0)]
18
3
null
0.04
6
1
96
8
0
0
0
6
1
90
0.2
29
1,002
study
https://github.com/cerlymarco/medium_notebook
[]
null
[]
[]
null
null
null
cerlymarco/medium_notebook
MEDIUM_NoteBook
1,972
966
100
Jupyter Notebook
null
Repository containing notebooks of my posts on Medium
cerlymarco
2024-01-11
2019-04-22
249
7.915138
null
Repository containing notebooks of my posts on Medium
['artificial-intelligence', 'data-science', 'deep-learning', 'machine-learning', 'notebooks']
['artificial-intelligence', 'data-science', 'deep-learning', 'machine-learning', 'notebooks']
2023-12-17
[('firmai/industry-machine-learning', 0.6431946158409119, 'study', 2), ('zenodo/zenodo', 0.5398790240287781, 'util', 0), ('tensorflow/tensor2tensor', 0.5338510870933533, 'ml', 2), ('ageron/handson-ml2', 0.525178074836731, 'ml', 0), ('alirezadir/machine-learning-interview-enlightener', 0.5219733119010925, 'study', 2)]
1
0
null
0.67
1
1
58
1
0
0
0
1
1
90
1
29
9
ml
https://github.com/contextlab/hypertools
[]
null
[]
[]
null
null
null
contextlab/hypertools
hypertools
1,796
163
61
Python
http://hypertools.readthedocs.io/en/latest/
A Python toolbox for gaining geometric insights into high-dimensional data
contextlab
2024-01-13
2016-09-27
383
4.689295
https://avatars.githubusercontent.com/u/22374976?v=4
A Python toolbox for gaining geometric insights into high-dimensional data
['data-visualization', 'data-wrangling', 'high-dimensional-data', 'text-vectorization', 'time-series', 'topic-modeling', 'visualization']
['data-visualization', 'data-wrangling', 'high-dimensional-data', 'text-vectorization', 'time-series', 'topic-modeling', 'visualization']
2022-02-12
[('enthought/mayavi', 0.6949652433395386, 'viz', 1), ('residentmario/geoplot', 0.686218798160553, 'gis', 0), ('holoviz/holoviz', 0.6432879567146301, 'viz', 0), ('marcomusy/vedo', 0.6358500719070435, 'viz', 1), ('scitools/iris', 0.6321009993553162, 'gis', 0), ('mwaskom/seaborn', 0.6260726451873779, 'viz', 1), ('pyqtgraph/pyqtgraph', 0.6197599172592163, 'viz', 1), ('altair-viz/altair', 0.6141685843467712, 'viz', 1), ('holoviz/panel', 0.6038259267807007, 'viz', 0), ('holoviz/hvplot', 0.5875470042228699, 'pandas', 0), ('pyvista/pyvista', 0.5857540369033813, 'viz', 1), ('facebookresearch/hiplot', 0.5843124985694885, 'viz', 0), ('man-group/dtale', 0.5685189366340637, 'viz', 2), ('gregorhd/mapcompare', 0.565951406955719, 'gis', 0), ('holoviz/geoviews', 0.5654189586639404, 'gis', 0), ('bmabey/pyldavis', 0.5628495812416077, 'ml', 0), ('matplotlib/matplotlib', 0.5552871227264404, 'viz', 1), ('makepath/xarray-spatial', 0.5519405603408813, 'gis', 0), ('vaexio/vaex', 0.548748791217804, 'perf', 1), ('kanaries/pygwalker', 0.5455514192581177, 'pandas', 1), ('dfki-ric/pytransform3d', 0.5422584414482117, 'math', 1), ('pandas-dev/pandas', 0.5390833616256714, 'pandas', 0), ('bokeh/bokeh', 0.5384601950645447, 'viz', 1), ('earthlab/earthpy', 0.5363619923591614, 'gis', 0), ('pysal/pysal', 0.535285472869873, 'gis', 0), ('wesm/pydata-book', 0.5346917510032654, 'study', 0), ('eleutherai/pyfra', 0.5310801863670349, 'ml', 0), ('jakevdp/pythondatasciencehandbook', 0.5308850407600403, 'study', 0), ('graphistry/pygraphistry', 0.5276858806610107, 'data', 1), ('lux-org/lux', 0.5267577767372131, 'viz', 1), ('artelys/geonetworkx', 0.5169349908828735, 'gis', 0), ('has2k1/plotnine', 0.5157314538955688, 'viz', 0), ('geopandas/geopandas', 0.5144107341766357, 'gis', 0), ('tdameritrade/stumpy', 0.5135495662689209, 'time-series', 0), ('holoviz/datashader', 0.5120874643325806, 'gis', 0), ('pytables/pytables', 0.5119327306747437, 'data', 0), ('blaze/blaze', 0.5032052397727966, 'pandas', 0)]
21
7
null
0
0
0
89
23
0
3
3
0
0
90
0
29
1,682
util
https://github.com/rubik/radon
[]
null
[]
[]
null
null
null
rubik/radon
radon
1,566
114
34
Python
http://radon.readthedocs.org/
Various code metrics for Python code
rubik
2024-01-14
2012-09-20
592
2.642082
null
Various code metrics for Python code
['cli', 'code-analysis', 'quality-assurance', 'static-analysis']
['cli', 'code-analysis', 'quality-assurance', 'static-analysis']
2023-10-06
[('google/pytype', 0.6680740714073181, 'typing', 1), ('sourcery-ai/sourcery', 0.6180241703987122, 'util', 0), ('psf/black', 0.609166145324707, 'util', 0), ('nedbat/coveragepy', 0.6033869981765747, 'testing', 0), ('grantjenks/blue', 0.6026664972305298, 'util', 0), ('facebook/pyre-check', 0.6015112400054932, 'typing', 1), ('dosisod/refurb', 0.5743918418884277, 'util', 1), ('pyutils/line_profiler', 0.5716840028762817, 'profiling', 0), ('landscapeio/prospector', 0.5695351362228394, 'util', 0), ('pympler/pympler', 0.568540632724762, 'perf', 0), ('pycqa/flake8', 0.5651803612709045, 'util', 1), ('hhatto/autopep8', 0.5594862699508667, 'util', 0), ('pythonprofilers/memory_profiler', 0.5579990148544312, 'profiling', 0), ('regebro/pyroma', 0.5549668669700623, 'util', 0), ('ionelmc/pytest-benchmark', 0.554404079914093, 'testing', 0), ('jendrikseipp/vulture', 0.5527566075325012, 'util', 0), ('klen/py-frameworks-bench', 0.5515268445014954, 'perf', 0), ('python/cpython', 0.5486265420913696, 'util', 0), ('pycqa/mccabe', 0.5480080842971802, 'util', 0), ('klen/pylama', 0.5425077676773071, 'util', 0), ('google/yapf', 0.5423753261566162, 'util', 0), ('agronholm/typeguard', 0.5345003604888916, 'typing', 0), ('ydataai/ydata-quality', 0.5341893434524536, 'data', 0), ('microsoft/pyright', 0.533168375492096, 'typing', 0), ('pypa/hatch', 0.5330091714859009, 'util', 1), ('eugeneyan/python-collab-template', 0.5297834873199463, 'template', 0), ('astral-sh/ruff', 0.528230607509613, 'util', 1), ('samuelcolvin/python-devtools', 0.5275425314903259, 'debug', 0), ('amaargiru/pyroad', 0.5273672342300415, 'study', 0), ('gaogaotiantian/viztracer', 0.5236186385154724, 'profiling', 0), ('cython/cython', 0.5208148956298828, 'util', 0), ('ydataai/ydata-profiling', 0.5186936259269714, 'pandas', 0), ('aswinnnn/pyscan', 0.5182473659515381, 'security', 0), ('mynameisfiber/high_performance_python_2e', 0.5166555643081665, 'study', 0), ('eleutherai/pyfra', 0.514139711856842, 'ml', 0), ('pypy/pypy', 0.5132455825805664, 'util', 0), ('instagram/monkeytype', 0.5105746984481812, 'typing', 0), ('citadel-ai/langcheck', 0.505801796913147, 'llm', 0), ('pypi/warehouse', 0.5054935216903687, 'util', 0), ('facebookincubator/bowler', 0.5027236938476562, 'util', 0), ('microsoft/pycodegpt', 0.5025046467781067, 'llm', 0)]
60
2
null
0.33
7
1
138
3
0
4
4
7
1
90
0.1
29
390
data
https://github.com/mchong6/jojogan
[]
null
[]
[]
null
null
null
mchong6/jojogan
JoJoGAN
1,395
207
26
Jupyter Notebook
null
Official PyTorch repo for JoJoGAN: One Shot Face Stylization
mchong6
2024-01-08
2021-12-17
110
12.616279
null
Official PyTorch repo for JoJoGAN: One Shot Face Stylization
['anime', 'gans', 'image-translation']
['anime', 'gans', 'image-translation']
2022-02-05
[('tencentarc/gfpgan', 0.5290706753730774, 'ml', 0), ('williamyang1991/vtoonify', 0.515015184879303, 'ml-dl', 0), ('hysts/pytorch_image_classification', 0.5051544308662415, 'ml-dl', 0)]
3
1
null
0
1
0
25
24
0
0
0
1
1
90
1
29
562
gis
https://github.com/gboeing/osmnx-examples
[]
null
[]
[]
null
null
null
gboeing/osmnx-examples
osmnx-examples
1,386
493
59
Jupyter Notebook
https://osmnx.readthedocs.io
Gallery of OSMnx tutorials, usage examples, and feature demonstations.
gboeing
2024-01-10
2017-07-22
340
4.071339
null
Gallery of OSMnx tutorials, usage examples, and feature demonstations.
['accessibility', 'binder', 'cities', 'city', 'jupyter-notebook', 'network-analysis', 'notebooks', 'openstreetmap', 'public-transport', 'street-networks', 'transit', 'transport', 'transportation', 'urban-analytics', 'urban-data-science', 'urban-design', 'urban-planning']
['accessibility', 'binder', 'cities', 'city', 'jupyter-notebook', 'network-analysis', 'notebooks', 'openstreetmap', 'public-transport', 'street-networks', 'transit', 'transport', 'transportation', 'urban-analytics', 'urban-data-science', 'urban-design', 'urban-planning']
2023-12-31
[('gboeing/osmnx', 0.7930247187614441, 'gis', 5), ('marceloprates/prettymaps', 0.562412440776825, 'viz', 2)]
1
1
null
1.1
4
4
79
0
0
3
3
4
0
90
0
29
1,225
perf
https://github.com/nschloe/perfplot
[]
null
[]
[]
null
null
null
nschloe/perfplot
perfplot
1,261
63
18
Python
null
:chart_with_upwards_trend: Performance analysis for Python snippets
nschloe
2024-01-12
2017-02-21
362
3.483425
null
:chart_with_upwards_trend: Performance analysis for Python snippets
['performance-analysis']
['performance-analysis']
2022-06-06
[('altair-viz/altair', 0.5681192278862, 'viz', 0), ('pyutils/line_profiler', 0.535541832447052, 'profiling', 0), ('gaogaotiantian/viztracer', 0.528630793094635, 'profiling', 0), ('has2k1/plotnine', 0.5270527005195618, 'viz', 0), ('alexmojaki/heartrate', 0.5038774013519287, 'debug', 0), ('vizzuhq/ipyvizzu', 0.5008931756019592, 'jupyter', 0)]
13
4
null
0
5
1
84
20
0
10
10
5
1
90
0.2
29
192
ml
https://github.com/awslabs/dgl-ke
[]
null
[]
[]
null
null
null
awslabs/dgl-ke
dgl-ke
1,202
197
27
Python
https://dglke.dgl.ai/doc/
High performance, easy-to-use, and scalable package for learning large-scale knowledge graph embeddings.
awslabs
2024-01-11
2020-03-03
204
5.892157
https://avatars.githubusercontent.com/u/3299148?v=4
High performance, easy-to-use, and scalable package for learning large-scale knowledge graph embeddings.
