Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
3
1.29k
latex
stringlengths
3
4.96k
latex_norm
stringlengths
5
5.62k
page_id
stringlengths
15
15
expr_type
stringclasses
2 values
$S(\phi )$
$ S ( \phi ) $
0001015_page002
embedded
$\phi $
$ \phi $
0001015_page002
embedded
$\exp (-Ht)$
$ e x p ( - H t ) $
0001015_page002
embedded
$\psi (x)$
$ \psi ( x ) $
0001015_page002
embedded
$d\mu $
$ d \mu $
0001015_page002
embedded
$x$
$ x $
0001015_page002
embedded
$x(t)$
$ x ( t ) $
0001015_page002
embedded
$V$
$ V $
0001015_page002
embedded
$H= L +V(x)$
$ H = L + V ( x ) $
0001015_page002
embedded
$L$
$ L $
0001015_page002
embedded
$x(t)$
$ x ( t ) $
0001015_page002
embedded
\begin {equation} H = \half p^2 + V(x) \end {equation}
\begin{equation*} H = \frac { 1 } { 2 } p ^ { 2 } + V ( x ) \end{equation*}
0001015_page002
isolated
\begin {equation}\label {EVeq} \exp (-Ht) \psi (x) = \int d\mu \exp \left ( -\int _0^t V((x(s)) ds \right ) \psi (x(t)) \end {equation}
\begin{equation*} \operatorname { e x p } ( - H t ) \psi ( x ) = \int d \mu \operatorname { e x p } ( - \int _ { 0 } ^ { t } V ( ( x ( s ) ) d s ) \psi ( x ( t ) ) \end{equation*}
0001015_page002
isolated
$x: I \to M$
$ x : I \rightarrow M $
0001015_page003
embedded
$I$
$ I $
0001015_page003
embedded
$[0,t]$
$ [ 0 , t ] $
0001015_page003
embedded
$M$
$ M $
0001015_page003
embedded
$n$
$ n $
0001015_page003
embedded
$g$
$ g $
0001015_page003
embedded
$\omega =dh$
$ \omega = d h $
0001015_page003
embedded
$M$
$ M $
0001015_page003
embedded
$\omega = \Omu (x) d\Xmu $
$ \omega = \omega _ { \mu } ( x ) d x ^ { \mu } $
0001015_page003
embedded
$\omega = \Omu (x) d\Xmu $
$ \omega = \omega _ { \mu } ( x ) d x ^ { \mu } $
0001015_page003
embedded
$\dot {x}^{\mu }(t')= \frac {d{x}^{\mu }}{d t'}$
$ \dot { x } ^ { \mu } ( t ^ { \prime } ) = \frac { d x ^ { \mu } } { d t ^ { \prime } } $
0001015_page003
embedded
$S[x(.)] = i(h(x(t))-h(x(0)))$
$ S [ x ( . ) ] = i ( h ( x ( t ) ) - h ( x ( 0 ) ) ) $
0001015_page003
embedded
$x(t)$
$ x ( t ) $
0001015_page003
embedded
$\omega =0$
$ \omega = 0 $
0001015_page003
embedded
$h$
$ h $
0001015_page003
embedded
$M$
$ M $
0001015_page003
embedded
$\omega =dh$
$ \omega = d h $
0001015_page003
embedded
$\Pmu $
$ p _ { \mu } $
0001015_page003
embedded
$\Xmu $
$ x ^ { \mu } $
0001015_page003
embedded
$n$
$ n $
0001015_page003
embedded
$H(p,x)= \Pmu \Xmu - \Lag (x,\dot {x})$
$ H ( p , x ) = p _ { \mu } x ^ { \mu } - L ( x , \dot { x } ) $
0001015_page003
embedded
$H(p,x)= \Pmu \Xmu - \Lag (x,\dot {x})$
$ H ( p , x ) = p _ { \mu } x ^ { \mu } - L ( x , \dot { x } ) $
0001015_page003
embedded
$\omega $
$ \omega $
0001015_page003
embedded
$\Pb {\Tmu }{T_{\nu }}=0$
$ \{ T _ { \mu } , T _ { \nu } \} = 0 $
0001015_page003
embedded
$\Pb {\Tmu }{H_c}=0$
$ \{ T _ { \mu } , H _ { c } \} = 0 $
0001015_page003
embedded
$\Tmu $
$ T _ { \mu } $
0001015_page003
embedded
$\psi (x)$
$ \psi ( x ) $
0001015_page003
embedded
$\Pmu =-i \Dmu $
$ p _ { \mu } = - i \partial _ { \mu } $
