arxiv_id
string
latex
string
image
image
2010.04404v1
\begin{table}[H] \begin{adjustbox}{width=1\textwidth} \begin{tabular}{|l|l|l|l|l|} \hline Algorithm & Total Returns & Sharpe Ratio & Max Drawdown & Daily Turnover \\ \hline CNN & 39.56 & 0.52 & 31.79 & 6.69 \\ CNN No Weight Control & 154.25 & 1.0 & 34.1 & 23.67 \\ \hline \end{tabular} \end{adjustbox} \caption{Returns of the CNN model with and without turnover control with 5 bps cost. We see that the returns without turnover control are much higher than the traditional model but with weight control they are similar. Results 24rd March 2017 to 1st June 2020.} \end{table}
2010.04404v1
\begin{table}[H] \begin{adjustbox}{width=1\textwidth} \begin{tabular}{|l|l|l|l|l|} \hline Algorithm & Total Returns & Sharpe Ratio & Max Drawdown & Daily Turnover \\ \hline RNN & 53.92 & 0.53 & 30.87 & 23.16 \\ \hline \end{tabular} \end{adjustbox} \caption{Returns of the RNN model with cost of 5 bps. The returns are lower than the CNN model but higher than the traditional models} \end{table}
2010.04404v1
\begin{table}[H] \begin{adjustbox}{width=1\textwidth} \begin{tabular}{|l|l|l|l|l|} \hline Algorithm & Total Returns & Sharpe Ratio & Max Drawdown & Daily Turnover \\ \hline LSTM & 55.76 & 0.63 & 29.1 & 12.41 \\ \hline \end{tabular} \end{adjustbox} \caption{Returns of the LSTM model with cost of 5 bps. The returns are higher than RNN but lower than CNN. The turnover is the lowest in this model among RL models} \end{table}
2010.04404v1
\begin{table}[H] \begin{adjustbox}{width=1\textwidth} \begin{tabular}{|l|l|l|l|l|} \hline Algorithm & Total Returns & Sharpe Ratio & Max Drawdown & Daily Turnover \\ \hline Equal Weight Portfolio & 38.09 & 0.52 & 30.65 & 4.02 \\ Mean Variance Optimization & 37.74 & 0.51 & 30.43 & 2.98 \\ Risk Parity & 34.51 & 0.49 & 30.88 & 2.00 \\ Minimum Variance & 28.1 & 0.59 & 14.14 & 23.22 \\ \hline \end{tabular} \end{adjustbox} \caption{Returns of the traditional strategies. The equal weighted portfolio gives the best returns but the minimum variance portfolio gives the best Sharpe ratio and minimum drawdown. Results 24rd March 2017 to 1st June 2020.} \end{table}
2207.13887v1
\begin{table}[b] \vspace{-4mm} \caption{Training ResNet18 with $S$=1\% subsets every $R$=1 epoch from CIFAR10 using batch size $b$= 512, 256, 128. \alg can leverage larger mini-bath size and obtain a larger accuracy gap to \craig and Random. For $b$=512, we have\! 1\! mini-batch (GD). Std is reported in Appendix Table\! \ref{table:batch_pm}. }\label{table:batch} \vspace{-2mm} \begin{small} \resizebox{\columnwidth}{!}{ \begin{tabular}{l|lllll} \hline & \textsc{AdaC.} & \craig & Rand & \begin{tabular}[c]{@{}l@{}}Gap/\\ \craig\end{tabular} & \begin{tabular}[c]{@{}l@{}}Gap/\\ Rand\end{tabular} \\ \hline \begin{tabular}[c]{@{}l@{}}GD~~ b=512\end{tabular} & \textbf{58.32}\% & 56.32\% & 49.14\% & 1.69\% & \textbf{8.91}\% \\ \begin{tabular}[c]{@{}l@{}}SGD b=256\end{tabular} & \textbf{68.23}\% & 58.3\% & 60.7\% & \textbf{9.93}\% & 8.16\% \\ \begin{tabular}[c]{@{}l@{}}SGD b=128\end{tabular} & \textbf{66.89}\% & 58.17\% & 65.46\% & \textbf{8.81}\% & 1.52\% \end{tabular} } \end{small} \end{table}
2207.13887v1
\begin{table}[ht]\caption{\alg outperforms other baseline subset selection algorithms as well as training on the full dataset, reaching a better accuracy in less time. This provides up to a 2.3x speedup compared to to the state of the art.} \begin{tabular}{@{}lllll@{}} \toprule \textbf{} & \textbf{BDD100k} & \textbf{} & \multicolumn{2}{l}{Speedup over} \\ \midrule \multicolumn{1}{l|}{\begin{tabular}[c]{@{}l@{}}$S = 10\%$\\ R = 20\end{tabular}} & \begin{tabular}[c]{@{}l@{}}Accuracy\\ (epoch)\end{tabular} & \multicolumn{1}{c}{\begin{tabular}[c]{@{}c@{}}Time\\ (s)\end{tabular}} & \multicolumn{1}{c}{Rand} & \multicolumn{1}{c}{Full} \\ \midrule \multicolumn{1}{l|}{\alg} & $74.3\%(100) $ & 7331 & \textbf{1.8} & \textbf{2.3} \\ \multicolumn{1}{l|}{\craig} & $73.1\%(150)$ & 10996 & 1.3 & 1.6 \\ \multicolumn{1}{l|}{Random} & $73.3\%(180)$ & 13050 & 1 & 1.2 \\ \multicolumn{1}{l|}{\gradmatch} & $72\%(200)$ & 14040 & .7 & 1.1 \\ \multicolumn{1}{l|}{\glister} & $73\%(200)$ & 12665 & 1.03 & 1.2 \\ \multicolumn{1}{l|}{Full Dataset} & $74.3\% (45)$ & 16093 & 0.8 & 1 \\ \bottomrule \end{tabular}\label{table:bdd100k} \end{table}
2107.00507v1
\begin{table}[!htb] \caption{Accuracy of four features for XGBoost}\label{tab:2} \centering \adjustbox{scale=0.85}{ \begin{tabular}{c|lc}\midrule\midrule Feature & \multicolumn{1}{c}{Description} & Accuracy\\ \midrule H & Hold time & 76.91\% \\ DD & Key-down Key-down & 76.39\% \\ UD & Key-up Key-down & 81.10\% \\ \midrule All & H, DD and UD & 95.15\% \\ \midrule\midrule \end{tabular} } \end{table}
2107.00507v1
\begin{table}[!htb] \caption{Results for MLP}\label{tab:mul-mlp} \centering \adjustbox{scale=0.85}{ \begin{tabular}{c|cccc|c}\midrule\midrule \multirow{2}{*}{Model} & \multicolumn{4}{c|}{Parameters} & \multirow{2}{*}{Accuracy} \\ & input-channel & output-channel & num-layers & learning-rate \\ \midrule MLP & 31 & 100 & 3 & 0.001 & 95.96\% \\ \midrule\midrule \end{tabular} } \end{table}
2107.00507v1
\begin{table}[!htb] \caption{Results for LSTM and bi-LSTM with one-hot encoding}\label{tab:lstm} \centering \adjustbox{scale=0.85}{ \begin{tabular}{c|cccc|c}\midrule\midrule \multirow{2}{*}{Model} & \multicolumn{4}{c|}{Parameters} & \multirow{2}{*}{Accuracy} \\ & input-size & hidden-size & num-layers & learning-rate \\ \midrule LSTM & 31 & 5 & 1 & 0.3 & 91.28\% \\ Bi-LSTM & 31 & 5 & 1 & 0.3 & 90.02\% \\ \midrule\midrule \end{tabular} } \end{table}
2011.01813v1
\begin{table}[h!] \centering \caption{\label{tab:dvs_table5-way}6+5-way one-shot federated classification on the DvsGesture dataset } \begin{tabular}{|l|r|r|} \hline Model & \multicolumn{1}{l|}{Initial Test Accuracy} & \multicolumn{1}{l|}{Post Federated Learning Accuracy} \\ \hline 1 & 76\% & 88\% \\ \hline 2 & 75.5\% & 88\% \\ \hline 3 & 58\% & 85\% \\ \hline 4 & 54.4\% & 86\% \\ \hline 5 & 59.5\% & 81\% \\ \hline \end{tabular} \end{table}
2209.07124v2
\begin{table}[ht] \caption{Simulation parameters.} \label{tab:sim_param} \centering \resizebox{\columnwidth}{!}{ \begin{tabular}{c|ccc} \toprule & \textbf{Parameter} & \textbf{Description} & \textbf{Value} \\ \midrule \multirow{11}{*}{\rotatebox[origin=c]{90}{Fed. Learning }} & $|w'|$ & Number of FFNN model parameters & $\num{199210}$ \\ & $|w''|$ & Number of CNN model parameters & $\num{582026}$ \\ & $S_{w^'}$ & FFNN model parameters size & $796.84$ KB \\ & $S_{w''}$ & CNN model parameters size & $2.33$ MB \\ & $\eta$ & Learning rate & $0.2$ \\ & $N$ & Number of total clients & $3382$ \\ & $E$ & Local epochs number & $5$ \\ & $R$ & Number of rounds & $200$ \\ & $m$ & Number of clients for each round & $200$ \\ & $B$ & Batch size & $20$ \\ & $\ell_i$ & Local loss function & Sparse Cat. Crossentropy\\ \midrule \multirow{11}{*}{\rotatebox[origin=c]{90}{Blockchain}} %& $\lambda$ & Block Generation rate & \\ & $N_{\rm chain}$ & Number of blocks in the main chain & 200 \\ & $BI$ & Block interval & $15$ s\\ & $N_{B}$ & Number of blockchain nodes & $200$\\ & $N_{m}$ & Number of miners & $10$\\ & $C_{\rm P2P}$ & Capacity of P2P links & $100$ Mbps\\ & $S_H$ & Block header size & $25$ KB\\ & $S'_B$ & Block size with FFNN & $160.368$ MB \\ & $S''_B$ & Block size with CNN & $467$ MB \\ & $S'_{\rm tr}$ & Transaction size with FFNN & $796.84$ KB\\ & $S''_{\rm tr}$ & Transaction size with CNN & $2.33$ MB\\ & $P_h$ & Total hashing power & $1350$ W\\ \midrule \multirow{17}{*}{\rotatebox[origin=c]{90}{Communication (IEEE 802.11ax)}} & $P_{\rm{Tx}}^{e}$ & Tx power for edge devices & $9$ dBm \\ & $P_{\rm{tx}}^{c}$ & Tx power for a central server & $20$ dBm\\ & $\sigma_{\text{leg}}$ & Legacy OFDM symbol duration & $4$ \textmu s \\ %& $\sigma$ & OFDM symbol duration & 16 \textmu s \\ & $N_{\rm sc}$ & Number of subcarriers ($20$ MHz) & $234$ \\ & $N_{\rm ss}$ & Number of spatial streams & $1$ \\ & $T_{\rm{e}}$ & Empty slot duration & $9$ \textmu s \\ & $T_{\rm{SIFS}}$ & SIFS duration & $16$ \textmu s \\ & $T_{\rm{DIFS}}$ & DIFS duration & $34$ \textmu s \\ & $T_{\rm{PHY}}$ & Preamble duration & $20$ \textmu s \\ & $T_{\rm{HE-SU}}$ & HE single-user field duration & $100$ \textmu s \\ %& $T_{\text{ACK}}$ & ACK duration & 28 \textmu s \\ & $L_{s}$ & Size OFDM symbol & $24$ bits \\ % & $L_{\text{DATA}}$ & Data packet size & 11728 bits \\ %& $N_{\text{agg}}$ & No. of frames in an A-MPDU & 1 \\ & $L_{\rm{RTS}}$ & Length of an RTS packet & $160$ bits \\ & $L_{\rm{CTS}}$ & Length of a CTS packet & $112$ bits \\ & $L_{\rm{ACK}}$ & Length of an ACK packet & $240$ bits \\ & $L_{\rm{SF}}$ & Length of service field & $16$ bits \\ & $L_{\rm{MAC}}$ & Length of MAC header & $320$ bits \\ & $\text{CW}$ & Contention window (fixed) & $15$ \\ \bottomrule \end{tabular}} \end{table}