['dgl', 'graph-learning', 'knowledge-graph', 'knowledge-graphs-embeddings', 'machine-learning']
['dgl', 'graph-learning', 'knowledge-graph', 'knowledge-graphs-embeddings', 'machine-learning']
2023-03-20
[('accenture/ampligraph', 0.7346105575561523, 'data', 2), ('dylanhogg/llmgraph', 0.6202223300933838, 'ml', 1), ('facebookresearch/pytorch-biggraph', 0.6120842099189758, 'ml-dl', 0), ('zjunlp/deepke', 0.5722960233688354, 'ml', 1), ('neuml/txtai', 0.5560591220855713, 'nlp', 1), ('deepgraphlearning/ultra', 0.5505498647689819, 'ml', 1), ('dmlc/dgl', 0.5391981601715088, 'ml-dl', 0), ('koaning/embetter', 0.5223193764686584, 'data', 0), ('stellargraph/stellargraph', 0.5202558040618896, 'graph', 1), ('plasticityai/magnitude', 0.5072051286697388, 'nlp', 1), ('qdrant/fastembed', 0.5057823061943054, 'ml', 0), ('benedekrozemberczki/tigerlily', 0.50465327501297, 'ml-dl', 2)]
26
4
null
0.02
1
0
47
10
0
1
1
1
0
90
0
29
616
util
https://github.com/pytoolz/cytoolz
[]
null
[]
[]
null
null
null
pytoolz/cytoolz
cytoolz
954
67
25
Python
null
Cython implementation of Toolz: High performance functional utilities
pytoolz
2024-01-13
2014-04-04
512
1.861204
https://avatars.githubusercontent.com/u/5448828?v=4
Cython implementation of Toolz: High performance functional utilities
[]
[]
2023-07-21
[('scikit-build/scikit-build', 0.5701683759689331, 'ml', 0), ('suor/funcy', 0.5295758247375488, 'util', 0), ('cython/cython', 0.5252465009689331, 'util', 0)]
21
5
null
0.08
3
1
119
6
1
2
1
3
4
90
1.3
29
789
graph
https://github.com/westhealth/pyvis
[]
null
[]
[]
null
null
null
westhealth/pyvis
pyvis
850
145
19
HTML
http://pyvis.readthedocs.io/en/latest/
Python package for creating and visualizing interactive network graphs.
westhealth
2024-01-11
2018-05-10
298
2.845528
https://avatars.githubusercontent.com/u/22085795?v=4
Python package for creating and visualizing interactive network graphs.
['network-visualization', 'networkx']
['network-visualization', 'networkx']
2023-02-10
[('pygraphviz/pygraphviz', 0.7577512264251709, 'viz', 0), ('graphistry/pygraphistry', 0.6478259563446045, 'data', 2), ('networkx/networkx', 0.6360735297203064, 'graph', 0), ('plotly/plotly.py', 0.6326491832733154, 'viz', 0), ('h4kor/graph-force', 0.6132168173789978, 'graph', 0), ('holoviz/hvplot', 0.5998131036758423, 'pandas', 0), ('artelys/geonetworkx', 0.5923200249671936, 'gis', 0), ('altair-viz/altair', 0.5836617946624756, 'viz', 0), ('matplotlib/matplotlib', 0.5532649159431458, 'viz', 0), ('bokeh/bokeh', 0.55198734998703, 'viz', 0), ('vizzuhq/ipyvizzu', 0.5483621954917908, 'jupyter', 0), ('has2k1/plotnine', 0.5456839203834534, 'viz', 0), ('pydot/pydot', 0.542072594165802, 'viz', 0), ('mwaskom/seaborn', 0.5389178395271301, 'viz', 0), ('holoviz/holoviz', 0.5358419418334961, 'viz', 0), ('secdev/scapy', 0.5347074866294861, 'util', 1), ('enthought/mayavi', 0.5338135361671448, 'viz', 0), ('gboeing/osmnx', 0.5170513987541199, 'gis', 1), ('cuemacro/chartpy', 0.5167423486709595, 'viz', 0), ('dmlc/dgl', 0.5159277319908142, 'ml-dl', 0), ('kuanb/peartree', 0.5152437090873718, 'gis', 0), ('graphql-python/graphene', 0.5054649114608765, 'web', 0), ('pyqtgraph/pyqtgraph', 0.5053408741950989, 'viz', 0), ('holoviz/panel', 0.5053226947784424, 'viz', 0), ('scitools/iris', 0.503166139125824, 'gis', 0), ('comfyanonymous/comfyui', 0.5001736283302307, 'diffusion', 0)]
32
3
null
0.06
23
3
69
11
0
1
1
23
21
90
0.9
29
1,582
nlp
https://github.com/paddlepaddle/rocketqa
['question-answering']
null
[]
[]
null
null
null
paddlepaddle/rocketqa
RocketQA
713
124
19
Python
null
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.
paddlepaddle
2024-01-12
2021-09-07
125
5.704
https://avatars.githubusercontent.com/u/23534030?v=4
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.
['dense-retrieval', 'information-retrieval', 'nlp', 'question-answering']
['dense-retrieval', 'information-retrieval', 'nlp', 'question-answering']
2022-12-03
[('intellabs/fastrag', 0.6380553841590881, 'nlp', 3), ('facebookresearch/dpr-scale', 0.6294921636581421, 'nlp', 0), ('ai21labs/in-context-ralm', 0.5692198872566223, 'llm', 0), ('srush/minichain', 0.5608699321746826, 'llm', 1), ('paddlepaddle/paddlenlp', 0.560157835483551, 'llm', 2), ('muennighoff/sgpt', 0.5352213978767395, 'llm', 1), ('lianjiatech/belle', 0.5283323526382446, 'llm', 0), ('freedomintelligence/llmzoo', 0.5235476493835449, 'llm', 0), ('castorini/pyserini', 0.5224674940109253, 'ml', 1), ('deepset-ai/farm', 0.5212914347648621, 'nlp', 2), ('neuml/txtai', 0.5149143934249878, 'nlp', 2), ('llmware-ai/llmware', 0.510935366153717, 'llm', 3), ('baichuan-inc/baichuan-13b', 0.5105500817298889, 'llm', 0), ('night-chen/toolqa', 0.5089247226715088, 'llm', 1), ('jina-ai/clip-as-service', 0.506847620010376, 'nlp', 0), ('explosion/spacy-models', 0.5023024678230286, 'nlp', 1)]
12
3
null
0
4
0
29
14
0
0
0
4
5
90
1.2
29
1,105
study
https://github.com/davidadsp/generative_deep_learning_2nd_edition
[]
null
[]
[]
null
null
null
davidadsp/generative_deep_learning_2nd_edition
Generative_Deep_Learning_2nd_Edition
663
223
18
Jupyter Notebook
https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/
The official code repository for the second edition of the O'Reilly book Generative Deep Learning: Teaching Machines to Paint, Write, Compose and Play.
davidadsp
2024-01-14
2022-03-25
96
6.865385
null
The official code repository for the second edition of the O'Reilly book Generative Deep Learning: Teaching Machines to Paint, Write, Compose and Play.
['chatgpt', 'dalle2', 'data-science', 'deep-learning', 'diffusion-models', 'generative-adversarial-network', 'gpt-3', 'machine-learning', 'stable-diffusion', 'tensorflow']
['chatgpt', 'dalle2', 'data-science', 'deep-learning', 'diffusion-models', 'generative-adversarial-network', 'gpt-3', 'machine-learning', 'stable-diffusion', 'tensorflow']
2023-07-18
[('openai/image-gpt', 0.6263450980186462, 'llm', 0), ('mrdbourke/pytorch-deep-learning', 0.5829065442085266, 'study', 2), ('rasbt/machine-learning-book', 0.5600119233131409, 'study', 2), ('d2l-ai/d2l-en', 0.5406649708747864, 'study', 4), ('tensorlayer/tensorlayer', 0.5377876162528992, 'ml-rl', 2), ('open-mmlab/mmediting', 0.5358924269676208, 'ml', 3), ('microsoft/generative-ai-for-beginners', 0.5330820679664612, 'study', 1), ('lupantech/chameleon-llm', 0.5299697518348694, 'llm', 1), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5259917974472046, 'study', 2), ('lucidrains/imagen-pytorch', 0.5147601962089539, 'ml-dl', 1), ('nvidia/deeplearningexamples', 0.5120260119438171, 'ml-dl', 2), ('sharonzhou/long_stable_diffusion', 0.5068796277046204, 'diffusion', 0), ('automatic1111/stable-diffusion-webui', 0.5017077922821045, 'diffusion', 2)]
4
1
null
1.35
9
4
22
6
0
0
0
9
8
90
0.9
29
435
pandas
https://github.com/polyaxon/datatile
[]
null
[]
[]
null
null
null
polyaxon/datatile
traceml
488
43
14
Python
null
Engine for ML/Data tracking, visualization, explainability, drift detection, and dashboards for Polyaxon.
polyaxon
2024-01-12
2016-03-25
409
1.191489
https://avatars.githubusercontent.com/u/24544827?v=4
Engine for ML/Data tracking, visualization, explainability, drift detection, and dashboards for Polyaxon.
