Datasets:
license: mit
task_categories:
- feature-extraction
language:
- en
tags:
- biology
- ecology
- plants
- embeddings
- florida
- biodiversity
pretty_name: Central Florida Native Plants Language Embeddings
size_categories:
- n<1K
Central Florida Native Plants Language Embeddings
This dataset contains language embeddings for 232 native plant species from Central Florida, extracted using the DeepSeek-V3 language model.
Dataset Description
- Curated by: DeepEarth Project
- Language(s): English
- License: MIT
Dataset Summary
This dataset provides pre-computed language embeddings for Central Florida plant species. Each species has been encoded using the prompt "Ecophysiology of {species_name}:" to capture semantic information about the plant's ecological characteristics.
Dataset Structure
Data Instances
Each species is represented by:
- A PyTorch file (
.pt
) containing a dictionary with embeddings and metadata - A CSV file containing the token mappings
Embedding File Structure
Each .pt
file contains a dictionary with:
mean_embedding
: Tensor of shape[7168]
- mean-pooled embedding across all tokenstoken_embeddings
: Tensor of shape[num_tokens, 7168]
- individual token embeddingsspecies_name
: String - the species nametaxon_id
: String - GBIF taxon IDnum_tokens
: Integer - number of tokens (typically 18-20)embedding_stats
: Dictionary with embedding statisticstimestamp
: String - when the embedding was created
Token Mapping Structure
Token mapping CSV files contain:
position
: Token position in sequencetoken_id
: Token ID in model vocabularytoken
: Token string representation
Data Splits
This dataset contains a single split with embeddings for all 232 species.
Dataset Creation
Model Information
- Model: DeepSeek-V3-0324-UD-Q4_K_XL
- Parameters: 671B (4.5-bit quantized GGUF format)
- Embedding Dimension: 7168
- Context: 2048 tokens
- Prompt Template: "Ecophysiology of {species_name}:"
Source Data
Species names are based on GBIF (Global Biodiversity Information Facility) taxonomy for plants native to Central Florida.
Usage
Loading Embeddings
import torch
import pandas as pd
from huggingface_hub import hf_hub_download
# Download a specific embedding
repo_id = "deepearth/central_florida_native_plants"
species_id = "2650927" # Example GBIF ID
# Download embedding file
embedding_path = hf_hub_download(
repo_id=repo_id,
filename=f"embeddings/{species_id}.pt",
repo_type="dataset"
)
# Load embedding dictionary
data = torch.load(embedding_path)
# Access embeddings
mean_embedding = data['mean_embedding'] # Shape: [7168]
token_embeddings = data['token_embeddings'] # Shape: [num_tokens, 7168]
species_name = data['species_name']
print(f"Species: {species_name}")
print(f"Mean embedding shape: {mean_embedding.shape}")
print(f"Token embeddings shape: {token_embeddings.shape}")
# Download and load token mapping
token_path = hf_hub_download(
repo_id=repo_id,
filename=f"tokens/{species_id}.csv",
repo_type="dataset"
)
tokens = pd.read_csv(token_path)
Batch Download
from huggingface_hub import snapshot_download
# Download entire dataset
local_dir = snapshot_download(
repo_id="deepearth/central_florida_native_plants",
repo_type="dataset",
local_dir="./florida_plants"
)
Additional Information
Dataset Curators
This dataset was created by the DeepEarth Project to enable machine learning research on biodiversity and ecology.
Licensing Information
This dataset is licensed under the MIT License.
Citation Information
@dataset{deepearth_florida_plants_2025,
title={Central Florida Native Plants Language Embeddings},
author={DeepEarth Project},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/datasets/deepearth/central_florida_native_plants}}
}
Contributions
Thanks to @legel for creating this dataset.