2103.12010v1
\begin{table}[htbp] \begin{tabular}{|l|l|l|l|l|l|l|l|} \hline & Linear & ReLU & Dropout($p = 0.5$) & Linear & ReLU & Dropout($p = 0.5$) & Linear \\ \hline Input & 25088 & \multicolumn{2}{l|}{\multirow{2}{*}{}} & 4096 & \multicolumn{2}{l|}{\multirow{2}{*}{}} & 4096 \\ \cline{1-2} \cline{5-5} \cline{8-8} Output & 4096 & \multicolumn{2}{l|}{} & 4096 & \multicolumn{2}{l|}{} & 4 \\ \hline \end{tabular} \caption{The trainable layer in our modified VGG model.} \label{tab:classifier_vgg} \end{table}
2103.12010v1
\begin{table}[htbp] \centering \begin{tabular}{|l|l|l|l|} \hline & Training Loss & Testing Loss & Testing Accuracy \\ \hline Federated Training (1 local epoch) & $0.3506$ & $0.3519$ & $98.7\%$ \\ \hline Federated Training (2 local epochs) & $0.3405$ & $0.3408$ & $98.6\%$ \\ \hline Federated Training (4 local epochs) & $0.3304$ & $0.3413$ & $98.6\%$ \\ \hline Non-Federated Training & $0.3360$ & $0.3369$ & $98.75\%$ \\ \hline \end{tabular} \caption{Comparison of performance in different training schemes with Cats vs Dogs dataset.} \label{tab:comparison_performance_cats_dogs} \end{table}
1906.06248v3
\begin{table}[ht] \caption{The hyperparameters which were used when training feed-forward neural networks with different features (all, without curve features, only with the 10 or 20 most influential features as chosen by the best-performing random forest).} \centering \begin{tabular}{|l|c|c|c|c|} \hline Hyperparameter & \multicolumn{1}{l|}{All features} & \multicolumn{1}{l|}{\begin{tabular}[c]{@{}l@{}}Without curve \\ features\end{tabular}} & \multicolumn{1}{l|}{\begin{tabular}[c]{@{}l@{}}Selected features \\ ($N_F = 10$)\end{tabular}} & \multicolumn{1}{l|}{\begin{tabular}[c]{@{}l@{}}Selected features \\ ($N_F = 20$)\end{tabular}} \\ \hline \begin{tabular}[c]{@{}l@{}}Network \\ architecture\end{tabular} & [5, 5, 5] & [5, 5] & [25] * 25 & [25] * 25 \\ \hline Optimiser & rmsprop & Adam & Adam & Adam \\ \hline \begin{tabular}[c]{@{}l@{}}Number of \\ epochs\end{tabular} & 100 & 100 & 100 & 100 \\ \hline Batch size & 128 & 64 & 128 & 128 \\ \hline \begin{tabular}[c]{@{}l@{}}Activation \\ function\end{tabular} & tanh & relu & relu & relu \\ \hline Dropout & [0, 0.25, 0] & [0, 0.25, 0] & [0.1] * 25 & [0.1] * 25 \\ \hline \begin{tabular}[c]{@{}l@{}}Batch \\ normalization\end{tabular} & no & yes & yes & yes \\ \hline \end{tabular} \label{tab:hyperparameters} \end{table}
1906.06248v3
\begin{table}[ht] \caption{Comparison of in-sample and out-of-sample errors in EUR per MWh or $\%$ for various price forecasting techniques.} \centering \begin{tabular}{|l|l|l|l|l|l|l|} \hline \multirow{2}{*}{Forecasting technique} & \multicolumn{3}{l|}{in-sample error} & \multicolumn{3}{l|}{out-of-sample error} \\ \cline{2-7} & RMSE & MAE & MdAPE & RMSE & MAE & MdAPE \\ \hline Naive model & 13.55 & 7.87 & 15.31\% & 12.68 & 7.71 & \bf{11.61\%} \\ \hline Ordinary linear regression & 6.85 & 4.25 & 10.93\% & 9.60 & 7.52 & 16.95\% \\ \hline Random forest & 6.77 & 4.17 & 9.73\% & 11.92 & 9.32 & 19.9\% \\ \hline \begin{tabular}[c]{@{}l@{}}Feed-forward neural network\\ with architecture from \cite{keles2016}\end{tabular} & 6.72 & 4.51 & 11.49\% & 14.87 & 12.81 & 30.63\% \\ \hline \begin{tabular}[c]{@{}l@{}}Feed-forward neural network\\ with architecture from \cite{lago2018}\end{tabular} & 2.27 & 1.65 & 4.45\% & 21.05 & 8.94 & 15.22\% \\ \hline Feed-forward neural network & 5.45 & 3.57 & 8.89\% & 9.59 & \bf{7.08} & 14.18\% \\ \hline \begin{tabular}[c]{@{}l@{}}Feed-forward neural network\\ without curve features\end{tabular} & 6.63 & 4.41 & 11.22\% & 10.11 & 7.85 & 16.12\% \\ \hline \begin{tabular}[c]{@{}l@{}}Feed-forward neural network \\ with feature selection ($N_F = 10$) \end{tabular} & 7.69 & 5.06 & 11.68\% & \bf{9.41} & 7.34 & 15.57\% \\ \hline \begin{tabular}[c]{@{}l@{}}Feed-forward neural network \\ with feature selection ($N_F = 20$) \end{tabular} & 7.71 & 4.95 & 11.27\% & 13.65 & 10.18 & 21.48\% \\ \hline \hline EXAA & 6.47 & 3.53 & 7.56\% & 5.58 & 3.92 & 7.22\% \\ \hline \end{tabular} \label{tab:results} \end{table}
1611.04474v1
\begin{table}[!ht] \renewcommand{\arraystretch}{1.3} \caption{FPGA platform information.} \label{FPGA_platform_information} \centering \begin{tabular}{|c|c|} \hline Platform & Convey HC-1ex\\ \hline FPGA fabric & Virtex-6 VLX760 x 4 \\ \hline Logic Cell&474K x 4 \\ \hline DSP&864 x 4\\ \hline BRAM&26Mb x 4\\ \hline DDR BW&80GB/s\\ \hline DDR size&64GB\\ \hline Power&150W\\ \hline Technology&40nm\\ \hline \end{tabular} \end{table}
1611.04474v1
\begin{table} \renewcommand{\arraystretch}{1.3} \caption{Performance speedup and energy efficiency breakdown of major HLS optimizations on Convey FPGA platform compared to the Intel 12-core Xeon server.} \label{different_FPGA_acc} \centering \begin{tabular}{|l|l|l|l|}\hline Platform&Run time&Speedup&Energy Efficiency\\ \hline Intel 12-core server&3.5 sec&1&1 \\ \hline Naive HLS result&338 sec&0.01X&0.02X \\ \hline HLS result with &3.52 sec&1.0X&2X \\ pipeline (single module) &&& \\ \hline Fully optimized HLS &0.37 sec&9.5X&19X \\ (module duplication) &&& \\ \hline \end{tabular} %\vspace{0.1in} \end{table}
1611.04474v1
\begin{table} \renewcommand{\arraystretch}{1.3} \caption{FPGA resource utilization for one MD accelerator in Convey FPGA platform.} \label{FPGA_resource_utilization_for_MD_accelerator} \centering \begin{tabular}{|c|c|c|c|} \hline BRAM 18K & DSP48E & FF & LUT \\ \hline 153 (10\%) & 222 (23\%) & 26617 (2\%) & 31144 (6\%) \\ \hline \end{tabular} %\vspace{-0.1in} \end{table}
1611.04474v1
\begin{table}[!h] \renewcommand{\arraystretch}{1.3} \caption{Design space exploration: performance speedup and area overhead with different number of duplicating distance calculation modules and one single computation module on Convey FPGA platform.} \label{pe_0_dup} \centering \begin{tabular}{|c|c|c|c|c|}\hline Duplication&Execution time&Speedup&Area overhead&Speedup/area \\ \hline 1&3.5 seconds&1X&0&- \\ \hline 2&2.1 seconds&1.7X&8.7\%&1.56 \\ \hline 3&1.64 seconds&2.13X&17.4\%&1.81 \\ \hline 4&1.4 seconds&2.5X&25\%&2.0 \\ \hline 5&1.4 seconds&2.5X&33\%&1.88 \\ \hline \end{tabular} \end{table}
1805.05409v2
\begin{table}[htbp] \centering \begin{tabular}{r|rr} \hline\hline & \multicolumn{2}{c}{\textit{Expert Coding}} \\ \hline \textit{Classifier} & \textbf{Other} & \textbf{Moral} \\ \hline \textbf{Other} & 29 & 16 \\ \textbf{Moral} & 2 & 13 \\ \hline\hline \end{tabular} \caption{Expert coder confusion matrix for classification of tweets} \label{tab:confusion} \end{table}
2312.00477v2
\begin{table} \centering \captionof{table}{Structure of various meta-learning models. Here~$h(x;\theta)\in \R$ and~$v(x;\theta) \in \R^r$ denote arbitrary parametric models, such as neural networks; ~``order" stands for differentiation order. % For ANIL and~CAVIA, only a restricted number of layers of the neural network are adapted. } \label{table:architectures} \resizebox{\textwidth}{!}{ \begin{tabular}{c||c|c|c} % \hline & MAML & CoDA & CAMEL \\ \hline % \hline % \multirow{2}{*}{structure} & \multicolumn{2}{c|}{parameter-} & function- % \\ % & \multicolumn{2}{c|}{additive} & linear % \\ % \hline $\pi$ & \multicolumn{1}{c|}{$\theta$} & $\theta, \Theta, \{\xi_t\}$ & $\theta, \{\omega_t\}$ \\ \hline $\mathrm{dim} (\pi)$ \rule{0pt}{2.2ex} & $p$ & ${p {+} p{\times} d_\xi {+} d_\xi{\times} T}$ & $p {+} r {\times} T$ \\ \hline $\mathrm{dim}(w)$ % \rule{0pt}{2.2ex} & \multicolumn{2}{c|} { $p$} & {$r$ } \\ \hline ${A}(\pi, D_t)$ \rule{0pt}{2.2ex} & $-\alpha \nabla_\theta L_t$ & $ \Theta\xi_t$ & $\omega_t $ \\ \hline % \multirow{2}{*} {$F(x ; \theta, w)$} \rule{0pt}{2.2ex} & \multicolumn{2}{c|} { $h(x; \theta + w )$} % & { $h(x; \theta + \Theta w )$} & % \multirow{2}{*} {$\transp{w} v(x ; \theta)$ } % \\ % % \cline{2-3} % & \multicolumn{2}{c|}{$\delta \theta = w$ \quad $\delta\theta = \Theta w$ } & \\ \hline training & \multirow{2}{*}{2} & \multirow{2}{*}{1} & \multirow{2}{*}{1} \\ order & & & \\ \hline adaptation & \multirow{2}{*}{1} & \multirow{2}{*}{1} & \multirow{2}{*}{0} \\ order & & & \\ % $R(\pi)$ & $0$ & $\Vert \Theta \Vert ^2$ % & $ \Vert w_t\Vert^2$ % \\ \hline \end{tabular} } % % \label{table:structure} % \end{table}
2312.00477v2
\begin{table}[H] \centering \caption{Adaptation performances with standard deviations.} \begin{tabular}{c|c|c|c|c|} \multirow{2}{*}{System} & \multicolumn{2}{c|}{Charges{, 30 trials}} & \multicolumn{2}{c|}{Capacitor{, 5 trials}} % \\ % \hline \hline % \multirow{2}{*}{dipole} & error & - & - & - % \\ % & time & - & - & - \\ % \hline & 3-shot & 10-shot & 5-shot & 40-shot \\ \hline \hline MAML & \textsc{4.1e-0 $\pm$ 2e-0} & \textsc{1.6e-1 $\pm$ 5e-2} & N/A & N/A \\ \hline ANIL & \textsc{3.5e0 $\pm$ 5e-1} & \textsc{9.2e-4 $\pm$ 5e-4} & \textsc{4.4e-2 $\pm$ 2e-2} & \textsc{3.6e-2$\pm$ 1e-2} \\ \hline CoDA & \textsc{1.0e-1 $\pm$ 9e-2} & \textsc{8.2e-2 $\pm$ 3e-2} & \textsc{4.7e-2 $\pm$ 5e-5} & \textsc{2.6e-2$\pm$ 1e-2} \\ \hline CAMEL & \textsc{2.0e-4 $\pm$ 1e-4} & \textsc{1.0e-4 $\pm$ 5e-5} & \textsc{3.6e-2 $\pm$ 2e-2} & \textsc{2.6e-2 $\pm$ 1e-2} \\ \hline \hline $\varphi$-CAMEL & \multicolumn{2}{c|}{\textsc{3.0e-3} } & \multicolumn{2}{c|}{\textsc{6.5e-2}} \\ \hline \end{tabular} \label{table:time} \end{table}