['dask', 'data-exploration', 'data-profiling', 'data-quality', 'data-quality-checks', 'data-science', 'data-visualization', 'dataframes', 'dataops', 'explainable-ai', 'matplotlib', 'mlops', 'pandas', 'pandas-summary', 'plotly', 'pytorch', 'spark', 'statistics', 'tensorflow', 'tracking']
['dask', 'data-exploration', 'data-profiling', 'data-quality', 'data-quality-checks', 'data-science', 'data-visualization', 'dataframes', 'dataops', 'explainable-ai', 'matplotlib', 'mlops', 'pandas', 'pandas-summary', 'plotly', 'pytorch', 'spark', 'statistics', 'tensorflow', 'tracking']
2024-01-04
[('plotly/dash', 0.6874310970306396, 'viz', 3), ('wandb/client', 0.6632310748100281, 'ml', 4), ('krzjoa/awesome-python-data-science', 0.6403499245643616, 'study', 3), ('aimhubio/aim', 0.6386370062828064, 'ml-ops', 5), ('huggingface/datasets', 0.6301923990249634, 'nlp', 3), ('dagworks-inc/hamilton', 0.6286333203315735, 'ml-ops', 3), ('holoviz/panel', 0.6254085302352905, 'viz', 2), ('pandas-dev/pandas', 0.6224325299263, 'pandas', 2), ('gradio-app/gradio', 0.6204770803451538, 'viz', 2), ('mlflow/mlflow', 0.6103001236915588, 'ml-ops', 0), ('ydataai/ydata-profiling', 0.6102992296218872, 'pandas', 6), ('ranaroussi/quantstats', 0.6079445481300354, 'finance', 0), ('dylanhogg/awesome-python', 0.6012967228889465, 'study', 2), ('whylabs/whylogs', 0.5969440937042236, 'util', 4), ('man-group/dtale', 0.5954803824424744, 'viz', 3), ('oegedijk/explainerdashboard', 0.5954424142837524, 'ml-interpretability', 1), ('merantix-momentum/squirrel-core', 0.5911334156990051, 'ml', 4), ('quantconnect/lean', 0.590923011302948, 'finance', 0), ('netflix/metaflow', 0.5876936316490173, 'ml-ops', 2), ('polyaxon/polyaxon', 0.5872251987457275, 'ml-ops', 4), ('activeloopai/deeplake', 0.585174024105072, 'ml-ops', 4), ('avaiga/taipy', 0.5837622880935669, 'data', 2), ('csinva/imodels', 0.5763207674026489, 'ml', 3), ('xplainable/xplainable', 0.5760681629180908, 'ml-interpretability', 3), ('districtdatalabs/yellowbrick', 0.5754048228263855, 'ml', 1), ('gventuri/pandas-ai', 0.5753474235534668, 'pandas', 2), ('hi-primus/optimus', 0.5730414986610413, 'ml-ops', 5), ('firmai/industry-machine-learning', 0.5717259049415588, 'study', 1), ('feast-dev/feast', 0.570514976978302, 'ml-ops', 3), ('pycaret/pycaret', 0.5685513615608215, 'ml', 1), ('mito-ds/monorepo', 0.5668829083442688, 'jupyter', 3), ('meltano/meltano', 0.5661336183547974, 'ml-ops', 1), ('rasbt/mlxtend', 0.5656301975250244, 'ml', 1), ('online-ml/river', 0.5639887452125549, 'ml', 1), ('vaexio/vaex', 0.5635982155799866, 'perf', 1), ('salesforce/logai', 0.5616445541381836, 'util', 0), ('unionai-oss/pandera', 0.55992591381073, 'pandas', 2), ('mage-ai/mage-ai', 0.5572016835212708, 'ml-ops', 2), ('polakowo/vectorbt', 0.5571960806846619, 'finance', 2), ('googlecloudplatform/vertex-ai-samples', 0.5558412075042725, 'ml', 2), ('plotly/plotly.py', 0.554128885269165, 'viz', 1), ('hazyresearch/meerkat', 0.5525878071784973, 'viz', 2), ('fugue-project/fugue', 0.5508334040641785, 'pandas', 3), ('teamhg-memex/eli5', 0.5490293502807617, 'ml', 1), ('reloadware/reloadium', 0.5487061738967896, 'profiling', 1), ('bokeh/bokeh', 0.5476343631744385, 'viz', 0), ('mindsdb/mindsdb', 0.5471445918083191, 'data', 0), ('goldmansachs/gs-quant', 0.5469740033149719, 'finance', 0), ('eventual-inc/daft', 0.5458943843841553, 'pandas', 1), ('google/tf-quant-finance', 0.5451685190200806, 'finance', 1), ('airbytehq/airbyte', 0.5435851812362671, 'data', 0), ('ploomber/ploomber', 0.5431307554244995, 'ml-ops', 2), ('scikit-learn/scikit-learn', 0.5421066284179688, 'ml', 2), ('streamlit/streamlit', 0.5420833230018616, 'viz', 2), ('selfexplainml/piml-toolbox', 0.5384085178375244, 'ml-interpretability', 0), ('great-expectations/great_expectations', 0.5381271839141846, 'ml-ops', 4), ('bentoml/bentoml', 0.5369633436203003, 'ml-ops', 1), ('orchest/orchest', 0.5361875891685486, 'ml-ops', 1), ('dagster-io/dagster', 0.5342531800270081, 'ml-ops', 2), ('rapidsai/cudf', 0.5338151454925537, 'pandas', 3), ('backtick-se/cowait', 0.533811628818512, 'util', 3), ('fastai/fastcore', 0.5320842266082764, 'util', 0), ('tensorlayer/tensorlayer', 0.5311883687973022, 'ml-rl', 1), ('apache/spark', 0.529706597328186, 'data', 1), ('awslabs/autogluon', 0.5291432738304138, 'ml', 2), ('pola-rs/polars', 0.5283935070037842, 'pandas', 1), ('deepchecks/deepchecks', 0.5274471640586853, 'data', 3), ('willmcgugan/textual', 0.5274295806884766, 'term', 0), ('doccano/doccano', 0.5258282423019409, 'nlp', 0), ('simonw/datasette', 0.525797963142395, 'data', 0), ('fatiando/verde', 0.5251547694206238, 'gis', 0), ('pathwaycom/pathway', 0.5242671370506287, 'data', 0), ('tensorflow/tensorflow', 0.524250328540802, 'ml-dl', 1), ('gaogaotiantian/viztracer', 0.5233743786811829, 'profiling', 0), ('featurelabs/featuretools', 0.5225564241409302, 'ml', 1), ('alirezadir/machine-learning-interview-enlightener', 0.521611213684082, 'study', 0), ('nccr-itmo/fedot', 0.521264910697937, 'ml-ops', 0), ('interpretml/interpret', 0.5212517976760864, 'ml-interpretability', 1), ('mckinsey/vizro', 0.5210312008857727, 'viz', 2), ('lutzroeder/netron', 0.5207769274711609, 'ml', 2), ('kubeflow-kale/kale', 0.5204256772994995, 'ml-ops', 0), ('carla-recourse/carla', 0.5203560590744019, 'ml', 3), ('tensorflow/data-validation', 0.5198504328727722, 'ml-ops', 0), ('isl-org/open3d', 0.5179375410079956, 'sim', 2), ('clips/pattern', 0.5179307460784912, 'nlp', 0), ('giswqs/geemap', 0.5178652405738831, 'gis', 1), ('microsoft/nni', 0.5166768431663513, 'ml', 4), ('determined-ai/determined', 0.516498863697052, 'ml-ops', 4), ('jovianml/opendatasets', 0.5163763165473938, 'data', 1), ('pyvista/pyvista', 0.5150445699691772, 'viz', 0), ('cheshire-cat-ai/core', 0.5147360563278198, 'llm', 0), ('kubeflow/fairing', 0.514506459236145, 'ml-ops', 0), ('ml-tooling/opyrator', 0.5134544372558594, 'viz', 0), ('wesm/pydata-book', 0.513410747051239, 'study', 0), ('alkaline-ml/pmdarima', 0.5126562118530273, 'time-series', 0), ('statsmodels/statsmodels', 0.5121821165084839, 'ml', 2), ('superduperdb/superduperdb', 0.5108543634414673, 'data', 2), ('saulpw/visidata', 0.5101152658462524, 'term', 1), ('explosion/thinc', 0.5097380876541138, 'ml-dl', 2), ('cleanlab/cleanlab', 0.5088824033737183, 'ml', 4), ('pyqtgraph/pyqtgraph', 0.5080159902572632, 'viz', 0), ('panda3d/panda3d', 0.5070898532867432, 'gamedev', 0), ('onnx/onnx', 0.5065220594406128, 'ml', 2), ('roboflow/supervision', 0.5057425498962402, 'ml', 3), ('ddbourgin/numpy-ml', 0.5043874382972717, 'ml', 0), ('google/mediapipe', 0.5041832327842712, 'ml', 0), ('firmai/atspy', 0.5035507678985596, 'time-series', 0), ('zenodo/zenodo', 0.5025171041488647, 'util', 0), ('sktime/sktime', 0.5024852752685547, 'time-series', 1), ('flyteorg/flyte', 0.5018032789230347, 'ml-ops', 3), ('ray-project/ray', 0.5014405846595764, 'ml-ops', 3), ('ta-lib/ta-lib-python', 0.500678539276123, 'finance', 0), ('ashleve/lightning-hydra-template', 0.5006352066993713, 'util', 2), ('mwaskom/seaborn', 0.500043511390686, 'viz', 4)]
99
3
null
2.27
0
0
95
0
0
6
6
0
0
90
0
29
1,416
jupyter
https://github.com/xiaohk/stickyland
[]
null
[]
[]
null
null
null
xiaohk/stickyland
stickyland
470
30
9
TypeScript
https://xiaohk.github.io/stickyland/
Break the linear presentation of Jupyter Notebooks with sticky cells!
xiaohk
2024-01-12
2021-11-02
117
4.017094
null
Break the linear presentation of Jupyter Notebooks with sticky cells!
['dashboard', 'jupyter', 'jupyterlab', 'jupyterlab-extension', 'notebook']
['dashboard', 'jupyter', 'jupyterlab', 'jupyterlab-extension', 'notebook']
2023-12-24
[('jupyter-widgets/ipywidgets', 0.6346691250801086, 'jupyter', 1), ('jupyter/notebook', 0.6330485939979553, 'jupyter', 2), ('voila-dashboards/voila', 0.5852877497673035, 'jupyter', 2), ('vizzuhq/ipyvizzu', 0.5726215243339539, 'jupyter', 1), ('jupyterlab/jupyterlab-desktop', 0.5476192235946655, 'jupyter', 2), ('jupyter/nbformat', 0.5371445417404175, 'jupyter', 0), ('jupyter/nbconvert', 0.536399781703949, 'jupyter', 0), ('bloomberg/ipydatagrid', 0.5169107913970947, 'jupyter', 1), ('mwouts/jupytext', 0.5160862803459167, 'jupyter', 2), ('quantopian/qgrid', 0.5084087252616882, 'jupyter', 0), ('rapidsai/jupyterlab-nvdashboard', 0.5069721937179565, 'jupyter', 0)]
2
1
null
0.19
2
2
27
1
1
4
1
2
4
90
2
29
1,378
diffusion
https://github.com/nvlabs/gcvit
[]
null
[]
[]
null
null
null
nvlabs/gcvit
GCVit
412
49
10
Python
https://arxiv.org/abs/2206.09959
[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
nvlabs
2024-01-12
2022-06-18
84
4.879865
https://avatars.githubusercontent.com/u/2695301?v=4
[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
['ade20k', 'backbone', 'coco', 'deep-learning', 'imagenet', 'imagenet-classification', 'object-detection', 'pre-train', 'pre-trained-model', 'self-attention', 'semantic-segmentation', 'vision-transformer', 'visual-recognition']
['ade20k', 'backbone', 'coco', 'deep-learning', 'imagenet', 'imagenet-classification', 'object-detection', 'pre-train', 'pre-trained-model', 'self-attention', 'semantic-segmentation', 'vision-transformer', 'visual-recognition']
2023-12-22
[('microsoft/swin-transformer', 0.6548908352851868, 'ml', 4), ('lucidrains/vit-pytorch', 0.6527162790298462, 'ml-dl', 0), ('roboflow/supervision', 0.6431651711463928, 'ml', 3), ('huggingface/transformers', 0.6319802403450012, 'nlp', 1), ('rwightman/pytorch-image-models', 0.6296912431716919, 'ml-dl', 0), ('hysts/pytorch_image_classification', 0.6284846067428589, 'ml-dl', 1), ('deci-ai/super-gradients', 0.6253355145454407, 'ml-dl', 4), ('google-research/maxvit', 0.6166060566902161, 'ml', 2), ('lucidrains/imagen-pytorch', 0.6131131052970886, 'ml-dl', 1), ('salesforce/blip', 0.5959486365318298, 'diffusion', 0), ('intel/intel-extension-for-pytorch', 0.5956222414970398, 'perf', 1), ('open-mmlab/mmsegmentation', 0.5941908359527588, 'ml', 1), ('nielsrogge/transformers-tutorials', 0.5923160910606384, 'study', 1), ('mcahny/deep-video-inpainting', 0.5919110774993896, 'ml-dl', 0), ('pytorch/ignite', 0.5840114951133728, 'ml-dl', 1), ('karpathy/mingpt', 0.5820482969284058, 'llm', 0), ('roboflow/notebooks', 0.5799825191497803, 'study', 2), ('microsoft/focal-transformer', 0.5749183893203735, 'ml', 0), ('idea-research/groundingdino', 0.5644093751907349, 'diffusion', 1), ('microsoft/torchgeo', 0.5610058307647705, 'gis', 1), ('open-mmlab/mmdetection', 0.559407114982605, 'ml', 2), ('nyandwi/modernconvnets', 0.5547017455101013, 'ml-dl', 0), ('blakeblackshear/frigate', 0.5532398223876953, 'util', 1), ('open-mmlab/mmediting', 0.5518020987510681, 'ml', 1), ('google/automl', 0.5431532859802246, 'ml', 1), ('lutzroeder/netron', 0.5401598811149597, 'ml', 1), ('lightly-ai/lightly', 0.5394826531410217, 'ml', 1), ('kornia/kornia', 0.5384776592254639, 'ml-dl', 1), ('huggingface/exporters', 0.5337070822715759, 'ml', 1), ('huggingface/optimum', 0.5319724678993225, 'ml', 0), ('skorch-dev/skorch', 0.531648576259613, 'ml-dl', 0), ('matterport/mask_rcnn', 0.5284178256988525, 'ml-dl', 1), ('nvlabs/prismer', 0.5274479389190674, 'diffusion', 0), ('google-research/deeplab2', 0.5264610648155212, 'ml', 0), ('rasbt/machine-learning-book', 0.5256971716880798, 'study', 1), ('pyg-team/pytorch_geometric', 0.5232054591178894, 'ml-dl', 1), ('mrdbourke/pytorch-deep-learning', 0.520950198173523, 'study', 1), ('albumentations-team/albumentations', 0.5185796618461609, 'ml-dl', 2), ('nicolas-chaulet/torch-points3d', 0.5170150995254517, 'ml', 0), ('facebookresearch/detr', 0.5166937112808228, 'ml-dl', 0), ('mdbloice/augmentor', 0.5139862895011902, 'ml', 1), ('kshitij12345/torchnnprofiler', 0.5133840441703796, 'profiling', 0), ('facebookresearch/pytorch3d', 0.5093544125556946, 'ml-dl', 0), ('kevinmusgrave/pytorch-metric-learning', 0.5083329081535339, 'ml', 1), ('azavea/raster-vision', 0.5082259178161621, 'gis', 3), ('huggingface/datasets', 0.5082133412361145, 'nlp', 1), ('graykode/nlp-tutorial', 0.5081471800804138, 'study', 0), ('huggingface/huggingface_hub', 0.5078686475753784, 'ml', 1), ('lucidrains/dalle2-pytorch', 0.5059126019477844, 'diffusion', 1), ('facebookresearch/detectron2', 0.504278838634491, 'ml-dl', 0)]