0001015_page003
embedded
$\Pmu $
$ p _ { \mu } $
0001015_page003
embedded
$-i\DDmu $
$ - i \nabla _ { \mu } $
0001015_page003
embedded
$\XXmu \psi =0$
$ X ^ { \mu } \psi = 0 $
0001015_page003
embedded
$\XXmu =g^{\mu \nu } (p_{\nu } + i\omega _{\nu })$
$ X ^ { \mu } = g ^ { \mu \nu } ( p _ { \nu } + i \omega _ { \nu } ) $
0001015_page003
embedded
\begin {equation}\label {ACeq} S[x(.)] = \Intot i\Omu (x(t'))\dot {x}^{\mu }(t') \, dt' \end {equation}
\begin{equation*} S [ x ( . ) ] = \int _ { 0 } ^ { t } i \omega _ { \mu } ( x ( t ^ { \prime } ) ) \dot { x } ^ { \mu } ( t ^ { \prime } ) \, d t ^ { \prime } \end{equation*}
0001015_page003
isolated
\begin {equation}\label {MOMeq} \Pmu = \frac {\delta \Lag }{\delta \dot {x}^\mu } = i\Omu , \end {equation}
\begin{equation*} p _ { \mu } = \frac { \delta L } { \delta \dot { x } ^ { \mu } } = i \omega _ { \mu } , \end{equation*}
0001015_page003
isolated
\begin {equation} \Tmu \equiv \Pmu - i\Omu . \end {equation}
\begin{equation*} T _ { \mu } \equiv p _ { \mu } - i \omega _ { \mu } . \end{equation*}
0001015_page003
isolated
\begin {equation}\label {GTeq} \delta _{\epsilon }\psi (x) =-i \epsilon (\Dmu \psi (x) + \Omu (x) \psi (x)) \end {equation}
\begin{equation*} \delta _ { \epsilon } \psi ( x ) = - i \epsilon ( \partial _ { \mu } \psi ( x ) + \omega _ { \mu } ( x ) \psi ( x ) ) \end{equation*}
0001015_page003
isolated
$\Etamu $
$ \eta ^ { \mu } $
0001015_page004
embedded
$\Pimu $
$ \pi _ { \mu } $
0001015_page004
embedded
$(2n,2n)$
$ ( 2 n , 2 n ) $
0001015_page004
embedded
$\Etamu ,\Pimu $
$ \eta ^ { \mu } , \pi _ { \mu } $
0001015_page004
embedded
$\nabla $
$ \nabla $
0001015_page004
embedded
$\psi (x,\eta )$
$ \psi ( x , \eta ) $
0001015_page004
embedded
$\Pmu =-i \DDmu $
$ p _ { \mu } = - i \nabla _ { \mu } $
0001015_page004
embedded
$\Pimu = -i\frac {\partial }{\partial \Etamu }$
$ \pi _ { \mu } = - i \frac { \partial } { \partial \eta ^ { \mu } } $
0001015_page004
embedded
$\psi (x,\eta )$
$ \psi ( x , \eta ) $
0001015_page004
embedded
$(n,n)$
$ ( n , n ) $
0001015_page004
embedded
$SM$
$ S M $
0001015_page004
embedded
$\Xmu ,\Etamu $
$ x ^ { \mu } , \eta ^ { \mu } $
0001015_page004
embedded
$Q$
$ Q $
0001015_page004
embedded
$Q=\Etamu \Tmu =-i\Etamu (\Dmu + \omega )$
$ Q = \eta ^ { \mu } T _ { \mu } = - i \eta ^ { \mu } ( \partial _ { \mu } + \omega ) $
0001015_page004
embedded
$Q=\Etamu \Tmu =-i\Etamu (\Dmu + \omega )$
$ Q = \eta ^ { \mu } T _ { \mu } = - i \eta ^ { \mu } ( \partial _ { \mu } + \omega ) $
0001015_page004
embedded
$\chi $
$ \chi $
0001015_page004
embedded
$\chi = \Pimu \XXmu = -ig^{\mu \nu } \Pimu (\nabla _{\nu }-\omega _{\nu })$
$ \chi = \pi _ { \mu } X ^ { \mu } = - i g ^ { \mu \nu } \pi _ { \mu } ( \nabla _ { \nu } - \omega _ { \nu } ) $
0001015_page004
embedded
$M$
$ M $
0001015_page004
embedded
$\psi (x,\eta )$
$ \psi ( x , \eta ) $
0001015_page004
embedded
$Q=-i\Emh d \Eph $
$ Q = - i e ^ { - h } d e ^ { h } $
0001015_page004
embedded
$\chi = \Eph \delta \Emh $