2312.00477v2
\begin{table}[H] \centering % \caption{Adaptation performances with standard deviations.} \begin{tabular}{c|c|c|} % \multirow{2}{*} {System} & % \multicolumn{2}{c|} {Upkie{, 15 trials}} % \\ % \hline \hline % \multirow{2}{*}{dipole} & error & - & - & - % \\ % & time & - & - & - \\ \hline \hline MAML & \textsc{1.5e-2 $\pm$ 7e-3} \\ \hline ANIL & \textsc{1.9e-2 $\pm$ 6e-3} \\ \hline CoDA & \textsc{2.1e-2 $\pm$ 3e-3} \\ \hline CAMEL & \textsc{8.2e-3 $\pm$ 5e-3} \\ \hline \end{tabular} \end{table}
2202.07742v2
\begin{table}[tb] \caption{An overview of DeFi's naming taxonomy.} \begin{tabular}{|l|l|ll|l|} \hline \textbf{DeFi Protocol} & \textbf{Smart Contract} & \multicolumn{1}{l|}{\textbf{Investor}} & \textbf{User} & \textbf{Financial Service} \\ \hline \textit{PLFs} & Lending Pool & \multicolumn{1}{l|}{Lender} & Borrower & Loan \\ \hline \textit{DEXs} & Liquidity Pool & \multicolumn{1}{l|}{Liquidity Provider} & Buyer/Trader & Exchange \\ \hline \textit{Yield Aggregators} & Vault & Vault User & & Asset Management \\ \hline \end{tabular} \label{tab:sok} \end{table}
2107.01611v2
\begin{table}[!h] \centering \begin{tabular}{|C{3cm}|C{3cm}|C{3cm}|C{3cm}|} \hline & $\mathcal{NN}^{PtM}_{(SPX, VIX)}$ & $\mathcal{NN}^{MtP}_{SPX}$ & $\mathcal{NN}^{MtP}_{VIX}$\\ \hline Input dimension & 120 & 15 & 15 \\ \hline Output dimension & 15 & 60 & 60 \\ \hline Hidden layers & \multicolumn{3}{C{9cm}|}{7 with 25 hidden nodes for each, followed by SiLU activation function, see \cite{hendrycks2016gaussian}} \\ \hline Training epochs & \multicolumn{3}{C{9cm}|}{150 epochs with early stopping if not improved on validation set for 5 epochs} \\ \hline Others & \multicolumn{3}{C{9cm}|}{Adam optimizer, initial learning rate 0.001, reduced by a factor of 2 every 10 epochs, mini-batch size 128} \\ \hline \end{tabular} \caption{Some key characteristics of the networks and the training process.} \label{tab:nn_summary} \end{table}
2003.00130v1
\begin{table}[!htb] \scriptsize \begin{center} \begin{tabular}{|p{3cm}||p{2cm}|p{2cm}|p{2cm}|p{2cm}|} \hline Model & Accuracy & Precision & Recall & F1\\ \hline\hline CNN \cite{Ts} & 63.06 & 63.29 & 63.06 & 62.97 \\ TransLOB & \textbf{91.62} & \textbf{91.63} & \textbf{91.62} & \textbf{91.61} \\ \hline \end{tabular} \end{center} \caption{Prediction horizon $k=100$.} \label{table:horizon100} \end{table}
2209.02057v3
\begin{table}[H] \centering \begin{tabular}{|c|ccc|} \hline & \textbf{Group A} & \textbf{Group B} & \textbf{Total} \\ \hline \textit{Death} & $d_{Ai}$ & $d_{Bi}$ & $d_{i}$ \\ \textit{Survivorship} & $n_{Ai} - d_{Ai}$ & $n_{Bi} - d_{Bi}$ & $n_{i} - d_{i}$ \\ \textit{Total} & $n_{Ai}$ & $n_{Bi}$ & $n_{i}$ \\ \hline \end{tabular} \caption{Notation used for the number at time i} \label{lr} \end{table}
2209.02057v3
\begin{table}[H] \centering \scalebox{0.9}{ \begin{tabular}{|c|cc|cc|} \hline \textit{\textbf{}} & \textit{\textbf{Age}} & \textit{\textbf{Gender}} & \textit{Y} & \textit{$\delta$} \\ \hline \textit{\textbf{$S_{1}$}} & \textit{40} & \textit{Female} & \textit{7.1} & \textit{1} \\ \textit{\textbf{$S_{2}$}} & \textit{30} & \textit{Male} & \textit{4.9} & \textit{0} \\ \textit{\textbf{$S_{3}$}} & \textit{52} & \textit{Male} & \textit{3.4} & \textit{0} \\ \textit{\textbf{$S_{4}$}} & \textit{60} & \textit{Female} & \textit{3} & \textit{1} \\ \hline \end{tabular}} \caption{Example of survival data table} \label{surData} \end{table}
2209.02057v3
\begin{table}[H] \centering \scalebox{0.8}{ \begin{tabular}{|r|cc|cc|} \hline \textbf{Models} & \textit{SMR Train} & \textit{SMR Test} \\ \hline \textit{\textbf{Binomial Regression}} & 0.99 & 0.99 \\ \textit{\textbf{Poisson Regression}} & 1.00 & 0.98 \\ \textit{\textbf{logistic GAM}} & 1.00 & 0.96 \\ \textit{\textbf{Random Forest}} & 0.99 & 0.99 \\ \textit{\textbf{LightGBM}} & 0.99 & 0.98 \\ \textit{\textbf{XGBoost}} & 0.99 & 0.94 \\ \textit{\textbf{Catboost}} & 1.01 & 0.99 \\ \hline \end{tabular}} \caption{Validation metrics for discrete models} \label{ev} \end{table}
2209.02057v3
\begin{table}[H] \centering \begin{tabular}{|c|cccccccccc|} \hline & \textit{\textbf{1}} & \textit{\textbf{2}} & \textit{\textbf{3}} & \textit{\textbf{4}} & \textit{\textbf{5}} & \textit{\textbf{6}} & \textit{\textbf{7}} & \textit{\textbf{8}} & \textit{\textbf{9}} & \textit{\textbf{10}} \\ \hline \textit{\textbf{$\delta$}} & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \textit{\textbf{ei}} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0.2 & 0.8 & 0.5 \\ \hline \end{tabular} \label{ind} \end{table}
2402.17168v1
\begin{table}[t] \centering \small \resizebox{\linewidth}{!}{\begin{tabular}{c|cc|cc} \toprule \multirow{2}*{Context} & \multicolumn{2}{c}{DSEval-Kaggle} & \multicolumn{2}{c}{DSEval-Exercise} \\ & Pass Rate & w/ Error Prop & Pass Rate & w/ Error Prop \\ \midrule Q & 13.9 & 13.9 & 13.9 & 13.9 \\ C+Q & 53.8 & 40.4 & \bfseries 81.3 & \bfseries 80.7 \\ V+Q & 52.3 & 51.5 & 73.3 & 71.1 \\ C+V+Q & \bfseries 61.4 & 52.5 & 80.7 & 80.2 \\ V+C+Q & 59.8 & \bfseries 56.8 & 78.6 & 78.6 \\ Q+V+C & 58.3 & 53.5 & 74.3 & 71.7 \\ \bottomrule \end{tabular}% } \caption{Comparison of combinations in the context. ``C'' stands for ``Code history'', ``V'' stands for ``Variable descriptions'' and ``Q'' stands for ``Query''.} \label{tab:compare-context-orders} \end{table}
1907.13634v1
\begin{table}[H] \begin{center} \small \begin{tabular}{ccc} \hline \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{1}{c|}{SketchyCoreSVD} \\ \hline \multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.3} \\ \hline \multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.0016} & \multicolumn{1}{c|}{0.0016} \\ \hline \multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{0.0097} & \multicolumn{1}{c|}{0.0062} \\ \hline \end{tabular} \caption{Performance comparisons for Navier Stokes dataset.} \end{center} \end{table}
1907.13634v1
\begin{table}[H] \begin{center} \small \begin{tabular}{ccccccc} \hline \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{1} & \multicolumn{1}{c|}{2} & \multicolumn{1}{c|}{3} & \multicolumn{1}{c|}{4} & \multicolumn{1}{c|}{5} & \multicolumn{1}{c|}{6} \\ \hline \multicolumn{1}{|c|}{SketchySVD} & \multicolumn{1}{c|}{115.3884} & \multicolumn{1}{c|}{116.2469} & \multicolumn{1}{c|}{112.3364} & \multicolumn{1}{c|}{96.8527} & \multicolumn{1}{c|}{97.7459} & \multicolumn{1}{c|}{88.7866} \\ \hline \multicolumn{1}{|c|}{SketchyCoreSVD} & \multicolumn{1}{c|}{107.3097} & \multicolumn{1}{c|}{107.2117} & \multicolumn{1}{c|}{98.2154} & \multicolumn{1}{c|}{84.5132} & \multicolumn{1}{c|}{83.6819} & \multicolumn{1}{c|}{85.8143} \\ \hline \end{tabular} \caption{Comparison of PSNR ratios for the first six left singular vectors computed on the Navier Stokes dataset, where $p=0.3$ for our SketchyCoreSVD method.} \end{center} \end{table}
1907.13634v1
\begin{table}[H] \begin{center} \small \begin{tabular}{ccccc} \hline \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{Yale Face} & \multicolumn{1}{c|}{Cardiac MRI} & \multicolumn{1}{c|}{BR1003} & \multicolumn{1}{c|}{Video} \\ \hline \multicolumn{1}{|c|}{$\mu$} & \multicolumn{1}{c|}{4.1137} & \multicolumn{1}{c|}{127.5935} & \multicolumn{1}{c|}{5.4270} & \multicolumn{1}{c|}{20.3505} \\ \hline \multicolumn{1}{|c|}{$\mu^{\prime}$} & \multicolumn{1}{c|}{5.9454} & \multicolumn{1}{c|}{159.8982} & \multicolumn{1}{c|}{5.2750} & \multicolumn{1}{c|}{22.8109} \\ \hline \multicolumn{1}{|c|}{$\nu$} & \multicolumn{1}{c|}{2.7068} & \multicolumn{1}{c|}{2.1507} & \multicolumn{1}{c|}{32.8387} & \multicolumn{1}{c|}{14.0194} \\ \hline \multicolumn{1}{|c|}{$\nu^{\prime}$} & \multicolumn{1}{c|}{4.1355} & \multicolumn{1}{c|}{2.2260} & \multicolumn{1}{c|}{57.4357} & \multicolumn{1}{c|}{6.7429} \\ \hline \end{tabular} \caption{Comparison of $(\mu,\nu)$ and $(\mu^{\prime},\nu^{\prime})$ on different datasets. The parameters $(r,k,s,p)$ for each dataset are chosen as the same values as used to show all the visual comparisons.} \end{center} \end{table}
1907.13634v1
\begin{table}[H] \begin{center} \small \begin{tabular}{ccccc} \hline \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{3}{c|}{SketchyCoreSVD} \\ \hline \multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.3} & \multicolumn{1}{c|}{0.35} & \multicolumn{1}{c|}{0.4} \\ \hline \multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.066} & \multicolumn{1}{c|}{0.0765} & \multicolumn{1}{c|}{0.0737} & \multicolumn{1}{c|}{0.0717} \\ \hline \multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{0.0239} & \multicolumn{1}{c|}{0.0134} & \multicolumn{1}{c|}{0.0146} & \multicolumn{1}{c|}{0.0166} \\ \hline \end{tabular} \caption{Performance comparisons for Yale Face dataset.} \end{center} \end{table}