6
1
null
0.63
2
1
19
1
0
1
1
2
2
90
1
29
1,732
testing
https://github.com/kiwicom/pytest-recording
[]
null
[]
[]
null
null
null
kiwicom/pytest-recording
pytest-recording
347
31
4
Python
null
A pytest plugin that allows recording network interactions via VCR.py
kiwicom
2024-01-11
2019-07-16
237
1.464135
https://avatars.githubusercontent.com/u/25227300?v=4
A pytest plugin that allows recording network interactions via VCR.py
['cassettes', 'pytest', 'testing', 'vcr']
['cassettes', 'pytest', 'testing', 'vcr']
2023-12-06
[('pytest-dev/pytest-xdist', 0.5940394401550293, 'testing', 1), ('irmen/pyminiaudio', 0.5641629099845886, 'util', 0), ('samuelcolvin/pytest-pretty', 0.544182538986206, 'testing', 1), ('computationalmodelling/nbval', 0.535578191280365, 'jupyter', 2), ('ionelmc/pytest-benchmark', 0.5216888785362244, 'testing', 1), ('teemu/pytest-sugar', 0.5215980410575867, 'testing', 2), ('pytest-dev/pytest-cov', 0.52159583568573, 'testing', 1)]
13
3
null
0.71
14
10
55
1
3
5
3
14
16
90
1.1
29
1,404
llm
https://github.com/approximatelabs/datadm
['conversational']
null
[]
[]
null
null
null
approximatelabs/datadm
datadm
315
25
8
Python
null
DataDM is your private data assistant. Slide into your data's DMs
approximatelabs
2024-01-04
2023-05-25
35
8.82
https://avatars.githubusercontent.com/u/106505054?v=4
DataDM is your private data assistant. Slide into your data's DMs
[]
['conversational']
2023-09-11
[]
3
1
null
0.98
0
0
8
4
0
21
21
0
0
90
0
29
664
gis
https://github.com/cgal/cgal-swig-bindings
[]
null
[]
[]
null
null
null
cgal/cgal-swig-bindings
cgal-swig-bindings
305
91
28
C++
null
CGAL bindings using SWIG
cgal
2024-01-05
2015-03-14
463
0.658138
https://avatars.githubusercontent.com/u/5746664?v=4
CGAL bindings using SWIG
[]
[]
2023-12-20
[]
22
3
null
0.75
15
6
108
1
7
1
7
15
19
90
1.3
29
478
pandas
https://github.com/holoviz/spatialpandas
[]
null
[]
[]
null
null
null
holoviz/spatialpandas
spatialpandas
293
24
23
Python
null
Pandas extension arrays for spatial/geometric operations
holoviz
2024-01-04
2019-10-28
222
1.318971
https://avatars.githubusercontent.com/u/51678735?v=4
Pandas extension arrays for spatial/geometric operations
['geographic-data', 'geopandas', 'holoviz', 'pandas', 'spatialpandas']
['geographic-data', 'geopandas', 'holoviz', 'pandas', 'spatialpandas']
2024-01-11
[('geopandas/geopandas', 0.6860671043395996, 'gis', 2), ('residentmario/geoplot', 0.6135755777359009, 'gis', 1), ('anitagraser/movingpandas', 0.5773379802703857, 'gis', 1), ('jmcarpenter2/swifter', 0.562759518623352, 'pandas', 1), ('nalepae/pandarallel', 0.5524942874908447, 'pandas', 1), ('makepath/xarray-spatial', 0.5339615941047668, 'gis', 0), ('scikit-learn-contrib/sklearn-pandas', 0.5225083231925964, 'pandas', 0), ('man-group/dtale', 0.5217031240463257, 'viz', 1), ('blaze/blaze', 0.5175127387046814, 'pandas', 0), ('rapidsai/cudf', 0.5126527547836304, 'pandas', 1), ('earthlab/earthpy', 0.5123425722122192, 'gis', 0), ('mwaskom/seaborn', 0.5058495402336121, 'viz', 1), ('adamerose/pandasgui', 0.5028727054595947, 'pandas', 1), ('holoviz/hvplot', 0.5009598135948181, 'pandas', 1)]
12
5
null
0.46
6
5
51
0
4
10
4
6
3
90
0.5
29
1,713
diffusion
https://github.com/bentoml/onediffusion
[]
null
[]
[]
null
null
null
bentoml/onediffusion
OneDiffusion
285
17
12
Python
https://bentoml.com
OneDiffusion: Run any Stable Diffusion models and fine-tuned weights with ease
bentoml
2024-01-05
2023-06-12
33
8.599138
https://avatars.githubusercontent.com/u/49176046?v=4
OneDiffusion: Run any Stable Diffusion models and fine-tuned weights with ease
['ai', 'diffusion-models', 'fine-tuning', 'kubernetes', 'lora', 'model-serving', 'stable-diffusion']
['ai', 'diffusion-models', 'fine-tuning', 'kubernetes', 'lora', 'model-serving', 'stable-diffusion']
2023-12-08
[('carson-katri/dream-textures', 0.6899959444999695, 'diffusion', 2), ('stability-ai/stability-sdk', 0.6665179133415222, 'diffusion', 1), ('divamgupta/stable-diffusion-tensorflow', 0.6373262405395508, 'diffusion', 0), ('lllyasviel/controlnet', 0.6226494908332825, 'diffusion', 0), ('mlc-ai/web-stable-diffusion', 0.6144503355026245, 'diffusion', 1), ('automatic1111/stable-diffusion-webui', 0.6026777625083923, 'diffusion', 2), ('comfyanonymous/comfyui', 0.5863965749740601, 'diffusion', 1), ('divamgupta/diffusionbee-stable-diffusion-ui', 0.5153639316558838, 'diffusion', 1), ('tanelp/tiny-diffusion', 0.5116053223609924, 'diffusion', 0), ('civitai/sd_civitai_extension', 0.5044161081314087, 'llm', 0), ('thereforegames/unprompted', 0.5029755234718323, 'diffusion', 1)]
5
1
null
0.87
7
3
7
1
0
0
0
7
2
90
0.3
29
124
util
https://github.com/mgedmin/check-manifest
[]
null
[]
[]
null
null
null
mgedmin/check-manifest
check-manifest
283
38
7
Python
https://pypi.org/p/check-manifest
Tool to check the completeness of MANIFEST.in for Python packages
mgedmin
2024-01-04
2013-03-05
569
0.497364
null
Tool to check the completeness of MANIFEST.in for Python packages
[]
[]
2023-12-18
[('pypi/warehouse', 0.5615488886833191, 'util', 0), ('mkdocstrings/griffe', 0.537682056427002, 'util', 0), ('nedbat/coveragepy', 0.5218181610107422, 'testing', 0), ('indygreg/pyoxidizer', 0.5157642364501953, 'util', 0), ('mitsuhiko/rye', 0.5007199645042419, 'util', 0)]
22
6
null
0.12
1
1
132
1
0
5
5
1
2
90
2
29
273
data
https://github.com/amzn/ion-python
[]
null
[]
[]
null
null
null
amzn/ion-python
ion-python
246
52
25
Python
https://amazon-ion.github.io/ion-docs/
A Python implementation of Amazon Ion.
amzn
2024-01-06
2016-04-07
407
0.603364
https://avatars.githubusercontent.com/u/105071691?v=4
A Python implementation of Amazon Ion.
[]
[]
2024-01-10
[('pynamodb/pynamodb', 0.6932819485664368, 'data', 0), ('geeogi/async-python-lambda-template', 0.6108747720718384, 'template', 0), ('primal100/pybitcointools', 0.5686578154563904, 'crypto', 0), ('nficano/python-lambda', 0.5418636798858643, 'util', 0), ('falconry/falcon', 0.5367324352264404, 'web', 0), ('ethereum/py-evm', 0.5310432314872742, 'crypto', 0), ('aws/aws-lambda-python-runtime-interface-client', 0.524419903755188, 'util', 0), ('pytables/pytables', 0.5214452147483826, 'data', 0), ('awslabs/python-deequ', 0.5171683430671692, 'ml', 0), ('ethereum/web3.py', 0.5136985778808594, 'crypto', 0), ('boto/boto3', 0.5133451223373413, 'util', 0), ('oracle/graalpython', 0.5121100544929504, 'util', 0), ('pyston/pyston', 0.5089343786239624, 'util', 0), ('encode/httpx', 0.5086729526519775, 'web', 0), ('aws/aws-sdk-pandas', 0.5067648887634277, 'pandas', 0), ('aws/chalice', 0.5045038461685181, 'web', 0)]
28
3
null
1.04
48
35
95
0
4
2
4
48
30
90
0.6
29
1,459
util
https://github.com/mamba-org/boa
[]
null
[]
[]
null
null
null
mamba-org/boa
boa
245
54
9
Python
https://boa-build.readthedocs.io/en/latest/
The fast conda package builder, based on mamba
mamba-org
2024-01-04
2020-05-27
191
1.276992
https://avatars.githubusercontent.com/u/66118895?v=4
The fast conda package builder, based on mamba
['conda', 'conda-packages', 'mamba']
['conda', 'conda-packages', 'mamba']
2023-11-19
[('conda/conda-build', 0.7872036695480347, 'util', 1), ('mamba-org/quetz', 0.7533841729164124, 'util', 1), ('mamba-org/mamba', 0.7310133576393127, 'util', 1), ('conda/constructor', 0.7149392366409302, 'util', 1), ('conda/conda-pack', 0.7062498927116394, 'util', 1), ('mamba-org/micromamba-docker', 0.6690220236778259, 'util', 2), ('conda/conda', 0.5487179756164551, 'util', 1), ('mamba-org/gator', 0.5324650406837463, 'jupyter', 1), ('conda-forge/miniforge', 0.5230752825737, 'util', 0), ('conda-forge/feedstocks', 0.5122072696685791, 'util', 1), ('pomponchik/instld', 0.5095345377922058, 'util', 0), ('spack/spack', 0.5025382041931152, 'util', 0)]
32
4
null
0.46
20
8
44
2
3
11
3
20
19
90
0.9
29
1,838
finance
https://github.com/hydrosquall/tiingo-python
[]
null
[]
[]
null
null
null
hydrosquall/tiingo-python
tiingo-python
227
51
8
Python
https://pypi.org/project/tiingo/
Python client for interacting with the Tiingo Financial Data API (stock ticker and news data)
hydrosquall
2024-01-12
2017-08-25
335
0.676458
null
Python client for interacting with the Tiingo Financial Data API (stock ticker and news data)
['finance', 'stock-market', 'stock-prices', 'stocks', 'ticker-data']
['finance', 'stock-market', 'stock-prices', 'stocks', 'ticker-data']
2023-12-13
[('cuemacro/findatapy', 0.6793490052223206, 'finance', 0), ('plotly/dash', 0.5758013725280762, 'viz', 1), ('ranaroussi/yfinance', 0.5750361084938049, 'finance', 0), ('matplotlib/mplfinance', 0.5679528713226318, 'finance', 1), ('nasdaq/data-link-python', 0.5673314332962036, 'finance', 0), ('pmorissette/ffn', 0.5629584789276123, 'finance', 0), ('gbeced/pyalgotrade', 0.5620060563087463, 'finance', 0), ('ethereum/web3.py', 0.5618115067481995, 'crypto', 0), ('gbeced/basana', 0.5487340688705444, 'finance', 0), ('ta-lib/ta-lib-python', 0.5465307831764221, 'finance', 1), ('goldmansachs/gs-quant', 0.5450910329818726, 'finance', 0), ('simple-salesforce/simple-salesforce', 0.5396576523780823, 'data', 0), ('holoviz/panel', 0.5386637449264526, 'viz', 0), ('quantconnect/lean', 0.5375146865844727, 'finance', 1), ('cuemacro/finmarketpy', 0.5366682410240173, 'finance', 0), ('stefmolin/stock-analysis', 0.5315351486206055, 'finance', 2), ('pmaji/crypto-whale-watching-app', 0.5264788269996643, 'crypto', 0), ('ccxt/ccxt', 0.5252950191497803, 'crypto', 0), ('googleapis/google-api-python-client', 0.5202198624610901, 'util', 0), ('ranaroussi/quantstats', 0.5174421072006226, 'finance', 1), ('robcarver17/pysystemtrade', 0.5165610313415527, 'finance', 0), ('hugapi/hug', 0.5074604749679565, 'util', 0), ('quantopian/zipline', 0.5056824684143066, 'finance', 0), ('firmai/atspy', 0.5044682025909424, 'time-series', 1), ('snyk-labs/pysnyk', 0.5022001266479492, 'security', 0), ('encode/httpx', 0.5019758939743042, 'web', 0), ('qdrant/qdrant-client', 0.501908540725708, 'util', 0)]
13
5
null
0.83
26
19
78
1
0
3
3
26
28
90
1.1
29
1,495
math
https://github.com/deepmind/synjax
['probability', 'distributions', 'jax']
SynJax is a neural network library for JAX structured probability distributions
[]
[]
null
null
null
deepmind/synjax
synjax
220
14
12
Python
null
null
deepmind
2024-01-04
2023-08-04
25
8.603352
https://avatars.githubusercontent.com/u/8596759?v=4
SynJax is a neural network library for JAX structured probability distributions
[]
['distributions', 'jax', 'probability']
2024-01-08
[('deepmind/dm-haiku', 0.7001689076423645, 'ml-dl', 1), ('google/flax', 0.6082916259765625, 'ml-dl', 1), ('google/evojax', 0.5408310890197754, 'sim', 1), ('deepmind/chex', 0.5291113257408142, 'ml-dl', 1)]
5
3
null
0.4
0
0
5
0
0
0
0
0
0
90
0
29
406
data
https://github.com/google/weather-tools
[]
null
[]
[]
null
null
null
google/weather-tools
weather-tools
186
35
15
Python
https://weather-tools.readthedocs.io/
Apache Beam pipelines to make weather data accessible and useful.
