Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
task_categories:
|
4 |
+
- image-classification
|
5 |
+
- feature-extraction
|
6 |
+
- zero-shot-classification
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
tags:
|
10 |
+
- biodiversity
|
11 |
+
- biology
|
12 |
+
- computer-vision
|
13 |
+
- multimodal
|
14 |
+
- self-supervised-learning
|
15 |
+
- florida
|
16 |
+
- plants
|
17 |
+
pretty_name: DeepEarth Central Florida Native Plants
|
18 |
+
size_categories:
|
19 |
+
- 10K<n<100K
|
20 |
+
configs:
|
21 |
+
- config_name: default
|
22 |
+
data_files:
|
23 |
+
- split: train
|
24 |
+
path: observations.parquet
|
25 |
+
- split: test
|
26 |
+
path: observations.parquet
|
27 |
+
---
|
28 |
+
|
29 |
+
# DeepEarth Central Florida Native Plants Dataset v0.2.0
|
30 |
+
|
31 |
+
<p align="center">
|
32 |
+
<img src="https://github.com/deepearth/assets/deepearth-logo.png" alt="DeepEarth" width="200"/>
|
33 |
+
</p>
|
34 |
+
|
35 |
+
## πΏ Dataset Summary
|
36 |
+
|
37 |
+
A comprehensive multimodal biodiversity dataset featuring **33,665 observations** of **232 native plant species** from Central Florida. This dataset combines citizen science observations with state-of-the-art vision and language embeddings for advancing biodiversity monitoring and species distribution modeling.
|
38 |
+
|
39 |
+
### Key Features
|
40 |
+
- π **Spatiotemporal Coverage**: Complete GPS coordinates and timestamps for all observations
|
41 |
+
- πΌοΈ **Multimodal**: 31,136 observations with images, 7,113 with vision embeddings
|
42 |
+
- 𧬠**Language Embeddings**: DeepSeek-V3 embeddings for all 232 species
|
43 |
+
- ποΈ **Vision Embeddings**: V-JEPA-2 self-supervised features (6.5M dimensions)
|
44 |
+
- π **Rigorous Splits**: Spatiotemporal train/test splits for robust evaluation
|
45 |
+
|
46 |
+
## π¦ Dataset Structure
|
47 |
+
|
48 |
+
```
|
49 |
+
observations.parquet # Main dataset (500MB)
|
50 |
+
vision_index.parquet # Vision embeddings index
|
51 |
+
vision_embeddings/ # Vision features (50GB total)
|
52 |
+
βββ embeddings_000000.parquet
|
53 |
+
βββ embeddings_000001.parquet
|
54 |
+
βββ ... (159 files)
|
55 |
+
```
|
56 |
+
|
57 |
+
## π Quick Start
|
58 |
+
|
59 |
+
```python
|
60 |
+
from datasets import load_dataset
|
61 |
+
import pandas as pd
|
62 |
+
|
63 |
+
# Load main dataset
|
64 |
+
dataset = load_dataset("deepearth/central-florida-plants")
|
65 |
+
|
66 |
+
# Access data
|
67 |
+
train_data = dataset['train']
|
68 |
+
print(f"Training samples: {len(train_data)}")
|
69 |
+
print(f"Features: {train_data.features}")
|
70 |
+
|
71 |
+
# Load vision embeddings (download required due to size)
|
72 |
+
vision_index = pd.read_parquet("vision_index.parquet")
|
73 |
+
vision_data = pd.read_parquet("vision_embeddings/embeddings_000000.parquet")
|
74 |
+
```
|
75 |
+
|
76 |
+
## π Data Fields
|
77 |
+
|
78 |
+
Each observation contains:
|
79 |
+
|
80 |
+
| Field | Type | Description |
|
81 |
+
|-------|------|-------------|
|
82 |
+
| `gbif_id` | int64 | Unique GBIF occurrence ID |