1907.13634v1
\begin{table}[H] \begin{center} \small \begin{tabular}{ccccc} \hline \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{3}{c|}{SketchyCoreSVD} \\ \hline \multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.3} & \multicolumn{1}{c|}{0.35} & \multicolumn{1}{c|}{0.4} \\ \hline \multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.0019} & \multicolumn{1}{c|}{0.0021} & \multicolumn{1}{c|}{0.0021} & \multicolumn{1}{c|}{0.0019} \\ \hline \multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{0.0567} & \multicolumn{1}{c|}{0.0316} & \multicolumn{1}{c|}{0.038} & \multicolumn{1}{c|}{0.0396} \\ \hline \end{tabular} \caption{Performance comparisons for Cardiac MRI dataset.} \end{center} \end{table}
1907.13634v1
\begin{table}[H] \begin{center} \small \begin{tabular}{ccccc} \hline \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{3}{c|}{SketchyCoreSVD} \\ \hline \multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.04} & \multicolumn{1}{c|}{0.06} & \multicolumn{1}{c|}{0.08} \\ \hline \multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.0025} & \multicolumn{1}{c|}{0.0031} & \multicolumn{1}{c|}{0.0029} & \multicolumn{1}{c|}{0.0027} \\ \hline \multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{3.2049} & \multicolumn{1}{c|}{0.816} & \multicolumn{1}{c|}{1.1643} & \multicolumn{1}{c|}{1.3614} \\ \hline \end{tabular} \caption{Performance comparisons for BR1003 dataset.} \end{center} \end{table}
1907.13634v1
\begin{table}[H] \begin{center} \small \begin{tabular}{ccccc} \hline \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{3}{c|}{SketchyCoreSVD} \\ \hline \multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.1} & \multicolumn{1}{c|}{0.15} & \multicolumn{1}{c|}{0.2} \\ \hline \multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.0148} & \multicolumn{1}{c|}{0.0213} & \multicolumn{1}{c|}{0.0177} & \multicolumn{1}{c|}{0.0165} \\ \hline \multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{8.0062} & \multicolumn{1}{c|}{2.3224} & \multicolumn{1}{c|}{2.6266} & \multicolumn{1}{c|}{3.5619} \\ \hline \end{tabular} \caption{Performance comparisons for Video dataset.} \end{center} \end{table}
2103.04112v2
\begin{table}[htbp] \centering \caption{Data extraction items} \label{tab:data_items}\vspace{-5pt} \begin{tabular}{|l|l|l|} \hline \textbf{Item ID} & \textbf{Item} & \textbf{Use} \\ \hline F1 & Authors & Documentation \\ \hline F2 & Year & Documentation \\ \hline F3 & Title & Documentation \\ \hline F4 & Venue & Documentation \\ \hline F5 & Citation count & Documentation \\ \hline F6 & Quality score & RQ1-3 \\ \hline F7 & Adaptation problem & RQ1 \\ \hline F8 & Learning problem & RQ1 \\ \hline F9 & MAPE function(s) supported by learning & RQ2 \\ \hline F10 & Dimensions of learning methods & RQ2 \\ \hline F11 & Learning method(s) used to support self-adaptation & RQ2 \\ \hline F12 & Application domain & RQ1 \\ \hline F13 & Limitations & RQ3 \\ \hline F14 & Challenges & RQ3 \\ \hline \end{tabular} \vspace{5pt} \end{table}
2103.04112v2
\begin{table} \centering \caption{Venue types with the number of studies and top venues per type, and the mean values and standard deviations of the quality scores for the different venue types (i.e., data of venues with at least three papers among the selected papers; the number or papers for each top venue is specified inside brackets). } \label{tab:quality_scores} \begin{tabular}{|l|c|c|c|l|} \hline \thead{Venue Type} & \thead{\makecell{Number of \\ Studies}} & \thead{Mean \\ Quality Score} & \thead{Standard Deviation \\ Quality Score} & \thead{\makecell{Top Venues \\ (with $\geq 3$ studies)}} \\ \hline Journals & 36 & 8.6 & 1.7 & \makecell[l]{TAAS (4) \\ IEEE Access (4) \\ TSE (3) \\ Cluster Computing (3)}\\ \hline Conferences & 50 & 7.0 & 1.7 & \makecell[l]{ICAC (5) \\ SASO (3)}\\ \hline Symposia & 13 & 7.8 & 2.4 & SEAMS (8)\\ \hline Books & 4 & 8.3 & 1.0 & \\ \hline Workshops & 6 & 6.5 & 1.0 & FAS*W (4)\\ \hline\hline Overall & 109 & 7.7 & 1.9 & \\ \hline \end{tabular} \vspace{-5pt} \vspace{0pt} \end{table}
2103.04112v2
\begin{table}[htbp] \centering \caption{Application domains of the collected papers.} \label{tab:application_domains} \vspace{-5pt} \begin{tabular}{|c|c|} \hline \textbf{Application domain} & \textbf{Number} \\ \hline Cloud & 33 \\ \hline Client-server system & 18 \\ \hline Cyber-physical system & 16 \\ \hline Internet-of-things & 9 \\ \hline Service-based system & 8 \\ \hline Robotics & 7 \\ \hline Network management & 6 \\ \hline Business process management & 4 \\ \hline Remote data mirroring & 3 \\ \hline Traffic management & 3 \\ \hline Stream processing & 2 \\ \hline Grid computing & 1 \\ \hline Medical simulation & 1 \\ \hline No specific domain & 3 \\ \hline \end{tabular} \vspace{5pt} \end{table}
2103.04112v2
\begin{table}[htbp] \centering \caption{Themes of challenges with concrete focus as reported in the papers.} \vspace{-5pt} \label{tab:chal_reported} \begin{tabular}{|p{3cm}|p{10cm}|} \hline \textbf{Challenge Theme} & \textbf{Concrete Focus} \\ \hline Qualities & Scalability of learning, remove performance penalty \\ \hline Uncertainty & Monitor uncertainty, detect novelty, support open world \\ \hline Goals & Deal with changing goals, conflict of goals, new types of goals \\ \hline Guarantees & Ensure quality goals, avoid sub-optimality, support explainability \\ \hline Domain / Design & Deal with parameter tuning, transfer solutions, reusability of solution \\ \hline \end{tabular} \end{table}
2103.04112v2
\begin{table}[htbp] \centering \caption{Additional opportunities for future research driven by learning methods.} \vspace{-5pt} \label{tab:chal_additional} \begin{tabular}{|p{4cm}|p{9cm}|} \hline \textbf{Learning Method} & \textbf{Concrete Opportunities} \\ \hline Unsupervised learning & Detecting new structures in complex data, support other learning methods \\ \hline Active learning & Involve stakeholders in decision-making, reduce learning cost, increase speed of learning \\ \hline Adversarial learning & Improve rules and policies, detect anomalies \\ \hline Other learning methods & Detection of novel phenomena in environment, synchronize execution workflows in complex settings \\ \hline \end{tabular} \end{table}
2106.13485v2
\begin{table}[] % \begin{tabular}{|c|c|c|} % \hline % Model & Central charge \\\hline % $(A_{k+1}, A_k), k=3,5,7,9,11$ & $1-6/(k(k+1))$\\ \hline % $\mathbb{Z}_k$ parafermion, $k=4,6,8,10$ & $2(k-1)/(k+2)$ \\\hline % $N=1$ SCFT, $k=5,7,9,11$ & $3/2-12/(k(k+2))$ \\\hline % \end{tabular} % \caption{CFTs included in unsupervised learning.} % \label{untable} % \end{table}
2002.06306v1
\begin{table}[h!] \centering \scriptsize \sffamily \vspace{-1.5ex} \def\arraystretch{1.2} \setlength{\tabcolsep}{2pt} \begin{tabular*}{\textwidth}{|l|l||l|l|} \hhline{|--||--|} \multicolumn{2}{|c||}{\textbf{Reward Functions}} & \multicolumn{2}{c|}{\textbf{Reward Schedules}} \\ \hhline{:==::==:} \texttt{Action[$v$]} & \makecell[l]{Give $v$ to agents when they take \\ an action (i.e., not a no-op).} & \texttt{Fixed[$r$]} & \makecell[l]{The reward function is always fixed to $r$, and is \\ thus stationary.} \\ \hhline{|--||--|} \texttt{Collect[$i$,$v$]} & \makecell[l]{Give $v$ to agents for each item of \\ type $i$ that they collect.} & \texttt{Curriculum[$\{r_i,t_i\}^R_{i=1}$]} & \makecell[l]{Use reward function $r_1$ for the first $t_1$ steps, \\ then $r_2$ for $t_2$ steps, ..., and keep using $r_R$ \\ after the list of reward functions is exhausted.} \\ \hhline{|--||--|} \texttt{Explore[$v$]} & \makecell[l]{Give $v$ to agents each time they \\ move further away from their \\ starting position in the world map.} & \texttt{Cyclical[$\{r_i,t_i\}^R_{i=1}$]} & \makecell[l]{Use reward function $r_1$ for the first $t_1$ steps, \\ then $r_2$ for $t_2$ steps, ..., and then repeat \\ after the list of reward functions is exhausted.} \\ \hhline{|--||--|} \end{tabular*} \vspace{-2ex} \end{table}
1610.08664v1