google
2024-01-11
2021-11-22
114
1.629537
https://avatars.githubusercontent.com/u/1342004?v=4
Apache Beam pipelines to make weather data accessible and useful.
['apache-beam', 'weather']
['apache-beam', 'weather']
2024-01-10
[]
31
2
null
1.25
32
27
26
0
0
5
5
32
6
90
0.2
29
1,502
math
https://github.com/deepmind/kfac-jax
['jax']
null
[]
[]
null
null
null
deepmind/kfac-jax
kfac-jax
177
14
8
Python
null
Second Order Optimization and Curvature Estimation with K-FAC in JAX.
deepmind
2024-01-04
2022-03-18
97
1.814056
https://avatars.githubusercontent.com/u/8596759?v=4
Second Order Optimization and Curvature Estimation with K-FAC in JAX.
['bayesian-deep-learning', 'machine-learning', 'optimization']
['bayesian-deep-learning', 'jax', 'machine-learning', 'optimization']
2024-01-04
[('deepmind/dm-haiku', 0.5966999530792236, 'ml-dl', 2), ('pytorch/botorch', 0.55311119556427, 'ml-dl', 0)]
11
4
null
1.67
19
16
22
0
2
2
2
19
6
90
0.3
29
861
util
https://github.com/hugovk/pypistats
[]
null
[]
[]
null
null
null
hugovk/pypistats
pypistats
174
30
5
Python
https://pypistats.org/api/
Command-line interface to PyPI Stats API to get download stats for Python packages
hugovk
2024-01-10
2018-09-22
279
0.622699
null
Command-line interface to PyPI Stats API to get download stats for Python packages
['api', 'cli', 'command-line', 'command-line-tool', 'downloads', 'statistics', 'stats']
['api', 'cli', 'command-line', 'command-line-tool', 'downloads', 'statistics', 'stats']
2024-01-01
[('ofek/pypinfo', 0.7068412899971008, 'util', 1), ('pypi/warehouse', 0.6038178205490112, 'util', 0), ('cuemacro/findatapy', 0.562679648399353, 'finance', 0), ('urwid/urwid', 0.5486549735069275, 'term', 0), ('google/python-fire', 0.5451176166534424, 'term', 1), ('tox-dev/pipdeptree', 0.5279873609542847, 'util', 1), ('wolph/python-progressbar', 0.5268552303314209, 'util', 1), ('jquast/blessed', 0.5230196118354797, 'term', 1), ('pyodide/micropip', 0.5070849657058716, 'util', 0), ('samuelcolvin/pytest-pretty', 0.5067400932312012, 'testing', 0), ('pypa/gh-action-pypi-publish', 0.5029650926589966, 'util', 0)]
13
4
null
0.92
11
9
65
0
3
5
3
11
18
90
1.6
29
767
sim
https://github.com/openfisca/openfisca-core
[]
null
[]
[]
null
null
null
openfisca/openfisca-core
openfisca-core
157
74
26
Python
https://openfisca.org
OpenFisca core engine. See other repositories for countries-specific code & data.
openfisca
2023-12-26
2013-12-29
526
0.298317
https://avatars.githubusercontent.com/u/1794404?v=4
OpenFisca core engine. See other repositories for countries-specific code & data.
['better-rules', 'legislation-as-code', 'microsimulation', 'rules-as-code']
['better-rules', 'legislation-as-code', 'microsimulation', 'rules-as-code']
2023-12-18
[]
61
2
null
1.88
6
3
122
1
0
39
39
6
10
90
1.7
29
1,399
llm
https://github.com/openbioml/chemnlp
['chemistry']
null
[]
[]
null
null
null
openbioml/chemnlp
chemnlp
120
43
3
Python
null
ChemNLP project
openbioml
2024-01-12
2023-02-13
50
2.393162
https://avatars.githubusercontent.com/u/106522429?v=4
ChemNLP project
[]
['chemistry']
2023-12-09
[]
26
2
null
5.56
113
92
11
1
0
0
0
113
71
90
0.6
29
326
security
https://github.com/sonatype-nexus-community/jake
[]
null
[]
[]
null
null
null
sonatype-nexus-community/jake
jake
95
28
8
Python
https://jake.readthedocs.io/
Check your Python environments for vulnerable Open Source packages with OSS Index or Sonatype Nexus Lifecycle.
sonatype-nexus-community
2023-12-08
2019-10-10
224
0.422759
https://avatars.githubusercontent.com/u/33330803?v=4
Check your Python environments for vulnerable Open Source packages with OSS Index or Sonatype Nexus Lifecycle.
['nexus-iq', 'ossindex', 'sonatype-iq', 'vulnerabilities', 'vulnerability-scanners']
['nexus-iq', 'ossindex', 'sonatype-iq', 'vulnerabilities', 'vulnerability-scanners']
2023-12-08
[('pyupio/safety', 0.607435405254364, 'security', 1)]
17
4
null
1.23
7
3
52
1
7
32
7
7
19
90
2.7
29
1,645
util
https://github.com/danielnoord/pydocstringformatter
['pep257', 'pep8', 'docstrings']
null
[]
[]
null
null
null
danielnoord/pydocstringformatter
pydocstringformatter
62
8
2
Python
null
Automatically format your Python docstrings to conform with PEP 8 and PEP 257
danielnoord
2023-12-18
2022-01-01
108
0.571805
null
Automatically format your Python docstrings to conform with PEP 8 and PEP 257
['docstrings', 'formatter']
['docstrings', 'formatter', 'pep257', 'pep8']
2024-01-08
[('pycqa/docformatter', 0.8163774013519287, 'util', 2), ('hhatto/autopep8', 0.7380919456481934, 'util', 2), ('google/yapf', 0.6070597171783447, 'util', 1), ('mkdocstrings/python', 0.563347578048706, 'util', 0), ('pdoc3/pdoc', 0.5444629192352295, 'util', 1), ('grantjenks/blue', 0.5090311169624329, 'util', 1), ('mitmproxy/pdoc', 0.5013178586959839, 'util', 1)]
7
2
null
1.85
24
20
25
0
0
7
7
23
55
90
2.4
29
78
jupyter
https://github.com/quantopian/qgrid
[]
null
[]
[]
null
null
null
quantopian/qgrid
qgrid
3,007
433
89
Python
null
An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks
quantopian
2024-01-13
2014-09-30
487
6.174538
https://avatars.githubusercontent.com/u/1393215?v=4
An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks
[]
[]
2020-04-07
[('tkrabel/bamboolib', 0.7011144161224365, 'pandas', 0), ('jakevdp/pythondatasciencehandbook', 0.6440531611442566, 'study', 0), ('bloomberg/ipydatagrid', 0.6440353989601135, 'jupyter', 0), ('jupyter/nbformat', 0.6320311427116394, 'jupyter', 0), ('jupyter-widgets/ipywidgets', 0.6274958848953247, 'jupyter', 0), ('jupyter/notebook', 0.613193154335022, 'jupyter', 0), ('ipython/ipyparallel', 0.611356794834137, 'perf', 0), ('vizzuhq/ipyvizzu', 0.608697235584259, 'jupyter', 0), ('jupyter/nbdime', 0.5866443514823914, 'jupyter', 0), ('holoviz/panel', 0.5826691389083862, 'viz', 0), ('opengeos/leafmap', 0.5799870491027832, 'gis', 0), ('cmudig/autoprofiler', 0.5721290111541748, 'jupyter', 0), ('aws/graph-notebook', 0.571941614151001, 'jupyter', 0), ('mwouts/jupytext', 0.5685391426086426, 'jupyter', 0), ('adamerose/pandasgui', 0.5642687678337097, 'pandas', 0), ('jupyterlab/jupyterlab', 0.5634688138961792, 'jupyter', 0), ('man-group/dtale', 0.560211718082428, 'viz', 0), ('cohere-ai/notebooks', 0.5572461485862732, 'llm', 0), ('jupyterlab/jupyterlab-desktop', 0.5566320419311523, 'jupyter', 0), ('lux-org/lux', 0.5451768040657043, 'viz', 0), ('kanaries/pygwalker', 0.5393330454826355, 'pandas', 0), ('jupyter/nbconvert', 0.538368284702301, 'jupyter', 0), ('voila-dashboards/voila', 0.5343106985092163, 'jupyter', 0), ('koaning/drawdata', 0.5323299765586853, 'jupyter', 0), ('jupyter/nbgrader', 0.5307871103286743, 'jupyter', 0), ('wesm/pydata-book', 0.5240903496742249, 'study', 0), ('jazzband/tablib', 0.5186475515365601, 'data', 0), ('nteract/papermill', 0.516223669052124, 'jupyter', 0), ('vaexio/vaex', 0.5162068009376526, 'perf', 0), ('maartenbreddels/ipyvolume', 0.5143440961837769, 'jupyter', 0), ('ipython/ipykernel', 0.514000654220581, 'util', 0), ('jupyter-widgets/ipyleaflet', 0.5120397806167603, 'gis', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5115215182304382, 'study', 0), ('ageron/handson-ml2', 0.5087634921073914, 'ml', 0), ('xiaohk/stickyland', 0.5084087252616882, 'jupyter', 0), ('pyqtgraph/pyqtgraph', 0.5077592730522156, 'viz', 0), ('saulpw/visidata', 0.5062557458877563, 'term', 0), ('holoviz/holoviz', 0.5044505596160889, 'viz', 0)]
30
2
null
0
1
1
113
46
0
2
2
1
0
90
0
28
873
time-series
https://github.com/rjt1990/pyflux
[]
null
[]
[]
null
null
null
rjt1990/pyflux
pyflux
2,074
243
71
Python
null
Open source time series library for Python
rjt1990
2024-01-05
2016-02-16
415
4.99759
null
Open source time series library for Python
['statistics', 'time-series']
['statistics', 'time-series']
2018-12-16
[('alkaline-ml/pmdarima', 0.7352306842803955, 'time-series', 1), ('tdameritrade/stumpy', 0.6353744268417358, 'time-series', 0), ('awslabs/gluonts', 0.623365581035614, 'time-series', 1), ('firmai/atspy', 0.6143859624862671, 'time-series', 1), ('unit8co/darts', 0.5929312109947205, 'time-series', 1), ('dateutil/dateutil', 0.5882995128631592, 'util', 0), ('google/temporian', 0.5719876289367676, 'time-series', 1), ('pycaret/pycaret', 0.5557315349578857, 'ml', 1), ('pastas/pastas', 0.5493255257606506, 'time-series', 0), ('statsmodels/statsmodels', 0.5408421158790588, 'ml', 1), ('stan-dev/pystan', 0.5393368601799011, 'ml', 0), ('sdispater/pendulum', 0.5265621542930603, 'util', 0), ('pandas-dev/pandas', 0.5234712958335876, 'pandas', 0), ('ta-lib/ta-lib-python', 0.5227634906768799, 'finance', 0), ('mwaskom/seaborn', 0.522447407245636, 'viz', 0), ('altair-viz/altair', 0.5199966430664062, 'viz', 0), ('andgoldschmidt/derivative', 0.5164141654968262, 'math', 0), ('wesm/pydata-book', 0.5128363966941833, 'study', 0), ('stub42/pytz', 0.5127301812171936, 'util', 0), ('pmorissette/ffn', 0.5010930895805359, 'finance', 0)]