$ \chi = e ^ { h } \delta e ^ { - h } $
0001015_page004
embedded
$d$
$ d $
0001015_page004
embedded
$\delta = *d*$
$ \delta = \ast d \ast $
0001015_page004
embedded
$h$
$ h $
0001015_page004
embedded
$\chi =\Pimu \XXmu $
$ \chi = \pi _ { \mu } X ^ { \mu } $
0001015_page004
embedded
$h$
$ h $
0001015_page004
embedded
$Q$
$ Q $
0001015_page004
embedded
$h$
$ h $
0001015_page004
embedded
$H_g$
$ H _ { g } $
0001015_page004
embedded
\begin {equation}\label {SPBeq} d\Pmu \wedge d \Xmu + \nabla \Pimu \wedge \nabla \Etamu + \frac 12 dx^{\mu } \wedge dx^{\nu } \Curv {\mu }{\nu }{\kappa }{\lambda }\eta ^{\kappa }\pi _{\lambda }, \end {equation}
\begin{equation*} d p _ { \mu } \wedge d x ^ { \mu } + \nabla \pi _ { \mu } \wedge \nabla \eta ^ { \mu } + \frac { 1 } { 2 } d x ^ { \mu } \wedge d x ^ { \nu } R _ { \mu \nu \kappa } { } ^ { \lambda } \eta ^ { \kappa } \pi _ { \lambda } , \end{equation*}
0001015_page004
isolated
\begin {eqnarray}\DDmu \psi (x,\eta ) = \Dmu \psi (x,\eta ) + \Gam {\mu }{\nu }{\lambda } \eta ^{\nu } \frac {\partial }{\partial \eta ^{\lambda }}\psi (x,\eta ). \end {eqnarray}
\begin{equation*} \nabla _ { \mu } \psi ( x , \eta ) = \partial _ { \mu } \psi ( x , \eta ) + \Gamma _ { \mu \nu } ^ { \lambda } \eta ^ { \nu } \frac { \partial } { \partial \eta ^ { \lambda } } \psi ( x , \eta ) . \end{equation*}
0001015_page004
isolated
\begin {eqnarray}H_g &=& i( Q \chi + \chi Q) \End &=& d \delta + \delta d + g^{\mu \nu }\Omu \omega _{\nu } -i (\Pimu \eta ^{\nu } - \eta ^{\nu }\Pimu ) \frac {\partial ^2 h }{\partial \Xmu \partial x_{\nu }}. \end {eqnarray}
\begin{align*} H _ { g } & = & i ( Q \chi + \chi Q ) \\ & = & d \delta + \delta d + g ^ { \mu \nu } \omega _ { \mu } \omega _ { \nu } - i ( \pi _ { \mu } \eta ^ { \nu } - \eta ^ { \nu } \pi _ { \mu } ) \frac { \partial ^ { 2 } h } { \partial x ^ { \mu } \partial x _ { \nu } } . \end{align*}
0001015_page004
isolated
$H_g$
$ H _ { g } $
0001015_page005
embedded
$x_t,\eta _t$
$ x _ { t } , \eta _ { t } $
0001015_page005
embedded
$SM$
$ S M $
0001015_page005
embedded
$\Xmu ,\Etamu $
$ x ^ { \mu } , \eta ^ { \mu } $
0001015_page005
embedded
$b_t$
$ b _ { t } $
0001015_page005
embedded
$(\theta _t,\rho _t)$
$ ( \theta _ { t } , \rho _ { t } ) $
0001015_page005
embedded
$(d+ \delta )^2$
$ ( d + \delta ) ^ { 2 } $
0001015_page005
embedded
$J$
$ J $
0001015_page005
embedded
$u:\Sigma \to M$
$ u : \Sigma \rightarrow M $
0001015_page005
embedded
$\Sigma $
$ \Sigma $
0001015_page005
embedded
$2m$
$ 2 m $
0001015_page005
embedded
$M$
$ M $
0001015_page005
embedded
$H^{\alpha }_{\mu }$
$ H _ { \mu } ^ { \alpha } $
0001015_page005
embedded
$\Etamu $
$ \eta ^ { \mu } $
0001015_page005
embedded
$\pi ^{\alpha }_{\mu }$
$ \pi _ { \mu } ^ { \alpha } $
0001015_page005
embedded
$\alpha =1,2$
$ \alpha = 1 , 2 $
0001015_page005
embedded
$\Sigma $
$ \Sigma $
0001015_page005
embedded
$\mu =1,\dots ,2 m$
$ \mu = 1 , \ldots , 2 m $
0001015_page005
embedded
$M$
$ M $
0001015_page005
embedded
End of preview. Expand in Data Studio