\begin{table}[!ht] \tiny %\centering %\hline \begin{adjustwidth}{-2.5in}{0in} % comment out/remove adjustwidth environment if table fits in text column. \begin{tabular}{|c|c|l|c|} \hline {\bf \#} & {\bf PDB} & {\bf Ligands} & {\bf Res \AA }\\ \hline 1 & 1BM0 & N/A & 2,5\\ \hline 2 & 1E78 & N/A & 2,6\\ \hline 3 & 1E7A & 2,6-BIS(1-METHYLETHYL)PHENOL (PROPOFOL) & 2,2\\ \hline 4 & 1E7C & MYRISTIC ACID; 2-BROMO-2-CHLORO-1,1,1-TRIFLUOROETHANE & 2,4\\ \hline 5 & 1E7E & DECANOIC ACID & 2,5\\ \hline 6 & 1E7F & LAURIC ACID & 2,43\\ \hline 7 & 1E7G & MYRISTIC ACID & 2,5\\ \hline 8 & 1E7H & PALMITIC ACID & 2,43\\ \hline 9 & 1E7I & STEARIC ACID & 2,7\\ \hline 10 & 1GNI & OLEIC ACID & 2,4\\ \hline 11 & 1GNJ & ARACHIDONIC ACID & 2,6\\ \hline 12 & 1H9Z & R-WARFARIN; MYRISTIC ACID & 2,5\\ \hline 13 & 1HA2 & S-WARFARIN; MYRISTIC ACID & 2,5\\ \hline 14 & 1HK4 & 3,5,3',5'-TETRAIODO-L-THYRONINE; MYRISTIC ACID & 2,4\\ \hline 15 & 1HK5 & 3,5,3',5'-TETRAIODO-L-THYRONINE; MYRISTIC ACID & 2,7\\ \hline 16 & 1N5U & PROTOPORPHYRIN IX CONTAINING FE (HEME); MYRISTIC ACID & 1,9\\ \hline 17 & 1O9X & PROTOPORPHYRIN IX CONTAINING FE (HEME); MYRISTIC ACID & 3,2\\ \hline 18 & 1UOR & N/A & 2,8\\ \hline 19 & 2BX8 & AZAPROPAZONE & 2,7\\ \hline 20 & 2BXB & 4-BUTYL-1-(4-HYDROXYPHENYL)-2-PHENYLPYRAZOLIDINE- 3,5-DIONE (OXYPHENBUTAZONE) & 3,2\\ \hline 21 & 2BXC & 4-BUTYL-1,2-DIPHENYL-PYRAZOLIDINE-3,5-DIONE & 3,1\\ \hline 22 & 2BXD & R-WARFARIN & 3,05\\ \hline 23 & 2BXF & 7-CHLORO-1-METHYL-5-PHENYL-1,3-DIHYDRO-2H- 1,4-BENZODIAZEPIN-2-ONE & 2,95\\ \hline 24 & 2BXG & 2-(4-ISOBUTYLPHENYL)PROPIONIC ACID (IBUPROFEN) & 2,7\\ \hline 25 & 2BXI & AZAPROPAZONE; MYRISTIC ACID & 2,5\\ \hline 26 & 2BXK & INDOMETHACIN; AZAPROPAZONE; MYRISTIC ACID & 2,4\\ \hline 27 & 2BXL & 2-HYDROXY-3,5-DIIODO-BENZOIC ACID; MYRISTIC ACID & 2,6\\ \hline 28 & 2BXM & INDOMETHACIN; MYRISTIC ACID & 2,5\\ \hline 29 & 2BXN & 3-[5-[(3-CARBOXY-2,4,6-TRIIODO-PHENYL)CARBAMOYL]PENTANOYLAMINO]- 2,4,6-TRIIODO-BENZOIC ACID; MYRISTIC ACID & 2,65\\ \hline 30 & 2BXO & 4-BUTYL-1-(4-HYDROXYPHENYL)-2-PHENYLPYRAZOLIDINE- 3,5-DIONE (OXYPHENBUTAZONE); MYRISTIC ACID & 2,6\\ \hline 31 & 2BXP & 4-BUTYL-1,2-DIPHENYL-PYRAZOLIDINE-3,5-DIONE; MYRISTIC ACID & 2,3\\ \hline 32 & 2BXQ & INDOMETHACIN; 4-BUTYL-1,2-DIPHENYL-PYRAZOLIDINE-3,5-DIONE; MYRISTIC ACID & 2,6\\ \hline 33 & 2I2Z & MYRISTIC ACID; 2-HYDROXYBENZOIC ACID (SALICYLIC ACID) & 2,7\\ \hline 34 & 2I30 & MYRISTIC ACID; 2-HYDROXYBENZOIC ACID (SALICYLIC ACID) & 2,9\\ \hline 35 & 2XSI & DANSYL-L-GLUTAMATE; MYRISTIC ACID & 2,7\\ \hline 36 & 2XVV & DANSYL-L-ASPARAGINE; MYRISTIC ACID & 2,4\\ \hline 37 & 2XVW & DANSYL-L-ARGININE; MYRISTIC ACID & 2,65\\ \hline 38 & 3B9L & 3'-AZIDO-3'-DEOXYTHYMIDINE (AZIDOTHYMIDINE); MYRISTIC ACID & 2,6\\ \hline 39 & 3B9M & 3'-AZIDO-3'-DEOXYTHYMIDINE (AZIDOTHYMIDINE); MYRISTIC ACID; 2-HYDROXYBENZOIC ACID (SALICYLIC ACID) & 2,7\\ \hline 40 & 3CX9 & (2S)-3-{[(R)-(2-AMINOETHOXY)(HYDROXY)PHOSPHORYL]OXY}- 2-HYDROXYPROPYL HEXADECANOATE; MYRISTIC ACID & 2,8\\ \hline 41 & 3JRY & SULFATE ION & 2,3\\ \hline 42 & 3LU6 & [(1R,2R)-2-{[(5-FLUORO-1H-INDOL-2-YL)CARBONYL]AMINO}- 2,3-DIHYDRO-1H-INDEN-1-YL]ACETIC ACID & 2,7\\ \hline 43 & 3LU7 & 4-[(1R,2R)-2-{[(5-FLUORO-1H-INDOL-2-YL)CARBONYL]AMINO}- 2,3-DIHYDRO-1H-INDEN-1-YL]BUTANOIC ACID; PHOSPHATE ION & 2,8\\ \hline 44 & 3SQJ & MYRISTIC ACID & 2,05\\ \hline 45 & 3UIV & MYRISTIC ACID; (3S,5S,7S)-TRICYCLO[3.3.1.1~3,7~]DECAN-1- AMINE (AMANTADINE) & 2,2\\ \hline 46 & 4BKE & PALMITIC ACID & 2,35\\ \hline 47 & 4G03 & N/A & 2,22\\ \hline 48 & 4G04 & N/A & 2,3\\ \hline 49 & 4IW2 & ALPHA-D-GLUCOSE; D-GLUCOSE IN LINEAR FORM; PHOSPHATE ION & 2,41\\ \hline 50 & 4K2C & N/A & 3,23\\ \hline 51 & 4L8U & (2S)-2-[1-AMINO-8-(HYDROXYMETHYL)-9-OXO-9,11- DIHYDROINDOLIZINO[1,2-B]QUINOLIN-7-YL]-2- HYDROXYBUTANOIC ACID; MYRISTIC ACID & 2,01\\ \hline 52 & 4L9K & (2S)-2-HYDROXY-2-[8-(HYDROXYMETHYL)-9-OXO- 9,11-DIHYDROINDOLIZINO[1,2-B]QUINOLIN-7-YL]BUTANOIC ACID & 2,4\\ \hline 53 & 4L9Q & TENIPOSIDE & 2,7\\ \hline 54 & 4LA0 & R-BICALUTAMIDE & 2,4\\ \hline 55 & 4LB2 & IDARUBICIN & 2,8\\ \hline 56 & 4LB9 & ETOPOSIDE; MYRISTIC ACID & 2,7\\ \hline 57 & 4Z69 & 2-[2,6-DICHLOROPHENYL)AMINO]BENZENEACETIC ACID (DICLOFENAC); PALMITIC ACID; PENTADECANOIC ACID & 2,19\\ \hline 58 & 5IFO & MYRISTIC ACID; RUTHENIUM ION & 3,2\\ \hline \end{tabular} \caption*{{\bf Supplementary Table 1.} Ligands, resolution and literature references of the HSA dataset.} \end{adjustwidth} \end{table}
1610.08664v1
\begin{table}[!ht] \scriptsize \centering %\hline \begin{adjustwidth}{-0.75in}{0in} \begin{tabular}{|c|c|c|c|c|c|} \hline \# & PDB & bound fatty acids & Qh tree & RMSD Tree & RCA cluster \\ \hline 1 & 1BM0 & no & A & A & A \\ \hline 2 & 1E78 & no & A & A & A \\ \hline 3 & 1E7A & no & A & A & A \\ \hline 4 & 1E7C & yes & B & B & B \\ \hline 5 & 1E7E & yes & B & B & B \\ \hline 6 & 1E7F & yes & B & B & B \\ \hline 7 & 1E7G & yes & B & B & B \\ \hline 8 & 1E7H & yes & B & B & B \\ \hline 9 & 1E7I & yes & B & B & B \\ \hline 10 & 1GNI & yes & B & B & B \\ \hline 11 & 1GNJ & yes & B & B & B \\ \hline 12 & 1H9Z & yes & B & B & B \\ \hline 13 & 1HA2 & yes & B & B & B \\ \hline 14 & 1HK4 & yes & B & B & B \\ \hline 15 & 1HK5 & yes & B & B & B \\ \hline 16 & 1N5U & yes & B & B & B \\ \hline 17 & 1O9X & yes & B & B & B \\ \hline 18 & 1UOR & no & A & A & A \\ \hline 19 & 2BX8 & no & A & A & A \\ \hline 20 & 2BXB & no & A & A & A \\ \hline 21 & 2BXC & no & A & A & A \\ \hline 22 & 2BXD & no & A & A & A \\ \hline 23 & 2BXF & no & A & A & A \\ \hline 24 & 2BXG & no & A & A & A \\ \hline 25 & 2BXI & yes & B & B & B \\ \hline 26 & 2BXK & yes & B & B & B \\ \hline 27 & 2BXL & yes & B & B & B \\ \hline 28 & 2BXM & yes & B & B & B \\ \hline 29 & 2BXN & yes & B & B & B \\ \hline 30 & 2BXO & yes & B & B & B \\ \hline 31 & 2BXP & yes & B & B & B \\ \hline 32 & 2BXQ & yes & B & B & B \\ \hline 33 & 2I2Z & yes & B & B & B \\ \hline 34 & 2I30 & yes & B & B & B \\ \hline 35 & 2XSI & yes & B & B & B \\ \hline 36 & 2XVV & yes & B & B & B \\ \hline 37 & 2XVW & yes & B & B & B \\ \hline 38 & 3B9L & yes & B & B & B \\ \hline 39 & 3B9M & yes & B & B & B \\ \hline 40 & 3CX9 & yes & B & B & B \\ \hline 41 & 3JRY & no & A & A & A \\ \hline 42 & 3LU6 & no & A & A & A \\ \hline 43 & 3LU7 & no & A & A & A \\ \hline 44 & 3SQJ & yes & B & B & B \\ \hline 45 & 3UIV & yes & B & B & B \\ \hline 46 & 4BKE & yes & B & B & B \\ \hline 47 & 4G03 & no & A & A & A \\ \hline 48 & 4G04 & no & A & A & A \\ \hline 49 & 4IW2 & no & A & A & A \\ \hline 50 & 4K2C & no & A & A & A \\ \hline 51 & 4L8U & yes & B & B & B \\ \hline 52 & 4L9K & no & A & A & A \\ \hline 53 & 4L9Q & no & A & A & A \\ \hline 54 & 4LA0 & no & A & A & A \\ \hline 55 & 4LB2 & no & A & A & A \\ \hline 56 & 4LB9 & yes & B & B & B \\ \hline 57 & 4Z69 & yes & B & B & B \\ \hline 58 & 5IFO & yes & B & B & B \\ \hline \end{tabular} \caption*{{\bf Supplementary Table 2.} HSA dataset clusters.} \end{adjustwidth} \end{table}
2403.16451v4
\begin{table} \caption{Machining Configuration of Datasets} \begin{center} \begin{tabular}{|c|c|c|c|c|} \hline \multirow{2}{*}{ Dataset } & \multirow{2}{*}{ Spindle RPM } & Feed Rate & \# of Configuration \\ & & (mm/rev) & Changes \\ \hline WC\_AO-MS & 1100 to 2700 & [0.25,0.1] & 14 \\ \hline WC\_TAN-MS & 1600 to 2200 & [0.25,0.12] & 2 \\ \hline WC\_TC-AS & 1000 to 2100 & [0.12,0.25] & 3 \\ \hline \end{tabular} \end{center} \end{table}
2403.16451v4
\begin{table} \caption{Train/Test Split of Pre-trained Datasets} \begin{center} \begin{tabular}{|c|c|c|c|c|} \hline \multirow{2}{*}{ Dataset } & Train & Test & Total \\ & (\#Workpieces) & (\#Workpieces) & (\#Workpieces) \\ \hline WC\_AO-MS & \multirow{2}{*}{ 277[$277$] } & \multirow{2}{*}{ 70[70] } & \multirow{2}{*}{ 347 } \\ (Random) & & & \\ \hline WC\_AO-MS & \multirow{2}{*}{ 281[$277$,2,2] } & \multirow{2}{*}{ 66[11,7,48] } & \multirow{2}{*}{ 347 } \\ (Sequential) & & & \\ \Xhline{1pt} \end{tabular} \end{center} \label{table:Datasets1} \end{table}
2403.16451v4
\begin{table} \caption{Train/Test Split of Adapted Datasets} \begin{center} \begin{tabular}{|c|c|c|c|c|} \hline \multirow{2}{*}{ Dataset } & Train & Test & Total \\ & (\#Workpieces) & (\#Workpieces) & (\#Workpieces) \\ \hline WC\_TAN-MS & 4[2,2] & 83[37,46] & 87 \\ \hline WC\_TC-AS & 6[2,2,2] & 28[5,2,19] & 34 \\ \hline \end{tabular} \end{center} \label{table:Datasets2} \end{table}
2005.10966v2
\begin{table}[h] \small \begin{tabular}{|r|p{1.08in}|p{1.08in}|p{1.08in}|p{1.08in}|} \hline Name & Barrier Condition & Knocked-in Instrument Rebate & Knocked-In Instrument Value & Final Payoff if not Breached \\ \hline \hline Up-and-Out Call & $S_t \geq U_t$ (Upper Barrier Position) & $G_t$ & $0$ & $\max(S_T-K,0)$ \\ \hline Down-and-Out Call & $S_t \leq L_t$ (Lower Barrier Position) & $G_t$ & $0$ & $\max(S_T-K,0)$ \\ \hline Up-and-In Call & $S_t \geq U_t$ (Upper Barrier Position) & $0$ & $V(S_t, K, T-t)$ & $0$ \\ \hline Down-and-In Call & $S_t \leq L_t$ (Lower Barrier Position) & $0$ & $V(S_t, K, T-t)$ & $0$ \\ \hline \end{tabular} \caption{Summary of basic barrier Call instruments} \label{table:barriervariants} \end{table}
2005.10966v2
\begin{table} \centering \begin{tabular}{|r|l|l|l|l|} \hline $\sigma$ & $r$ & $T$ & $B$ (Barrier Position) & $K$ (Strike) \\ \hline \hline 0.2 &0.05 & 0.5 Years &150.0 & 100.0 \\ \hline \end{tabular} \caption{Parameters for the $X$ dynamics, the generator, and the instruments} \label{table:rfmodel} \end{table}
2304.03691v1