|
83 |
+
| `taxon_id` | string | Species identifier |
|
84 |
+
| `taxon_name` | string | Scientific species name |
|
85 |
+
| `latitude` | float | GPS latitude |
|
86 |
+
| `longitude` | float | GPS longitude |
|
87 |
+
| `year` | int | Observation year |
|
88 |
+
| `month` | int | Observation month |
|
89 |
+
| `day` | int | Observation day |
|
90 |
+
| `hour` | int | Observation hour (nullable) |
|
91 |
+
| `minute` | int | Observation minute (nullable) |
|
92 |
+
| `second` | int | Observation second (nullable) |
|
93 |
+
| `image_urls` | List[string] | URLs to observation images |
|
94 |
+
| `num_images` | int | Number of images |
|
95 |
+
| `has_vision` | bool | Vision embeddings available |
|
96 |
+
| `vision_file_indices` | List[int] | Indices to vision files |
|
97 |
+
| `language_embedding` | List[float] | 7,168-dim DeepSeek-V3 embedding |
|
98 |
+
| `split` | string | train/spatial_test/temporal_test |
|
99 |
+
|
100 |
+
## π Data Splits
|
101 |
+
|
102 |
+
The dataset uses rigorous spatiotemporal splits:
|
103 |
+
|
104 |
+
{
|
105 |
+
"train": 30935,
|
106 |
+
"temporal_test": 2730
|
107 |
+
}
|
108 |
+
|
109 |
+
- **Temporal Test**: All 2025 observations (future generalization)
|
110 |
+
- **Spatial Test**: 5 non-overlapping geographic regions
|
111 |
+
- **Train**: Remaining observations
|
112 |
+
|
113 |
+
## π€ Embeddings
|
114 |
+
|
115 |
+
### Language Embeddings (DeepSeek-V3)
|
116 |
+
- **Dimensions**: 7,168
|
117 |
+
- **Source**: Scientific species descriptions
|
118 |
+
- **Coverage**: All 232 species
|
119 |
+
|
120 |
+
### Vision Embeddings (V-JEPA-2)
|
121 |
+
- **Dimensions**: 6,488,064 values per embedding
|
122 |
+
- **Structure**: 8 temporal frames Γ 24Γ24 spatial patches Γ 1408 features
|
123 |
+
- **Model**: Vision Transformer Giant with self-supervised pretraining
|
124 |
+
- **Coverage**: 7,113 images
|
125 |
+
- **Storage**: Flattened arrays in parquet files (use provided utilities to reshape)
|
126 |
+
|
127 |
+
## π‘ Usage Examples
|
128 |
+
|
129 |
+
### Working with V-JEPA 2 Embeddings
|
130 |
+
```python
|
131 |
+
import numpy as np
|
132 |
+
import ast
|
133 |
+
|
134 |
+
# Load vision embedding
|
135 |
+
vision_df = pd.read_parquet("vision_embeddings/embeddings_000000.parquet")
|
136 |
+
row = vision_df.iloc[0]
|
137 |
+
|
138 |
+
# Reshape from flattened to 4D structure
|
139 |
+
embedding = row['embedding']
|
140 |
+
original_shape = ast.literal_eval(row['original_shape']) # [4608, 1408]
|
141 |
+
|
142 |
+
# First to 2D: (4608 patches, 1408 features)
|
143 |
+
embedding_2d = embedding.reshape(original_shape)
|
144 |
+
|
145 |
+
# Then to 4D: (8 temporal, 24 height, 24 width, 1408 features)
|
146 |
+
embedding_4d = embedding_2d.reshape(8, 24, 24, 1408)
|
147 |
+
|
148 |
+
# Get specific temporal frame (0-7)
|
149 |
+
frame_0 = embedding_4d[0] # Shape: (24, 24, 1408)
|
150 |
+
|
151 |
+
# Get mean embedding for image-level tasks
|
152 |
+
image_embedding = embedding_4d.mean(axis=(0, 1, 2)) # Shape: (1408,)
|
153 |
+
```
|
154 |