6
2
null
0
1
0
96
62
0
5
5
1
1
90
1
28
1,041
llm
https://github.com/openai/gpt-2-output-dataset
[]
null
[]
[]
null
null
null
openai/gpt-2-output-dataset
gpt-2-output-dataset
1,844
528
76
Python
null
Dataset of GPT-2 outputs for research in detection, biases, and more
openai
2024-01-12
2019-05-03
247
7.448355
https://avatars.githubusercontent.com/u/14957082?v=4
Dataset of GPT-2 outputs for research in detection, biases, and more
[]
[]
2023-12-13
[('karpathy/nanogpt', 0.5051628351211548, 'llm', 0)]
5
1
null
0.02
1
0
57
1
0
0
0
1
0
90
0
28
496
ml-dl
https://github.com/vt-vl-lab/fgvc
[]
null
[]
[]
null
null
null
vt-vl-lab/fgvc
FGVC
1,523
279
70
Python
null
[ECCV 2020] Flow-edge Guided Video Completion
vt-vl-lab
2024-01-12
2020-09-09
176
8.61147
https://avatars.githubusercontent.com/u/31048446?v=4
[ECCV 2020] Flow-edge Guided Video Completion
[]
[]
2021-12-14
[('researchmm/sttn', 0.6461269855499268, 'ml-dl', 0), ('mcahny/deep-video-inpainting', 0.5231187343597412, 'ml-dl', 0)]
3
2
null
0
1
1
41
25
0
0
0
1
1
90
1
28
283
data
https://github.com/sdispater/orator
[]
null
[]
[]
null
null
null
sdispater/orator
orator
1,420
174
45
Python
https://orator-orm.com
The Orator ORM provides a simple yet beautiful ActiveRecord implementation.
sdispater
2024-01-04
2015-05-24
453
3.132682
null
The Orator ORM provides a simple yet beautiful ActiveRecord implementation.
['database', 'orm']
['database', 'orm']
2022-03-13
[('mcfunley/pugsql', 0.5235227346420288, 'data', 1)]
32
4
null
0
4
0
105
22
0
3
3
4
2
90
0.5
28
732
pandas
https://github.com/machow/siuba
[]
null
[]
[]
null
null
null
machow/siuba
siuba
1,074
50
21
Python
https://siuba.org
Python library for using dplyr like syntax with pandas and SQL
machow
2024-01-13
2019-02-09
259
4.139868
null
Python library for using dplyr like syntax with pandas and SQL
['data-analysis', 'dplyr', 'pandas', 'sql']
['data-analysis', 'dplyr', 'pandas', 'sql']
2023-09-19
[('ibis-project/ibis', 0.6308576464653015, 'data', 2), ('tobymao/sqlglot', 0.6064596176147461, 'data', 1), ('tiangolo/sqlmodel', 0.5724479556083679, 'data', 1), ('andialbrecht/sqlparse', 0.5550650358200073, 'data', 0), ('sqlalchemy/sqlalchemy', 0.5513966679573059, 'data', 1), ('pandas-dev/pandas', 0.5513116717338562, 'pandas', 2), ('malloydata/malloy-py', 0.513921856880188, 'data', 1)]
10
2
null
0.71
3
1
60
4
2
8
2
3
0
90
0
28
706
ml
https://github.com/google-research/deeplab2
[]
null
[]
[]
null
null
null
google-research/deeplab2
deeplab2
965
160
23
Python
null
DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
google-research
2024-01-13
2021-05-12
141
6.802618
https://avatars.githubusercontent.com/u/43830688?v=4
DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
[]
[]
2023-04-17
[('open-mmlab/mmsegmentation', 0.5815913081169128, 'ml', 0), ('dmlc/dgl', 0.5739299058914185, 'ml-dl', 0), ('mdbloice/augmentor', 0.5629528760910034, 'ml', 0), ('lightly-ai/lightly', 0.5617728233337402, 'ml', 0), ('microsoft/deepspeed', 0.5402511954307556, 'ml-dl', 0), ('facebookresearch/pytorch3d', 0.5299793481826782, 'ml-dl', 0), ('nvlabs/gcvit', 0.5264610648155212, 'diffusion', 0), ('deepmind/deepmind-research', 0.5203995704650879, 'ml', 0), ('pytorch/ignite', 0.5203951597213745, 'ml-dl', 0), ('lutzroeder/netron', 0.5186880826950073, 'ml', 0), ('azavea/raster-vision', 0.5186462998390198, 'gis', 0), ('open-mmlab/mmdetection', 0.516015350818634, 'ml', 0), ('nvidia/deeplearningexamples', 0.5127051472663879, 'ml-dl', 0), ('pyg-team/pytorch_geometric', 0.5118420720100403, 'ml-dl', 0), ('albumentations-team/albumentations', 0.5106143355369568, 'ml-dl', 0), ('tensorflow/addons', 0.5076053738594055, 'ml', 0), ('roboflow/supervision', 0.5049787163734436, 'ml', 0), ('mrdbourke/pytorch-deep-learning', 0.5000344514846802, 'study', 0)]
12
4
null
0.13
2
0
33
9
0
0
0
2
0
90
0
28
226
sim
https://github.com/facebookresearch/droidlet
[]
null
[]
[]
null
null
null
facebookresearch/droidlet
fairo
828
83
39
Jupyter Notebook
null
A modular embodied agent architecture and platform for building embodied agents
facebookresearch
2024-01-11
2020-11-02
169
4.89527
https://avatars.githubusercontent.com/u/16943930?v=4
A modular embodied agent architecture and platform for building embodied agents
[]
[]
2023-02-01
[('minedojo/voyager', 0.6723781228065491, 'llm', 0), ('facebookresearch/habitat-lab', 0.6688793897628784, 'sim', 0), ('operand/agency', 0.5389538407325745, 'llm', 0), ('humanoidagents/humanoidagents', 0.5291570425033569, 'sim', 0)]
43
2
null
0.08
2
0
39
12
0
0
0
2
2
90
1
28
1,221
debug
https://github.com/ionelmc/python-hunter
[]
null
[]
[]
null
null
null
ionelmc/python-hunter
python-hunter
768
45
14
Python
https://python-hunter.readthedocs.io/
Hunter is a flexible code tracing toolkit.
ionelmc
2024-01-13
2015-03-16
463
1.658236
null
Hunter is a flexible code tracing toolkit.
['debugger', 'debugging', 'tracer']
['debugger', 'debugging', 'tracer']
2023-04-26
[('gaogaotiantian/viztracer', 0.6034563779830933, 'profiling', 2), ('alexmojaki/snoop', 0.5830564498901367, 'debug', 2), ('alexmojaki/heartrate', 0.5184060335159302, 'debug', 1), ('teamhg-memex/eli5', 0.5018780827522278, 'ml', 0), ('abnamro/repository-scanner', 0.5003989338874817, 'security', 0)]
9
3
null
0.37
1
0
108
9
0
6
6
1
2
90
2
28
1,805
sim
https://github.com/google/evojax
['gpu', 'tpu', 'neuroevolution', 'jax']
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit built on the JAX library
[]
[]
null
null
null
google/evojax
evojax
728
64
23
Jupyter Notebook
null
null
google
2024-01-12
2021-12-07
112
6.5
https://avatars.githubusercontent.com/u/1342004?v=4
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit built on the JAX library
[]
['gpu', 'jax', 'neuroevolution', 'tpu']
2023-08-29
[('deepmind/dm-haiku', 0.5894790291786194, 'ml-dl', 1), ('deepmind/synjax', 0.5408310890197754, 'math', 1)]
14
3
null
0.29
0
0
26
5
1
12
1
0
0
90
0
28
357
data
https://github.com/hyperqueryhq/whale
[]
null
[]
[]
null
null
null
hyperqueryhq/whale
whale
724
39
42
Python
https://rsyi.gitbook.io/whale
🐳 The stupidly simple CLI workspace for your data warehouse.
hyperqueryhq
2024-01-04
2020-05-27
191
3.773641
null
🐳 The stupidly simple CLI workspace for your data warehouse.
['data-catalog', 'data-discovery', 'data-documentation']
['data-catalog', 'data-discovery', 'data-documentation']
2022-10-13
[('intake/intake', 0.5861302614212036, 'data', 1), ('saulpw/visidata', 0.5835681557655334, 'term', 0), ('databrickslabs/dbx', 0.5740757584571838, 'data', 0), ('google/ml-metadata', 0.5290652513504028, 'ml-ops', 0), ('airbnb/knowledge-repo', 0.520332932472229, 'data', 0), ('airbnb/omniduct', 0.5135779976844788, 'data', 0), ('simonw/datasette', 0.5066918134689331, 'data', 0)]
17
7
null
0
0
0
44
15
0
7
7
0
0
90
0
28
1,870
ml
https://github.com/davidmrau/mixture-of-experts
[]
null
[]
[]
null
null
null
davidmrau/mixture-of-experts
mixture-of-experts
716
80
4
Python
null
PyTorch Re-Implementation of "The Sparsely-Gated Mixture-of-Experts Layer" by Noam Shazeer et al. https://arxiv.org/abs/1701.06538
davidmrau
2024-01-13
2019-07-19
236
3.02657
null
PyTorch Re-Implementation of "The Sparsely-Gated Mixture-of-Experts Layer" by Noam Shazeer et al. https://arxiv.org/abs/1701.06538
['mixture-of-experts', 'moe', 'pytorch', 're-implementation', 'sparsely-gated-mixture-of-experts']
['mixture-of-experts', 'moe', 'pytorch', 're-implementation', 'sparsely-gated-mixture-of-experts']
2023-12-10
[('laekov/fastmoe', 0.5889419913291931, 'ml', 1), ('nvidia/apex', 0.5525276064872742, 'ml-dl', 0), ('pytorch/ignite', 0.5471916198730469, 'ml-dl', 1), ('pytorch/botorch', 0.5366146564483643, 'ml-dl', 0), ('skorch-dev/skorch', 0.5069704055786133, 'ml-dl', 1)]
4
2
null
0.12
7
5
55
1
0
0
0
7
7
90
1
28
1,036
finance
https://github.com/numerai/example-scripts
[]
null
[]
[]
null
null
null
numerai/example-scripts
example-scripts
703
259
67
Jupyter Notebook
https://numer.ai/
A collection of scripts and notebooks to help you get started quickly.
numerai
2024-01-13
2017-01-06
368
1.907364
https://avatars.githubusercontent.com/u/15222762?v=4
A collection of scripts and notebooks to help you get started quickly.