\begin{table} \caption{Details of the composed traffic dataset} \begin{tabular}{|l|l|l|} \hline \textbf{No.} & \textbf{Malicious Traffic types} & \textbf{Encrypted Session} \\ \hline 1 & Ammyy & 14245 \\ \hline 2 & Artemis Trojan & 10246 \\ \hline 3 & Barys & 19438 \\ \hline 4 & Bunitu Botnet & 8060 \\ \hline 5 & Bunitu Botnet (Stripped) & 5560 \\ \hline 6 & Caphaw/Kazy & 24948 \\ \hline 7 & Cerber Ransomware & 26253 \\ \hline 8 & Dridex & 6225 \\ \hline 9 & HPEmotet & 13736 \\ \hline 10 & HtBot & 10606 \\ \hline 11 & Miuref & 4634 \\ \hline 12 & omQUd & 11257 \\ \hline 13 & PUA.Taobao & 11341 \\ \hline 14 & Ransom.Locky & 26960 \\ \hline 15 & Razy & 3207 \\ \hline 16 & Sathurbot & 1361 \\ \hline 17 & TrickBot & 8752 \\ \hline 18 & Trickster & 11644 \\ \hline 19 & Trojan.Banker & 9296 \\ \hline 20 & Trojan.Yakes & 1820 \\ \hline 21 & TrojanDownloader & 3015 \\ \hline 22 & Upatre & 1251 \\ \hline 23 & Ursnif & 10552 \\ \hline 24 & Vawtrak & 26632 \\ \hline 25 & WisdomEyes & 24228 \\ \hline 26 & Zbot with others & 11062 \\ \hline & \textbf{Summary} & \textbf{306329} \\ \hline \hline \textbf{No.} & \textbf{Benign Datasets} & \textbf{Encrypted Session} \\ \hline 1 & CIRA-CIC-DoHBRW-2020 & 105524 \\ \hline 2 & \begin{tabular}[c]{@{}l@{}}Benign Capture and\\Mixture Capture\end{tabular} & 79619 \\ \hline 3 & CICIDS-2017 & 92975 \\ \hline 4 & CICIDS-2012 & 26209 \\ \hline & \textbf{Summary} & \textbf{304327} \\ \hline \end{tabular} \end{table}
2210.12090v1
\begin{table}[] \resizebox{\textwidth}{!}{ \begin{tabular}{l|lllll} \toprule \textbf{Pipeline Stage} & \multicolumn{5}{c}{\textbf{Algorithm (No. Hyperparameters Optimized by {\proposed})}} \\ \midrule \midrule \textbf{Imputation} & HyperImpute & Mean (0) & Median (0) & Most-Frequent (0) & MissForest (2) \\ & (M)ICE (0) & SoftImpute (2) & EM (1) & Sinkhorn (6) & None (0) \\ \midrule \textbf{Dimensionality} & Fast ICA (1) & Feat. Agg. (1) & Gauss. Rand. Proj. (1) & PCA (1) & Var. Thresh. (0) \\ \textbf{Reduction} & & & & & \\ \midrule \textbf{Feature} & L2 Norm. (0) & Max (0) & MinMax (0) & Normal Trans. (0) & Quant. Trans. (0) \\ \textbf{Scaling} & Unif. Trans. (0) & None (0) & & & \\ \midrule \textbf{Classification} & ADABoost (3) & Bagging (4) & Bernoulli NB (1) & CatBoost (2) & Decision Tree (1) \\ & ExtraTree (1) & Gauss. NB (0) & Grad. Boost. (3) & Hist. Grad. Boost. (2) & KNN (4) \\ & LDA (0) & Light GBM (6) & Linear SVM (1) & Log. Reg. (4) & Multi. NB (1) \\ & Neural Net. (6) & Perceptron (2) & QDA (0) & Random Forest (5) & Ridge Class. (1) \\ & TabNet (8) & XGBoost (11) & & & \\ \midrule \textbf{Regression} & Bayesian RR (1) & CatBoost (2) & Linear (0) & MLP (0) & Neural Net. (6) \\ & TabNet (8) & XGBoost (2) & & & \\ \midrule \textbf{Survival} & Cox PH (2) & CoxNet (6) & DeepHit (7) & LogLogistic AFT (1) & LogNorm. AFT (2) \\ \textbf{Analysis} & Surv. XGB (4) & Weibull AFT (2) & & & \\ \midrule \textbf{Interpretability} & INVASE & KernelSHAP & LIME & Effect Size & Shap Permutation \\ & SimplEx & Symb. Persuit & & & \\ \bottomrule \end{tabular} } \caption{List of algorithms currently included in {\proposedf}, grouped by pipeline stage. Numbers in brackets correspond to the number of hyperparameters optimized over by {\proposed}. {\proposed} is readily extendable to additional methods, algorithms, and hyperparameters.} \label{tbl:algorithms} \end{table}
1405.1116v1
\begin{table} \centering %\resizebox{22em}{!} { %\begin{tabular}{|c|>{\raggedright\hspace{0pt}}p{7em}|>{\raggedright\hspace{0pt}}p{7em}|>{\raggedright\hspace{0pt}}p{8em} l|} %\begin{tabularx}{\columnwidth}{|c|m{3mm}|p|p|} \begin{tabularx}{25em}{|c|X|X|X|} \hline \bfseries n & \bfseries CFG nodes \newline \scriptsize \normalfont (mCODE\_n/CODE\_n) & \bfseries Variables & \bfseries Analysis Time (s) \newline \scriptsize \normalfont (mCODE\_n/CODE\_n) \\ \hline \hline 1& 235 / 117 & 107 & 0.4 / 0.3 \\ 2& 463 / 231 & 211 & 1.3 / 0.7 \\ 3& 919 / 459 & 419 & 4.9 / 2.5 \\ 4& 1831 / 915 & 835 & 22.8 / 10.3 \\ % 4& %1259 / 670 & %91?? / 106 & %23.3 / 12.0 & % \\ \hline \end{tabularx} %} \\ \medskip \caption{The evaluation results.} \label{table:evalresults} \vspace{-3pt} \end{table}
1704.00683v1
\begin{table}[h] \caption{Sample 7-dimensional data. Finding the largest 7-dimensional hole is not intuitive.} \centering \begin{tabular}{| c | c | c | c | c | c | c |} \hline \textbf{ID} & \textbf{Age} & \textbf{GPA} & \textbf{Gender} & \textbf{Height} & \textbf{Weight} & \textbf{Income}\\ \hline 1 & 20 & 3.6 & male & 60in. & 170lb & \$100,000\\ \hline 2 & 19 & 4.0 & female & 75in. & 160lb & \$20,000\\ \hline 3 & 21 & 3.7 & female & 71in. & 250lb & \$94,000\\ \hline 4 & 26 & 3.4 & female & 62in. & 150lb & \$112,000\\ \hline \end{tabular} \label{tbl:Sample} \end{table}
1704.00683v1
\begin{table}[htb] \centering \caption{Execution Time} \label{validity-table} \begin{tabular}{|l|l|l|} \hline data set & Liu's algorithm (s) & Our algorithm (s)\\ \hline 1 & 3.845 & 0.077 \\ \hline 2 & 521.426 & 97.46 \\ \hline 3 & 1523.75 & 0.44 \\ \hline 4 & 19916.4 & 3.6 \\ \hline \end{tabular} \end{table}
1704.00683v1
\begin{table}[h] \caption{Summary of 39 dimensional data. Upper-case three-letter combinations refer to the 20 naturally occurring amino acids. } \centering \begin{tabular}{|p{1.2cm}|p{6.5cm}|} \hline \textbf{Dimension(s)} & \textbf{Description} \\ \hline 1-7 & \textbf{Biological Data, Number of :} atoms, total bonds, hydrogen bonds, single covalent bonds, double covalent bonds, hydrophobic interactions, resonance bonds \\ \hline 8-28 & \textbf{Residue Data, Number of :} total residues, ALA, ARG, ASN, ASP, CYS, GLN, GLU, GLY, HIS, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TRP, TYR, VAL \\ \hline 29-33 & \textbf{Rigidity Properties, Number of :} Hinges, Bodies, Degrees of Freedom (DOF), size of largest rigid cluster, average cluster size \\ \hline 34, 35 & \textbf{Largest Cavity :} Surface Area in \AA$^2$, number of residues \\ \hline 36, 37 & \textbf{Second Largest Cavity :} Surface Area in \AA$^2$, number of residues \\ \hline 38, 39 & \textbf{Third Largest Cavity :} Surface Area in \AA$^2$, number of residues \\ \hline \end{tabular} \label{tbl:39metrics} \end{table}
1801.08881v5
\begin{table} \caption{Relationship between the optimality criteria of different algorithms. } \label{table-criteria} \begin{center} \begin{threeparttable} { \begin{tabular}{lll} \headrow \thead{CorrCA} & \thead{LDA} & \thead{JD} \\ $\rho=\frac{1}{N-1}\frac{{\bf v}^\top {\bf R}_B {\bf v}}{{\bf v}^\top {\bf R}_W {\bf v}}$ \hspace{1.5cm} & $S=\frac{{\bf v}^\top {\bf S}_B {\bf v}}{{\bf v}^\top {\bf S}_W {\bf v}} \stackrel{*}{=} \frac{\rho+(N-1)^{-1}}{1-\rho}$ \hspace{1.5cm} & $\frac{{\bf v}^\top {\bf S}_B {\bf v}}{{\bf v}^\top {\bf S}_T {\bf v}}\stackrel{*}{=}(N-1)\rho + 1$ \hspace{1.5cm} \\ \hline \end{tabular} } \begin{tablenotes} \item $\rho$: inter-subject correlation, $S$: class-separation. * assuming zero-mean signals, or unbiased raters (${\bf S}_M=0$). \end{tablenotes} \end{threeparttable} \end{center} \end{table}
2002.06163v6
\begin{table}[t] \centering \scriptsize % \vspace{-0.7em} \begin{tabular}{|l|c|c|c|} \hline \textbf{} & \textbf{$\phi_1$} & \textbf{$\phi_1+\phi_2$} & \textbf{$\phi_1+\phi_2+\phi_3$} \\ \hline Full cleaning & 51 sec & 49 sec & 118 sec \\ \hline \system & 49 sec & 40 sec & 92 sec\\ \hline Holoclean & 1020 sec & 1108 sec & 1188 sec \\ \hline \end{tabular} \caption{Response time when increasing number of rules. } \label{tab:hospital_time} \vspace{-2em} \end{table}
2002.06163v6
\begin{table}[t] \centering \scriptsize % \vspace{-0.7em} \begin{tabular}{|l|c|c|c|c|} \hline \textbf{} & \textbf{$\phi_1$} & \textbf{$\phi_1+\phi_2$} & \textbf{$\phi_1+\phi_2+\phi_3$} & Total\\ \hline \system (3 executions) & 51 sec & 49 sec & 118 sec & 218 sec\\ \hline \system (1 execution) & 51 sec& 41 sec& 40 sec& 132 sec\\ \hline Holoclean & 1020 sec & 1108 sec & 1188 sec & 3316 sec\\ \hline \end{tabular} \caption{Response time when increasing the number of rules. \system maintains provenance information and updates the probabilistic data based on the new rule without having to execute the task from scratch.} \label{tab:hospital_time_incr} \vspace{-1.5em} \end{table}
2002.06163v6
\begin{table}[t] \centering \scriptsize \begin{tabular}{|l|c|c|} \hline \textbf{Dataset} & \textbf{\system} & \textbf{Offline}\\ \hline %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ADD%%%%%%%%%%%%%%%%%%%% Nestle (20MB) & 2.9 min & 3.97 min\\ \hline Nestle (200MB) & 26.8 min & 8.5 hours\\ \hline Air quality 30\% & 10.5 min & - \\ \hline Air quality 97\% & 49 min & - \\ \hline \end{tabular} \caption{Response time on realistic scenarios. } \label{tab:real} \vspace{-2.4em} \end{table}
2002.06163v6
\begin{table}[t] \footnotesize \begin{center} \begin{tabular}{|c|c|c|} \hline \textbf{Name} & \textbf{Zip} & \textbf{City}\\ \hline Jon & 9001 & Los Angeles\\ \hline Jim & 9001 & San Francisco\\ \hline Mary & 10001 & New York\\ \hline Jane & 10002 & New York\\ \hline \end{tabular} % \vspace{-1.em} \caption{Employees dataset.} \label{tab:employees} \vspace{-3em} \end{center} \end{table}
