ecodash commited on
Commit
48848ab
Β·
verified Β·
1 Parent(s): 6ec57b6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +230 -0
README.md ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - image-classification
5
+ - feature-extraction
6
+ - zero-shot-classification
7
+ language:
8
+ - en
9
+ tags:
10
+ - biodiversity
11
+ - biology
12
+ - computer-vision
13
+ - multimodal
14
+ - self-supervised-learning
15
+ - florida
16
+ - plants
17
+ pretty_name: DeepEarth Central Florida Native Plants
18
+ size_categories:
19
+ - 10K<n<100K
20
+ configs:
21
+ - config_name: default
22
+ data_files:
23
+ - split: train
24
+ path: observations.parquet
25
+ - split: test
26
+ path: observations.parquet
27
+ ---
28
+
29
+ # DeepEarth Central Florida Native Plants Dataset v0.2.0
30
+
31
+ <p align="center">
32
+ <img src="https://github.com/deepearth/assets/deepearth-logo.png" alt="DeepEarth" width="200"/>
33
+ </p>
34
+
35
+ ## 🌿 Dataset Summary
36
+
37
+ A comprehensive multimodal biodiversity dataset featuring **33,665 observations** of **232 native plant species** from Central Florida. This dataset combines citizen science observations with state-of-the-art vision and language embeddings for advancing biodiversity monitoring and species distribution modeling.
38
+
39
+ ### Key Features
40
+ - 🌍 **Spatiotemporal Coverage**: Complete GPS coordinates and timestamps for all observations
41
+ - πŸ–ΌοΈ **Multimodal**: 31,136 observations with images, 7,113 with vision embeddings
42
+ - 🧬 **Language Embeddings**: DeepSeek-V3 embeddings for all 232 species
43
+ - πŸ‘οΈ **Vision Embeddings**: V-JEPA-2 self-supervised features (6.5M dimensions)
44
+ - πŸ“Š **Rigorous Splits**: Spatiotemporal train/test splits for robust evaluation
45
+
46
+ ## πŸ“¦ Dataset Structure
47
+
48
+ ```
49
+ observations.parquet # Main dataset (500MB)
50
+ vision_index.parquet # Vision embeddings index
51
+ vision_embeddings/ # Vision features (50GB total)
52
+ β”œβ”€β”€ embeddings_000000.parquet
53
+ β”œβ”€β”€ embeddings_000001.parquet
54
+ └── ... (159 files)
55
+ ```
56
+
57
+ ## πŸš€ Quick Start
58
+
59
+ ```python
60
+ from datasets import load_dataset
61
+ import pandas as pd
62
+
63
+ # Load main dataset
64
+ dataset = load_dataset("deepearth/central-florida-plants")
65
+
66
+ # Access data
67
+ train_data = dataset['train']
68
+ print(f"Training samples: {len(train_data)}")
69
+ print(f"Features: {train_data.features}")
70
+
71
+ # Load vision embeddings (download required due to size)
72
+ vision_index = pd.read_parquet("vision_index.parquet")
73
+ vision_data = pd.read_parquet("vision_embeddings/embeddings_000000.parquet")
74
+ ```
75
+
76
+ ## πŸ“Š Data Fields
77
+
78
+ Each observation contains:
79
+
80
+ | Field | Type | Description |
81
+ |-------|------|-------------|
82
+ | `gbif_id` | int64 | Unique GBIF occurrence ID |
83
+ | `taxon_id` | string | Species identifier |
84
+ | `taxon_name` | string | Scientific species name |
85
+ | `latitude` | float | GPS latitude |
86
+ | `longitude` | float | GPS longitude |
87
+ | `year` | int | Observation year |
88
+ | `month` | int | Observation month |
89
+ | `day` | int | Observation day |
90
+ | `hour` | int | Observation hour (nullable) |
91
+ | `minute` | int | Observation minute (nullable) |
92
+ | `second` | int | Observation second (nullable) |
93
+ | `image_urls` | List[string] | URLs to observation images |
94
+ | `num_images` | int | Number of images |
95
+ | `has_vision` | bool | Vision embeddings available |
96
+ | `vision_file_indices` | List[int] | Indices to vision files |
97
+ | `language_embedding` | List[float] | 7,168-dim DeepSeek-V3 embedding |
98
+ | `split` | string | train/spatial_test/temporal_test |
99
+
100
+ ## πŸ”„ Data Splits
101
+
102
+ The dataset uses rigorous spatiotemporal splits:
103
+
104
+ {
105
+ "train": 30935,
106
+ "temporal_test": 2730
107
+ }
108
+
109
+ - **Temporal Test**: All 2025 observations (future generalization)
110
+ - **Spatial Test**: 5 non-overlapping geographic regions
111
+ - **Train**: Remaining observations
112
+
113
+ ## πŸ€– Embeddings
114
+
115
+ ### Language Embeddings (DeepSeek-V3)
116
+ - **Dimensions**: 7,168