['cryptocurrency', 'machine-learning', 'numerai', 'quant-finance']
['cryptocurrency', 'machine-learning', 'numerai', 'quant-finance']
2024-01-13
[('ccxt/ccxt', 0.6066434979438782, 'crypto', 1), ('gbeced/basana', 0.6021682024002075, 'finance', 1), ('zvtvz/zvt', 0.5974596738815308, 'finance', 2), ('polakowo/vectorbt', 0.5881688594818115, 'finance', 2), ('ofek/bit', 0.5733424425125122, 'crypto', 0), ('1200wd/bitcoinlib', 0.5599415898323059, 'crypto', 0), ('dylanhogg/crazy-awesome-crypto', 0.5541864633560181, 'crypto', 1), ('goldmansachs/gs-quant', 0.5451831221580505, 'finance', 0), ('openbb-finance/openbbterminal', 0.5369656682014465, 'finance', 2), ('primal100/pybitcointools', 0.5286599397659302, 'crypto', 0), ('ranaroussi/quantstats', 0.5179154872894287, 'finance', 0), ('chancefocus/pixiu', 0.5142377018928528, 'finance', 1), ('microsoft/qlib', 0.5105475187301636, 'finance', 1), ('gbeced/pyalgotrade', 0.5094029307365417, 'finance', 0), ('opentensor/bittensor', 0.5083948969841003, 'ml', 2), ('quantconnect/lean', 0.5045038461685181, 'finance', 0)]
46
2
null
0.9
14
8
85
0
0
0
0
14
2
90
0.1
28
1,671
util
https://github.com/erotemic/ubelt
[]
null
[]
[]
null
null
null
erotemic/ubelt
ubelt
702
46
18
Python
null
A Python utility library with a stdlib like feel and extra batteries. Paths, Progress, Dicts, Downloads, Caching, Hashing: ubelt makes it easy!
erotemic
2024-01-04
2017-01-30
365
1.922535
null
A Python utility library with a stdlib like feel and extra batteries. Paths, Progress, Dicts, Downloads, Caching, Hashing: ubelt makes it easy!
['cross-platform', 'utilities', 'utility-library']
['cross-platform', 'utilities', 'utility-library']
2023-10-27
[('dgilland/cacheout', 0.6818086504936218, 'perf', 0), ('pytoolz/toolz', 0.6275792717933655, 'util', 0), ('pytables/pytables', 0.615244448184967, 'data', 0), ('pypy/pypy', 0.6026424169540405, 'util', 0), ('pytorch/data', 0.5979729294776917, 'data', 0), ('python-cachier/cachier', 0.5962907671928406, 'perf', 0), ('tqdm/tqdm', 0.5793629884719849, 'term', 1), ('pympler/pympler', 0.574570894241333, 'perf', 0), ('pypa/installer', 0.5646870136260986, 'util', 0), ('grantjenks/python-diskcache', 0.5623111724853516, 'util', 0), ('spotify/annoy', 0.5622727870941162, 'ml', 0), ('agronholm/apscheduler', 0.5611792802810669, 'util', 0), ('1200wd/bitcoinlib', 0.5576600432395935, 'crypto', 0), ('imageio/imageio', 0.5557732582092285, 'util', 0), ('pyston/pyston', 0.5508465766906738, 'util', 0), ('libtcod/python-tcod', 0.5495151877403259, 'gamedev', 0), ('scrapy/scrapy', 0.5488511323928833, 'data', 0), ('hoffstadt/dearpygui', 0.5396130681037903, 'gui', 1), ('rasbt/watermark', 0.5379260182380676, 'util', 0), ('qdrant/fastembed', 0.5371770262718201, 'ml', 0), ('fastai/fastcore', 0.5355119705200195, 'util', 0), ('jovianml/opendatasets', 0.5337167978286743, 'data', 0), ('mkdocstrings/griffe', 0.5309567451477051, 'util', 0), ('spotify/voyager', 0.5305669903755188, 'ml', 0), ('pypa/hatch', 0.5291941165924072, 'util', 0), ('mediawiki-client-tools/mediawiki-dump-generator', 0.5286123752593994, 'data', 0), ('wxwidgets/phoenix', 0.5278312563896179, 'gui', 1), ('linkedin/shiv', 0.5263099670410156, 'util', 0), ('jquast/blessed', 0.5253154635429382, 'term', 0), ('beeware/toga', 0.5228415727615356, 'gui', 0), ('dlt-hub/dlt', 0.5195381045341492, 'data', 0), ('landscapeio/prospector', 0.518781840801239, 'util', 0), ('platformdirs/platformdirs', 0.5185686945915222, 'util', 1), ('quantopian/zipline', 0.5161089897155762, 'finance', 0), ('faster-cpython/tools', 0.5155495405197144, 'perf', 0), ('ta-lib/ta-lib-python', 0.513969361782074, 'finance', 0), ('dosisod/refurb', 0.513725996017456, 'util', 0), ('joblib/joblib', 0.5093076825141907, 'util', 0), ('samuelcolvin/watchfiles', 0.5087971091270447, 'util', 0), ('micropython/micropython', 0.5087762475013733, 'util', 0), ('eleutherai/pyfra', 0.5078774094581604, 'ml', 0), ('pythonprofilers/memory_profiler', 0.5078474879264832, 'profiling', 0), ('python/cpython', 0.5061374306678772, 'util', 0), ('faster-cpython/ideas', 0.5061014890670776, 'perf', 0), ('rhettbull/osxphotos', 0.5059564709663391, 'util', 0), ('timofurrer/awesome-asyncio', 0.5056865811347961, 'study', 0), ('prompt-toolkit/ptpython', 0.5056498646736145, 'util', 0), ('python-odin/odin', 0.5053083896636963, 'util', 0), ('pyglet/pyglet', 0.5050175786018372, 'gamedev', 0), ('pyodide/micropip', 0.5013461709022522, 'util', 0), ('legrandin/pycryptodome', 0.5003699660301208, 'util', 0)]
4
2
null
2.15
3
2
85
3
5
9
5
3
2
90
0.7
28
396
web
https://github.com/klen/muffin
[]
null
[]
[]
null
null
null
klen/muffin
muffin
659
25
31
Python
null
Muffin is a fast, simple and asyncronous web-framework for Python 3
klen
2024-01-13
2015-02-03
469
1.405117
null
Muffin is a fast, simple and asyncronous web-framework for Python 3
['asgi', 'asyncio', 'curio', 'muffin', 'trio', 'webframework']
['asgi', 'asyncio', 'curio', 'muffin', 'trio', 'webframework']
2023-10-11
[('neoteroi/blacksheep', 0.7668511271476746, 'web', 2), ('masoniteframework/masonite', 0.7306077480316162, 'web', 1), ('pallets/quart', 0.7141019701957703, 'web', 2), ('pallets/flask', 0.6954807639122009, 'web', 0), ('alirn76/panther', 0.6565958857536316, 'web', 0), ('falconry/falcon', 0.6537138819694519, 'web', 1), ('encode/uvicorn', 0.6518058180809021, 'web', 2), ('webpy/webpy', 0.6442074179649353, 'web', 0), ('timofurrer/awesome-asyncio', 0.6332191228866577, 'study', 1), ('pylons/pyramid', 0.6305515766143799, 'web', 0), ('bottlepy/bottle', 0.6195411086082458, 'web', 0), ('encode/httpx', 0.6186836957931519, 'web', 2), ('willmcgugan/textual', 0.6039458513259888, 'term', 0), ('sumerc/yappi', 0.5936639904975891, 'profiling', 2), ('pypy/pypy', 0.5929686427116394, 'util', 0), ('scrapy/scrapy', 0.5914323329925537, 'data', 0), ('eleutherai/pyfra', 0.5880747437477112, 'ml', 0), ('cherrypy/cherrypy', 0.5874270796775818, 'web', 0), ('fastai/fastcore', 0.5848855376243591, 'util', 0), ('reflex-dev/reflex', 0.5825878977775574, 'web', 0), ('holoviz/panel', 0.5814103484153748, 'viz', 0), ('r0x0r/pywebview', 0.5798044800758362, 'gui', 0), ('aio-libs/aiohttp', 0.5731057524681091, 'web', 1), ('pallets/werkzeug', 0.5703849196434021, 'web', 0), ('huge-success/sanic', 0.5701971054077148, 'web', 2), ('flet-dev/flet', 0.5684182643890381, 'web', 0), ('emmett-framework/emmett', 0.56635981798172, 'web', 2), ('klen/py-frameworks-bench', 0.5657544732093811, 'perf', 0), ('ets-labs/python-dependency-injector', 0.5598342418670654, 'util', 1), ('python-trio/trio', 0.5527318716049194, 'perf', 1), ('dylanhogg/awesome-python', 0.5525697469711304, 'study', 0), ('sqlalchemy/mako', 0.5490294694900513, 'template', 0), ('starlite-api/starlite', 0.548690915107727, 'web', 2), ('pyston/pyston', 0.5434106588363647, 'util', 0), ('python-restx/flask-restx', 0.5422064065933228, 'web', 0), ('agronholm/anyio', 0.5409852266311646, 'perf', 3), ('hoffstadt/dearpygui', 0.5390740036964417, 'gui', 0), ('python/cpython', 0.5362712144851685, 'util', 0), ('bokeh/bokeh', 0.5334693193435669, 'viz', 0), ('plotly/dash', 0.5317702889442444, 'viz', 0), ('tiangolo/fastapi', 0.5296502709388733, 'web', 1), ('ipython/ipyparallel', 0.5273743271827698, 'perf', 0), ('eventual-inc/daft', 0.5256049036979675, 'pandas', 0), ('backtick-se/cowait', 0.5236403942108154, 'util', 0), ('encode/starlette', 0.5224829912185669, 'web', 0), ('voila-dashboards/voila', 0.5211663246154785, 'jupyter', 0), ('joblib/joblib', 0.5203728675842285, 'util', 0), ('tornadoweb/tornado', 0.5200356245040894, 'web', 0), ('locustio/locust', 0.5192926526069641, 'testing', 0), ('pytoolz/toolz', 0.5191732048988342, 'util', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5174252390861511, 'study', 0), ('roniemartinez/dude', 0.5161595940589905, 'util', 0), ('pyodide/pyodide', 0.5121115446090698, 'util', 0), ('psf/requests', 0.5109789967536926, 'web', 0), ('clips/pattern', 0.5102404356002808, 'nlp', 0), ('s3rius/fastapi-template', 0.5076808333396912, 'web', 1), ('wxwidgets/phoenix', 0.5061802864074707, 'gui', 0), ('pylons/waitress', 0.5056185126304626, 'web', 0), ('maartenbreddels/ipyvolume', 0.50477135181427, 'jupyter', 0), ('indico/indico', 0.5037544369697571, 'web', 0), ('django/django', 0.5025768876075745, 'web', 0), ('pyinfra-dev/pyinfra', 0.5019458532333374, 'util', 0), ('ibis-project/ibis', 0.5011864900588989, 'data', 0), ('google/gin-config', 0.5011733770370483, 'util', 0), ('benoitc/gunicorn', 0.5010045766830444, 'web', 0), ('plotly/plotly.py', 0.5007705092430115, 'viz', 0)]
13
5
null
2.56
1
0
109
3
0
43
43
1
0
90
0
28
1,161
jupyter
https://github.com/linealabs/lineapy
[]
null
[]
[]
null
null
null
linealabs/lineapy
lineapy
641
49
21
Jupyter Notebook
https://lineapy.org
Move fast from data science prototype to pipeline. Capture, analyze, and transform messy notebooks into data pipelines with just two lines of code.
linealabs
2024-01-11
2021-07-28
130
4.898472
https://avatars.githubusercontent.com/u/76981099?v=4
Move fast from data science prototype to pipeline. Capture, analyze, and transform messy notebooks into data pipelines with just two lines of code.