2002.06163v6
\begin{table}[t] \centering \footnotesize \begin{tabular}{|c|c|} \hline \textbf{Zip} & \textbf{City}\\ \hline \pbox{10cm}{9001} & \pbox{10cm}{Los Angeles, 67\% San Francisco, 33\%} \\ \hline % \pbox{10cm}{9001, (a,100\%) (b,50\% )\\10001, (b,50\%)} & \pbox{10cm}{Los Angeles, (a,67\%)\\ San Francisco, (a, 33\%) (b, 50\%)}\\ \pbox{20cm}{9001} & \pbox{20cm}{Los Angeles, 67\% San Francisco, 33\%}\\ \hdashline \pbox{20cm}{9001 50\%, 10001 50\%} & \pbox{20cm}{San Francisco}\\ \hline \pbox{20cm}{9001} & \pbox{20cm}{Los Angeles, 67\% San Francisco, 33\%}\\ \hline 10001 & \pbox{20cm}{San Francisco, 50\% New York, 50\%}\\ \hdashline \pbox{20cm}{9001 50\%, 10001 50\%} & \pbox{20cm}{San Francisco}\\ \hline \end{tabular} % \subcaption{Accurate version of the query answer.} % \label{tab:correct_answer} % \end{minipage} \caption{Correct query result given condition on the \textit{lhs}. The query result becomes accurate after traversing the dataset again to fetch more correlated entities.} \label{tab:correct_lhs_answer} \vspace{-2em} \end{table}
2002.06163v6
\begin{table}[t] \begin{minipage}{.22\textwidth} \centering \footnotesize \begin{tabular}{c|c|c|} \cline{2-3} &\textbf{Zip} & \textbf{City}\\ \cline{2-3} t1 & 9001 & Los Angeles\\ \cline{2-3} t2 & 9001 & San Francisco\\ \cline{2-3} t3 & 10001 & San Francisco\\ \cline{2-3} \end{tabular} \subcaption{Cities dataset.} \label{tab:R_rel} \end{minipage} % \quad \begin{minipage}{.22\textwidth} \centering \footnotesize \begin{tabular}{|c|c|c|} \hline \textbf{Zip} & \textbf{Name} & \textbf{Phone}\\ \hline 9001 & Peter & 23456 \\ \hline 10001 & Mary & 12345 \\ \hline 10002 & Jon & 12345 \\ \hline \end{tabular} \subcaption{Employee dataset.} \label{tab:S_rel} \end{minipage} \begin{minipage}{0.4\textwidth} \centering \footnotesize \begin{tabular}{|c|c|} \hline \textbf{Zip} & \textbf{Name}\\ \hline 9001 & Peter \\ \hline % 9001 & Peter \\ % \hline \end{tabular} \subcaption{Dirty version of the join result.} \label{tab:join_dirty} \end{minipage} \quad \begin{minipage}{0.15\textwidth} % \centering \footnotesize \begin{tabular}{|c|} \hline \textbf{Zip}\\ \hline \pbox{20cm}{9001}\\ \hline \pbox{20cm}{9001, 50\%\\10001, 50\%}\\ \hline \end{tabular} \subcaption{Relaxed result of Select Operator over Cities.} \label{tab:join_it1} \end{minipage} \begin{minipage}{0.3\textwidth} \centering \footnotesize \begin{tabular}{|c|c|c|} \hline \textbf{C.Zip} & \textbf{E.Zip} & \textbf{Name}\\ \hline \pbox{20cm}{9001} & 9001 & Peter \\ \hline \pbox{20cm}{9001, 50\%\\10001, 50\%} & 9001 & Peter \\ \hline \pbox{20cm}{9001, 50\%\\10001, 50\%} & \pbox{20cm}{10001, 50\%\\10002, 50\%} & Mary \\ \hline \pbox{20cm}{9001, 50\%\\10001, 50\%} &\pbox{20cm}{10001, 50\%\\10002, 50\%} & Jon \\ \hline \end{tabular} \subcaption{Clean join result.} \label{tab:join_it2} \end{minipage} \caption{Join operation over two tables that involve violations on the join key. } \label{tab:join_ex} \vspace{-1.7em} \end{table}
2004.00503v1
\begin{table}[!h] \renewcommand{\arraystretch}{1.3} \centering \caption{Binary class Twitter data samples.} \label{Tab:1} \scalebox{1.1}{\begin{tabular}{|l|l|l|} \hline \textbf{Data set} & \textbf{Relevant} & \textbf{Irrelevant} \\ \hline \textbf{Train} & 11,781 & 5,313 \\ \hline \textbf{Test} & 2,989 & 1,285 \\ \hline \end{tabular}} \end{table}
2004.00503v1
\begin{table}[!h] \renewcommand{\arraystretch}{1.3} \centering \caption{Multiclass Twitter data samples.} \label{Tab:2} \scalebox{1.1}{\begin{tabular}{|l|c|c|} \hline \textbf{Category} & \textbf{Train data set} & \textbf{Test data set} \\ \hline \textbf{Vulnerability} & 5,926 & 1,428 \\ \hline \textbf{Ransomware} & 2,549 & 654 \\ \hline \textbf{DDoS} & 1,776 & 469 \\ \hline \textbf{Data leak} & 106 & 30 \\ \hline \textbf{General} & 5,588 & 1,410 \\ \hline \textbf{Day} & 585 & 145 \\ \hline \textbf{Botnet} & 564 & 138 \\ \hline \end{tabular}} \end{table}
2004.00503v1
\begin{table}[!h] \renewcommand{\arraystretch}{1.3} \centering \caption{Average performance metrics.} \label{Tab:5} \begin{tabular}{|l|l|l|l|l|} \hline \textbf{Model} & \textbf{Accuracy (\%)} & \textbf{Precision (\%)} & \textbf{ Recall (\%)} & \textbf{F1-Score (\%)} \\ \hline \multicolumn{5}{|c|}{\textbf{Binary class classification}} \\ \hline SVM-TDM & 81.9 & 68.8 & 72.8 & 70.7 \\ \hline SVM-TF-IDF & 82.2 & 69.2 & 73.6 & 71.3 \\ \hline DNN-3gram & 82.9 & 73.5 & 67.6 & 70.4 \\ \hline CNN-Keras word embedding \cite{12} & 83.6 & 71.4 & 75.9 & 73.6 \\ \hline RNN-Keras word embedding & 83.1 & 71.7 & 72.1 & 71.9 \\ \hline LSTM-Keras word embedding & 84.3 & 70.1 & 83.1 & 76.0 \\ \hline GRU-Keras word embedding & 84.7 & 73.9 & 76.0 & 74.9 \\ \hline \textbf{CNN-GRU-Keras word embedding} &\textbf{85.8} &\textbf{ 73.7 } & \textbf{82.3} &\textbf{77.8 } \\ \hline fastText & 84.4 & 74.6 & 73.2 & 73.9 \\ \hline \multicolumn{5}{|c|}{\textbf{Multiclass classification}} \\ \hline SVM-TDM & 86.2 & 86.2 & 86.2 & 86.2 \\ \hline SVM-TF-IDF & 86.3 & 86.4 & 86.3 & 86.3 \\ \hline DNN-3gram & 86.9 & 87.0 & 86.9 & 86.9 \\ \hline CNN-Keras word embedding \cite{12} & 87.5 & 87.8 & 87.5 & 87.6 \\ \hline RNN-Keras word embedding & 87.0 & 87.1 & 87.0 & 87.0 \\ \hline LSTM-Keras word embedding & 88.0 & 88.1 & 88.0 & 88.0 \\ \hline GRU-Keras word embedding & 88.4 & 88.8 & 88.4 & 88.5 \\ \hline \textbf{CNN-GRU-Keras word embedding} & \textbf{89.3} & \textbf{90.3} & \textbf{89.3} & \textbf{89.3} \\ \hline fastText & 87.9 & 88.0 & 87.9 & 87.9 \\ \hline \end{tabular} \end{table}
2308.16491v1
\begin{table}[t] \centering \renewcommand{\arraystretch}{1.5} % Default value: 1 \begin{tabular}{l|l} \multicolumn{2}{l}{\textbf{Control paper of the same type as replicated}} \\ \midrule H4a: Expected time & 1.73 hour increase ($p=0.0129$). \\ & Pre-test: $M=8.81$, post-test: $M=10.54$. \\ \hline H4b: Expected level of challenge & Difference not significant (p=0.836). \\ \hline H4c: Expected distribution & Significant disturbance in the ranking ($p<10^{-307}$).\\ & Wrangling: +0.36, Analysis: -0.04, Interpretation: -0.32. \\ \hline H4d: Expected outcomes & Difference not significant ($p=0.0804$). \\ \toprule \multicolumn{2}{l}{\textbf{Control paper of a different type than replicated}} \\ \midrule H4a: Expected time & 2.07 hour increase ($p=0.000434$).\\ & Pre-test: $M=8.75$, post-test: $M=10.82$. \\ \hline H4b: Expected level of challenge & Difference not significant (p=0.161). \\ \hline H4c: Expected distribution & Significant disturbance in the ranking ($p<10^{-307}$). \\ & Wrangling: +0.37, Analysis: -0.07, Interpretation: -0.31. \\ \hline H4d: Expected outcomes & Difference not significant ($p=0.0841$). \end{tabular} \caption{\textbf{Spillover effects: Modified expectations regarding papers that students did not replicate (H4).} Summary of the results comparing pre- and post-replication expectations, across the four hypotheses (H4a--H4c), for the two types of control papers that were not replicated.} \label{tab:h4} \end{table}
2012.03661v1
\begin{table}[h] \begin{tabular}{|lp{2.2cm}|p{4.4cm}|p{4.4cm}|} \hline \multicolumn{2}{|l|}{Task characteristic} & Attributes & This work \\ \hline \multicolumn{1}{|c|}{} & Data type & e.g. numeric data, binary data & binary data \\ \cline{2-4} \multicolumn{1}{|c|}{Input} & Data representation & e.g. table, picture, audio & picture (humans), table (machines) \\ \hline \multicolumn{2}{|c|}{Output} & classification, regression & binary classification \\ \hline \multicolumn{2}{|c|}{Instances} & number of instances & 5 to 50 \\ \hline \multicolumn{2}{|c|}{Features} & number of features & 9 features \\ \hline \end{tabular} \caption{Overview of the task characteristics of interest and their implementation in this work} \label{tab:characteristics} \end{table}
2012.03661v1
\begin{table}[htbp] \centering \begin{tabular}{|l|l|c|} \hline & P-value & Significance \\ \hline Sessions & 0.1769 & Not significant \\ \hline Rules & $1.0\mathrm{e}{-13}$ & $***$ \\ \hline Instances & $6.6\mathrm{e}{-29}$ & $***$ \\ \hline Games & 0.0002 & $***$ \\ \hline \end{tabular} \caption{ANOVA results for session, rules, instances, and games. Significance is depicted with three different levels of statistical significance ($* \ \widehat{=} \ p<0.05$, $** \ \widehat{=} \ p<0.01$, $*** \ \widehat{=} \ p<0.001$), represented with one, two, or three stars.} \label{tab:humananova} \end{table}
1909.09908v1
\begin{table}[h!t] \renewcommand{\arraystretch}{1} %\vspace{-10pt} \centering \begin{tabular}{|c|c|c|} \hline & \textbf{\#Nodes} & \textbf{\#Edges} \\ \hline \textbf{American} & 270 & 746 \\ \hline \textbf{Southwest} & 270 & 717 \\ \hline \textbf{Delta} & 270 & 688 \\ \hline \textbf{Frontier} & 270 & 346 \\ \hline \textbf{Spirit} & 270 & 189 \\ \hline \textbf{Allegient} & 270 & 379 \\ \hline \end{tabular} \caption{US Airline HoMLN Statistics} \label{table:USAirlineHoMLNStats} %\vspace{-10pt} \end{table}