117
+ - **Source**: Scientific species descriptions
118
+ - **Coverage**: All 232 species
119
+
120
+ ### Vision Embeddings (V-JEPA-2)
121
+ - **Dimensions**: 6,488,064 values per embedding
122
+ - **Structure**: 8 temporal frames Γ— 24Γ—24 spatial patches Γ— 1408 features
123
+ - **Model**: Vision Transformer Giant with self-supervised pretraining
124
+ - **Coverage**: 7,113 images
125
+ - **Storage**: Flattened arrays in parquet files (use provided utilities to reshape)
126
+
127
+ ## πŸ’‘ Usage Examples
128
+
129
+ ### Working with V-JEPA 2 Embeddings
130
+ ```python
131
+ import numpy as np
132
+ import ast
133
+
134
+ # Load vision embedding
135
+ vision_df = pd.read_parquet("vision_embeddings/embeddings_000000.parquet")
136
+ row = vision_df.iloc[0]
137
+
138
+ # Reshape from flattened to 4D structure
139
+ embedding = row['embedding']
140
+ original_shape = ast.literal_eval(row['original_shape']) # [4608, 1408]
141
+
142
+ # First to 2D: (4608 patches, 1408 features)
143
+ embedding_2d = embedding.reshape(original_shape)
144
+
145
+ # Then to 4D: (8 temporal, 24 height, 24 width, 1408 features)
146
+ embedding_4d = embedding_2d.reshape(8, 24, 24, 1408)
147
+
148
+ # Get specific temporal frame (0-7)
149
+ frame_0 = embedding_4d[0] # Shape: (24, 24, 1408)
150
+
151
+ # Get mean embedding for image-level tasks
152
+ image_embedding = embedding_4d.mean(axis=(0, 1, 2)) # Shape: (1408,)
153
+ ```
154
+
155
+ ### Species Distribution Modeling
156
+ ```python
157
+ # Filter observations for a specific species
158
+ species_data = dataset.filter(lambda x: x['taxon_name'] == 'Quercus virginiana')
159
+
160
+ # Use spatiotemporal data for distribution modeling
161
+ coords = [(d['latitude'], d['longitude']) for d in species_data]
162
+ ```
163
+
164
+ ### Multimodal Learning
165
+ ```python
166
+ # Combine vision and language embeddings
167
+ for sample in dataset:
168
+ if sample['has_vision']:
169
+ lang_emb = sample['language_embedding']
170
+ vision_idx = sample['vision_file_indices'][0]
171
+ # Load corresponding vision embedding
172
+ vision_emb = load_vision_embedding(vision_idx)
173
+ ```
174
+
175
+ ### Zero-shot Species Classification
176
+ ```python
177
+ # Use language embeddings for zero-shot classification
178
+ species_embeddings = {
179
+ species['taxon_name']: species['language_embedding']
180
+ for species in dataset.unique('taxon_name')
181
+ }
182
+ ```
183
+
184
+ ## πŸ“„ License
185
+
186
+ This dataset is released under the **Creative Commons Attribution 4.0 International (CC BY 4.0)** license.
187
+
188
+ ## πŸ“š Citation
189
+
190
+ If you use this dataset, please cite:
191
+
192
+ ```bibtex
193
+ @dataset{deepearth_cf_plants_2024,
194
+ title={DeepEarth Central Florida Native Plants: A Multimodal Biodiversity Dataset},
195
+ author={DeepEarth Team},
196
+ year={2024},
197
+ version={0.2.0},
198
+ publisher={Hugging Face},
199
+ url={https://huggingface.co/datasets/deepearth/central-florida-plants}
200
+ }
201
+ ```
202
+
203
+ ## 🌟 Acknowledgments
204
+
205
+ We thank all citizen scientists who contributed observations through iNaturalist and GBIF. This dataset was created as part of the DeepEarth initiative for multimodal biodiversity monitoring.
206
+
207
+ ## πŸ”— Related Resources
208
+
209
+ - [DeepEarth Project](https://github.com/deepearth)
210
+ - [V-JEPA Model](https://github.com/facebookresearch/jepa)
211
+ - [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3)
212
+ - [GBIF Portal](https://www.gbif.org)
213
+
214
+ ## ⚠️ Ethical Considerations
215
+
216
+ - All observations are from public citizen science platforms
217
+ - No endangered species location data is included at fine resolution
218
+ - Please respect local regulations when using location data
219
+
220
+ ## πŸ“ˆ Dataset Statistics
221
+
222
+ - **Total Size**: ~51 GB
223
+ - **Main Dataset**: 500 MB
224
+ - **Vision Embeddings**: 50 GB
225
+ - **Image URLs**: 31,136 total images referenced
226
+ - **Temporal Range**: 2019-2025
227
+ - **Geographic Scope**: Central Florida, USA
228
+
229
+ ---
230
+ *Dataset prepared by the DeepEarth team for advancing multimodal biodiversity research.*