[]
[]
2023-08-10
[('ploomber/ploomber', 0.739909827709198, 'ml-ops', 0), ('mage-ai/mage-ai', 0.6465555429458618, 'ml-ops', 0), ('orchest/orchest', 0.6248028874397278, 'ml-ops', 0), ('unstructured-io/pipeline-sec-filings', 0.6072432994842529, 'data', 0), ('meltano/meltano', 0.5844327211380005, 'ml-ops', 0), ('paperswithcode/sota-extractor', 0.5607438087463379, 'data', 0), ('hi-primus/optimus', 0.5603882074356079, 'ml-ops', 0), ('kubeflow-kale/kale', 0.5481640100479126, 'ml-ops', 0), ('nteract/papermill', 0.5371261835098267, 'jupyter', 0), ('airbytehq/airbyte', 0.5353677272796631, 'data', 0), ('saulpw/visidata', 0.5347519516944885, 'term', 0), ('astronomer/astro-sdk', 0.5296847224235535, 'ml-ops', 0), ('koaning/clumper', 0.5260019302368164, 'util', 0), ('intake/intake', 0.5228672623634338, 'data', 0), ('koaning/scikit-lego', 0.5148707032203674, 'ml', 0), ('kestra-io/kestra', 0.5073179602622986, 'ml-ops', 0), ('lean-dojo/leandojo', 0.5060582756996155, 'math', 0), ('dagworks-inc/hamilton', 0.5050464868545532, 'ml-ops', 0), ('great-expectations/great_expectations', 0.5049693584442139, 'ml-ops', 0), ('google/ml-metadata', 0.5038784146308899, 'ml-ops', 0), ('koaning/scikit-partial', 0.5030436515808105, 'data', 0)]
24
2
null
0.19
0
0
30
5
0
4
4
0
0
90
0
28
1,223
ml
https://github.com/hpcaitech/energonai
[]
null
[]
[]
null
null
null
hpcaitech/energonai
EnergonAI
629
92
23
Python
null
Large-scale model inference.
hpcaitech
2024-01-12
2022-01-24
105
5.982337
https://avatars.githubusercontent.com/u/88699314?v=4
Large-scale model inference.
[]
[]
2023-03-08
[('optimalscale/lmflow', 0.6059041619300842, 'llm', 0), ('sjtu-ipads/powerinfer', 0.5440476536750793, 'llm', 0), ('squeezeailab/squeezellm', 0.5279243588447571, 'llm', 0), ('huggingface/text-embeddings-inference', 0.5272306799888611, 'llm', 0), ('ai21labs/lm-evaluation', 0.5110083818435669, 'llm', 0)]
13
6
null
0.13
0
0
24
10
0
1
1
0
0
90
0
28
1,363
gamedev
https://github.com/lordmauve/pgzero
[]
null
[]
[]
null
null
null
lordmauve/pgzero
pgzero
492
188
29
Python
https://pygame-zero.readthedocs.io/
A zero-boilerplate games programming framework for Python 3, based on Pygame.
lordmauve
2024-01-11
2018-02-25
309
1.590762
null
A zero-boilerplate games programming framework for Python 3, based on Pygame.
['education', 'game-framework', 'pygame', 'python-game-development']
['education', 'game-framework', 'pygame', 'python-game-development']
2022-06-30
[('pygame/pygame', 0.6985493302345276, 'gamedev', 1), ('pokepetter/ursina', 0.6621728539466858, 'gamedev', 0), ('kitao/pyxel', 0.6230867505073547, 'gamedev', 0), ('pygamelib/pygamelib', 0.6199098229408264, 'gamedev', 0), ('pythonarcade/arcade', 0.6107795238494873, 'gamedev', 0), ('panda3d/panda3d', 0.5944162011146545, 'gamedev', 0), ('pyglet/pyglet', 0.544232964515686, 'gamedev', 0), ('ljvmiranda921/seagull', 0.5329146981239319, 'sim', 0), ('amaargiru/pyroad', 0.5130576491355896, 'study', 0), ('alephalpha/golly', 0.5084664821624756, 'sim', 0), ('renpy/pygame_sdl2', 0.5067479610443115, 'gamedev', 1), ('projectmesa/mesa', 0.5056121349334717, 'sim', 0)]
45
5
null
0
3
1
72
19
0
2
2
3
6
90
2
28
836
perf
https://github.com/joblib/loky
[]
null
[]
[]
null
null
null
joblib/loky
loky
490
45
12
Python
http://loky.readthedocs.io/en/stable/
Robust and reusable Executor for joblib
joblib
2024-01-07
2015-12-25
422
1.159567
https://avatars.githubusercontent.com/u/332661?v=4
Robust and reusable Executor for joblib
['multiprocessing-library']
['multiprocessing-library']
2023-06-29
[('agronholm/apscheduler', 0.5760906934738159, 'util', 0), ('samuelcolvin/arq', 0.5648357272148132, 'data', 0), ('bogdanp/dramatiq', 0.5552358031272888, 'util', 0), ('noxdafox/pebble', 0.5490549802780151, 'perf', 0), ('dask/dask', 0.5317108035087585, 'perf', 0), ('python-trio/trio', 0.5253786444664001, 'perf', 0), ('joblib/joblib', 0.5221757292747498, 'util', 0), ('sumerc/yappi', 0.5158117413520813, 'profiling', 0), ('ipython/ipyparallel', 0.5099025964736938, 'perf', 0)]
18
6
null
0.35
2
1
98
7
0
5
5
2
2
90
1
28
494
ml
https://github.com/linkedin/fasttreeshap
[]
null
[]
[]
null
null
null
linkedin/fasttreeshap
FastTreeSHAP
477
29
7
Python
null
Fast SHAP value computation for interpreting tree-based models
linkedin
2024-01-10
2022-01-24
105
4.536685
https://avatars.githubusercontent.com/u/357098?v=4
Fast SHAP value computation for interpreting tree-based models
['explainable-ai', 'interpretability', 'lightgbm', 'machine-learning', 'random-forest', 'shap', 'xgboost']
['explainable-ai', 'interpretability', 'lightgbm', 'machine-learning', 'random-forest', 'shap', 'xgboost']
2023-06-26
[('maif/shapash', 0.6388174295425415, 'ml', 3), ('slundberg/shap', 0.5951489806175232, 'ml-interpretability', 3), ('selfexplainml/piml-toolbox', 0.5518995523452759, 'ml-interpretability', 0), ('teamhg-memex/eli5', 0.542718231678009, 'ml', 3), ('csinva/imodels', 0.5407923460006714, 'ml', 3), ('interpretml/interpret', 0.5312417149543762, 'ml-interpretability', 3), ('marcotcr/lime', 0.5298793315887451, 'ml-interpretability', 0), ('catboost/catboost', 0.5170351266860962, 'ml', 1), ('seldonio/alibi', 0.5031470060348511, 'ml-interpretability', 2)]
6
2
null
0.17
1
0
24
7
3
3
3
1
1
90
1
28
186
math
https://github.com/willianfuks/tfcausalimpact
[]
null
[]
[]
null
null
null
willianfuks/tfcausalimpact
tfcausalimpact
475
62
12
Python
null
Python Causal Impact Implementation Based on Google's R Package. Built using TensorFlow Probability.
willianfuks
2024-01-04
2020-08-17
180
2.636796
null
Python Causal Impact Implementation Based on Google's R Package. Built using TensorFlow Probability.
['causal-inference', 'causalimpact', 'tensorflow-probability']
['causal-inference', 'causalimpact', 'tensorflow-probability']
2023-11-21
[('mckinsey/causalnex', 0.6074860692024231, 'math', 1), ('py-why/dowhy', 0.6020914912223816, 'ml', 1)]
4
1
null
0.02
10
5
42
2
1
5
1
10
27
90
2.7
28
236
ml-rl
https://github.com/salesforce/warp-drive
[]
null
[]
[]
null
null
null
salesforce/warp-drive
warp-drive
425
77
14
Python
null
Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning Framework on a GPU (JMLR 2022)
salesforce
2024-01-14
2021-08-25
126
3.350225
https://avatars.githubusercontent.com/u/453694?v=4
Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning Framework on a GPU (JMLR 2022)
['cuda', 'deep-learning', 'gpu', 'high-throughput', 'multiagent-reinforcement-learning', 'numba', 'pytorch', 'reinforcement-learning']
['cuda', 'deep-learning', 'gpu', 'high-throughput', 'multiagent-reinforcement-learning', 'numba', 'pytorch', 'reinforcement-learning']
2023-12-20
[('thu-ml/tianshou', 0.6808977723121643, 'ml-rl', 1), ('unity-technologies/ml-agents', 0.6577045321464539, 'ml-rl', 2), ('denys88/rl_games', 0.6500195264816284, 'ml-rl', 3), ('google/trax', 0.640018880367279, 'ml-dl', 2), ('inspirai/timechamber', 0.6329183578491211, 'sim', 1), ('keras-rl/keras-rl', 0.6099841594696045, 'ml-rl', 1), ('pytorch/rl', 0.6080675721168518, 'ml-rl', 2), ('openai/baselines', 0.5866561532020569, 'ml-rl', 0), ('tensorflow/tensor2tensor', 0.5827850699424744, 'ml', 2), ('tensorlayer/tensorlayer', 0.5802738666534424, 'ml-rl', 2), ('pytorchlightning/pytorch-lightning', 0.5696126222610474, 'ml-dl', 2), ('deepmind/dm_control', 0.5524762272834778, 'ml-rl', 2), ('microsoft/deepspeed', 0.5514455437660217, 'ml-dl', 3), ('tensorflow/tensorflow', 0.5466130971908569, 'ml-dl', 1), ('d2l-ai/d2l-en', 0.5405166745185852, 'study', 3), ('determined-ai/determined', 0.5399549603462219, 'ml-ops', 2), ('facebookresearch/habitat-lab', 0.5386927127838135, 'sim', 2), ('apache/incubator-mxnet', 0.5272499322891235, 'ml-dl', 0), ('huggingface/accelerate', 0.5263185501098633, 'ml', 0), ('pettingzoo-team/pettingzoo', 0.5245906710624695, 'ml-rl', 2), ('ai4finance-foundation/finrl', 0.5230139493942261, 'finance', 1), ('microsoft/onnxruntime', 0.5185619592666626, 'ml', 2), ('openai/spinningup', 0.5154350399971008, 'study', 0), ('nvidia-omniverse/orbit', 0.513428270816803, 'sim', 0), ('ray-project/ray', 0.5116983652114868, 'ml-ops', 3), ('pytorch/pytorch', 0.5105277895927429, 'ml-dl', 2), ('aiqc/aiqc', 0.509090006351471, 'ml-ops', 0), ('horovod/horovod', 0.5066569447517395, 'ml-ops', 2), ('farama-foundation/gymnasium', 0.5065247416496277, 'ml-rl', 1), ('google/tf-quant-finance', 0.5037093162536621, 'finance', 1), ('google/dopamine', 0.5014780759811401, 'ml-rl', 0), ('deepmind/acme', 0.5006597638130188, 'ml-rl', 1), ('sail-sg/envpool', 0.5001153945922852, 'sim', 1)]
7
2
null
0.67
7
6
29
1
4
3
4
7
0
90
0
28