+
|
155 |
+
### Species Distribution Modeling
|
156 |
+
```python
|
157 |
+
# Filter observations for a specific species
|
158 |
+
species_data = dataset.filter(lambda x: x['taxon_name'] == 'Quercus virginiana')
|
159 |
+
|
160 |
+
# Use spatiotemporal data for distribution modeling
|
161 |
+
coords = [(d['latitude'], d['longitude']) for d in species_data]
|
162 |
+
```
|
163 |
+
|
164 |
+
### Multimodal Learning
|
165 |
+
```python
|
166 |
+
# Combine vision and language embeddings
|
167 |
+
for sample in dataset:
|
168 |
+
if sample['has_vision']:
|
169 |
+
lang_emb = sample['language_embedding']
|
170 |
+
vision_idx = sample['vision_file_indices'][0]
|
171 |
+
# Load corresponding vision embedding
|
172 |
+
vision_emb = load_vision_embedding(vision_idx)
|
173 |
+
```
|
174 |
+
|
175 |
+
### Zero-shot Species Classification
|
176 |
+
```python
|
177 |
+
# Use language embeddings for zero-shot classification
|
178 |
+
species_embeddings = {
|
179 |
+
species['taxon_name']: species['language_embedding']
|
180 |
+
for species in dataset.unique('taxon_name')
|
181 |
+
}
|
182 |
+
```
|
183 |
+
|
184 |
+
## π License
|
185 |
+
|
186 |
+
This dataset is released under the **Creative Commons Attribution 4.0 International (CC BY 4.0)** license.
|
187 |
+
|
188 |
+
## π Citation
|
189 |
+
|
190 |
+
If you use this dataset, please cite:
|
191 |
+
|
192 |
+
```bibtex
|
193 |
+
@dataset{deepearth_cf_plants_2024,
|
194 |
+
title={DeepEarth Central Florida Native Plants: A Multimodal Biodiversity Dataset},
|
195 |
+
author={DeepEarth Team},
|
196 |
+
year={2024},
|
197 |
+
version={0.2.0},
|
198 |
+
publisher={Hugging Face},
|
199 |
+
url={https://huggingface.co/datasets/deepearth/central-florida-plants}
|
200 |
+
}
|
201 |
+
```
|
202 |
+
|
203 |
+
## π Acknowledgments
|
204 |
+
|
205 |
+
We thank all citizen scientists who contributed observations through iNaturalist and GBIF. This dataset was created as part of the DeepEarth initiative for multimodal biodiversity monitoring.
|
206 |
+
|
207 |
+
## π Related Resources
|
208 |
+
|
209 |
+
- [DeepEarth Project](https://github.com/deepearth)
|
210 |
+
- [V-JEPA Model](https://github.com/facebookresearch/jepa)
|
211 |
+
- [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3)
|
212 |
+
- [GBIF Portal](https://www.gbif.org)
|
213 |
+
|
214 |
+
## β οΈ Ethical Considerations
|
215 |
+
|
216 |
+
- All observations are from public citizen science platforms
|
217 |
+
- No endangered species location data is included at fine resolution
|
218 |
+
- Please respect local regulations when using location data
|
219 |
+
|
220 |
+
## π Dataset Statistics
|
221 |
+
|
222 |
+
- **Total Size**: ~51 GB
|
223 |
+
- **Main Dataset**: 500 MB
|
224 |
+
- **Vision Embeddings**: 50 GB
|
225 |
+
- **Image URLs**: 31,136 total images referenced
|
226 |
+
- **Temporal Range**: 2019-2025
|
227 |
+
- **Geographic Scope**: Central Florida, USA
|
228 |
+
|
229 |
+
---
|
230 |
+
*Dataset prepared by the DeepEarth team for advancing multimodal biodiversity research.*
|