IBEM Cropped: Bounding Box Mathematical Expressions from Scientific Pages

A processed version of the IBEM Dataset (Anitei et al., 2023), designed for the training and evaluation of image-to-markup models, expression recognition, and related document understanding tasks. Each sample in this dataset consists of a cropped image region containing a single mathematical expression (either displayed or embedded), along with its corresponding LaTeX annotations.

Dataset Summary

This dataset is derived from the original IBEM dataset by extracting individual mathematical expressions using the provided bounding boxes, and cropping them from their original document pages. All page-level coordinates were specified as percentages and converted to absolute pixel coordinates during cropping.

Each record includes:

  • A cropped image of the mathematical expression.
  • The original LaTeX string (latex).
  • A normalized LaTeX string (latex_norm) with visual formatting removed.
  • The ID of the original page.
  • The expression type (isolated or embedded).

Dataset Structure

Features:

features = Features({
    "image": Image(),
    "latex": Value("string"),
    "latex_norm": Value("string"),
    "page_id": Value("string"),
    "expr_type": Value("string"),
})

Splits:

The dataset is split into standard train, val, and test subsets based on the official partition lists provided by the authors (Tr*.lst, Va*.lst, Ts*.lst).

Source

Citation:

Anitei, D., Sánchez, J. A., & Benedí, J. M. (2023). The IBEM Dataset: a large printed scientific image dataset for indexing and searching mathematical expressions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7963703

Original Dataset Description

The IBEM dataset consists of 600 LaTeX documents with a total of 8,272 pages, containing:

  • 29,603 displayed mathematical expressions
  • 137,089 embedded mathematical expressions

These were extracted from the LaTeX source files of documents in the KDD Cup Collection. The dataset supports a variety of tasks, including:

  • Mathematical expression detection and extraction
  • LaTeX recognition from printed page images
  • Indexing and search of STEM content in large-scale document archives

Preprocessing Notes

  • Preamble fields containing LaTeX macros were excluded.
  • All expressions were cropped to their respective bounding boxes and stored as image snippets.
  • Only the latex and latex_norm fields were retained for expression text.
  • Expressions split across multiple lines were treated as-is, using the duplicated complete LaTeX string provided by the original dataset.

Licensing

Distributed under the same license as the original IBEM dataset. Creative Commons Attribution 4.0 International

Downloads last month
76