1909.09908v1
\begin{table}[h!t] \renewcommand{\arraystretch}{1} %\vspace{-10pt} \centering \begin{tabular}{|c|c|c|c|} \hline & \textbf{Co-Acting} & \textbf{Genre} & \textbf{AvgRating} \\ \hline \textbf{\#Nodes} & 9485 & 9485 & 9485 \\ \hline \textbf{\#Edges} & 45,581 & 996,527 & 13,945,912 \\ \hline \textbf{\#Communities} & 2246 & 63 & 8 \\ \hline \textbf{Avg. Community Size} & 4.2 & 148.5 & 1185.6 \\ \hline \end{tabular} \caption{IMDB HoMLN Statistics} \label{table:IMDbHoMLNStats} %\vspace{-10pt} \end{table}
1909.09908v1
\begin{table}[h!t] \renewcommand{\arraystretch}{1} \centering \begin{tabular}{|c|c|c|c|} \hline & \textbf{Actor} & \textbf{Director} & \textbf{Movie} \\ \hline \textbf{\#Nodes} & 9485 & 4510 & 7951 \\ \hline \textbf{\#Edges} & 996,527 & 250,845 & 8,777,618 \\ \hline \textbf{\#Communities} & 63 & 61 & 9 \\ \hline \textbf{Avg. Community Size} & 148.5 & 73 & 883.4 \\ \hline \end{tabular} \begin{tabular}{|c|c|} {\bf Actor-Director Edges} & 32033 \\ \hline {\bf Actor-Movie Edges} & 31422 \\ \hline {\bf Director-Movie Edges} & 8581 \\ \hline \end{tabular} \caption{IMDB HeMLN Statistics. Top Table: statistics of each layer. Bottom Table: inter-layer edges across layers.} \label{table:IMDbHeMLNStats} %\vspace{-10pt} \end{table}
1909.09908v1
\begin{table}[h!t] \renewcommand{\arraystretch}{1} \centering \begin{tabular}{|p{5.4cm}|p{2.5cm}|} \hline \textbf{Actors/Actresses} & \textbf{Common Prominent Genres} \\ \hline Willem Dafoe, Russell Crowe & Action, Crime\\%, Drama \\ \hline Hilary Swank, Kate Winslet & Drama \\ \hline Tom Hanks, Reese Witherspoon, Cameron Diaz & Comedy, Romance\\%, Drama\\ \hline % Anne Hathaway, Salma Hayek & \\ % \hline \textcolor{blue}{Johnny Depp, Tom Cruise} & \textcolor{blue}{Adventure, Action}\\%, Drama \\ \hline % Brad Pitt, Will Smith & \\ % \hline Leonardo DiCaprio, Ryan Gosling & Crime, Romance\\%, Drama\\ \hline Nicolas Cage, Antonio Banderas & Action, Thriller \\%, Drama \hline Hugh Grant, Kate Hudson, Emma Stone & Comedy, Romance \\%Drama \hline \end{tabular} \caption{{\bf (A6)}: Highly rated genre actors who have not co-acted} \label{table:actorcollab} %\vspace{-15pt} \end{table}
2402.18746v1
\begin{table}[!h] \begin{center} \caption{\label{tab:Config}System Configuration Used for Experiments} \begin{tabular}{|p{2.45cm}|p{1cm}|p{1.3cm}|p{1cm}|} \hline Features & Baseline & Aggressive & Lean \\ %\multicolumn{2}{|c|}{Processors} \\ \hline Number of cores & 8 & 8 & 8 \\ Core type & OoO & OoO & OoO \\ Core width & 8 & 16 & 4 \\ ROB entries/core & 192 & 384 & 96 \\ %\hline %\multicolumn{2}{|c|}{On-chip Caches} \\ \hline Private L1 Inst. & 32 KB & 64 KB & 16 KB \\ Private L1 Data & 512 KB & 1024 KB & 256 KB \\ Shared L2 & 8 MB & 16 MB & 4 MB \\ \hline \multicolumn{4}{|c|}{Main Memory} \\ \hline DRAM size & \multicolumn{3}{|c|}{128GiB} \\ \hline DRAM device & \multicolumn{3}{|c|}{DDR4\_2400, LPDDR5\_6400, DDR5\_6400} \\ \hline \end{tabular} \label{tab:conftable} \end{center} \end{table}
2402.18746v1
\begin{table} \centering \caption{Features Used in the Model} \begin{tabular}{|p{2cm}|p{6cm}|} \Xhline{2\arrayrulewidth} \textbf{Feature} & \textbf{Description} \\ \Xhline{2\arrayrulewidth} \textbf{numLoadInsts} & number of load instructions in the application \\ \hline \textbf{numStoreInsts} & number of store instructions in the application \\ \hline \textbf{numInsts} & total instructions in the application \\ \hline \textbf{numBranches} & number of branch instructions in the application \\ \hline \textbf{numOps} & number of micro-operations in the application \\ \hline \textbf{L1IcacheSize} & L1 instruction cache size \\ \hline \textbf{L1Dcache} & L1 data cache size \\ \hline \textbf{L2cache} & L2 cache size \\ \hline \textbf{pipelineWidth} & width of the processor's execution pipeline \\ \Xhline{2\arrayrulewidth} \end{tabular} \label{tab:inpfeatures} \end{table}
1201.1277v1
\begin{table} \centering \begin{tabular}{| l || c | c | c || c | c |} \hline \multicolumn{1}{| c || }{} & \multicolumn{3}{c || }{Static Match Rate} & \multicolumn{2}{c | }{Runtime Precise Rate}\\ \hline Benchmark & \hspace{1mm} Region \hspace{1mm} & \hspace{1mm} Shape \hspace{1mm} & Injectivity & \hspace{1mm} Shape \hspace{1mm} & Injectivity\\ \hline \bench{power} & 100\% & 100\% & 100\% & 100\% & 100\% \\ \bench{bh} & 100\% & 90\% & 87\% & 100\% & 100\% \\ \hline \bench{db} & 100\% & 100\% & 81\% & 100\% & 100\% \\ \bench{raytracer} & 80\% & 85\% & 83\% & 89\% & 98\% \\ \hline \bench{luindex} & 95\% & 95\% & 82\% & 100\% & 91\% \\ \bench{lusearch} & 93\% & 90\% & 84\% & 96\% & 89\% \\ \bench{runabs} & 97\% & 98\% & 87\% & 94\% & 90\% \\ \hline \end{tabular} \vspace{3mm} \caption{Static Match is percentage of each property correctly predicted by the static analysis when compared to \emph{perfect analysis}. Runtime Precise is the percentage of properties that the \emph{perfect analysis} captures precisely.} \label{tab:precision} \end{table}
2106.05466v2
\begin{table} \begin{tabulary} {\linewidth}{|C|C|C|C|C|C|C|} \hline \textbf{Reference and date} & \textbf{Optimization property} & \textbf{Surrogate model} & \textbf{Acq. func.} & \textbf{Generative model / design space} & \textbf{Seq. opt.?} & \textbf{In-vitro?} \\ \hline Fox et al.\ (2007)~\cite{Fox2007} & Enzyme catalytic activity & Linear regression & Greedy & Sequence recombination & Yes & Yes \\ \hline Romero et al.\ (2013)~\cite{Romero2013} & Protein thermostability & Gaussian process & UCB & Sequence recombination & Yes & Yes \\ \hline Bedbrook et al.\ (2017)~\cite{Bedbrook2017} & Protein localization & Gaussian process & UCB & Sequence recombination & Yes & Yes \\ \hline Wu et al.\ (2019)~\cite{Wu2019} & Enzyme catalytic activity & Regressor ensemble & Greedy & Explicitly-defined design space & Yes & Yes \\ \hline Brookes et al.\ (2019)~\cite{Brookes2019} & Protein fluorescence & Neural network ensemble & Greedy & Neural network (VAE) & No & No \\ \hline Kumar and Levine (2019)~\cite{Kumar2019} & Protein fluorescence & Neural network ensemble & Greedy & Neural network (GAN) & No & No \\ \hline Gupta and Zou (2020)~\cite{Gupta2019} & Antimicrobial activity & Neural network (RNN) & Greedy & Neural network (GAN) & No & No \\ \hline Liu et al.\ (2020)~\cite{Liu2020} & Antibody affinity & Neural network ensemble & Greedy & Activation maximization & No & Yes \\ \hline Wittmann et al.\ (2020)~\cite{Wittmann2020} & Protein expression and binding & Regressor ensemble & Greedy & Explicitly-defined design space & Yes & No \\ \hline Anishchenko et al.\ (2020)~\cite{Anishchenko2020} & Valid folding & Neural network (CNN) & Greedy & Sequence mutation & No & Yes \\ \hline Biswas et al.\ (2021)~\cite{Biswas2021} & Protein fitness, fluorescence & Linear regression & Greedy & Sequence mutation & No & Yes \\ \hline Bryant et al.\ (2021)~\cite{Bryant2021} & Protein viability & Classifier ensemble & Greedy & Sequence mutation & No & Yes \\ \hline Greenhalgh et al.\ (2021)~\cite{Greenhalgh2021} & Enzyme catalytic activity & Gaussian process & UCB & Sequence recombination & Yes & Yes \\ \hline \end{tabulary} \caption{Examples of adaptive learning for protein engineering. Acq.\ func.: Acquisition function. Seq.\ opt.: Sequential optimization, indicates studies that performed multiple rounds of variant selection and surrogate model training. In-vitro: Indicates studies that obtained in-vitro measurements of new protein sequences. RNN: Recurrent neural network~\cite{Hochreiter1997}. CNN: Convolutional neural network~\cite{Fukushima1980}.} \label{tab:examples} \end{table}
2403.14452v1
\begin{table}[h] \centering \caption{Number of genes where the weighted regression produced a larger Wald test statistic than the unweighted regression, and vice versa. Across all seven sample populations, the weighted regression consistently produced larger test statistics for more genes.} \label{tab:diff} \begin{tabular}{|c|c|c|c|} \hline Sample Population & Weighted $>$ Unweighted & Weighted $\leq$ Unweighted & Total \\ \hline Archer Control & 3,526 & 949 & 4,475 \\ Archer Experimental & 2,772 & 1,827 & 4,599 \\ Archer Combined & 2,728 & 961 & 3,689 \\ Braun & 6,766 & 849 & 7,615 \\ M\"{o}ller-Levet Control & 5,249 & 2,366 & 7,615 \\ M\"{o}ller-Levet Experimental & 5,887 & 1,728 & 7,615 \\ M\"{o}ller-Levet Combined & 5,796 & 1,819 & 7,615 \\ \hline \end{tabular}% %} \end{table}
1910.04522v1
\begin{table}[h] \vspace*{2cm} \centering \begin{tabular}{|l|c|c|} \hline Hyperparameter Name & Range & Log-Scale \\ \hline initial learning rate & $[10^{-6}, 10^{-2}]$ & \checkmark \\ batch size & [16, 256] & \checkmark \\ average units per layer &$[2^4, 2^8]$ & \checkmark \\ final learning rate fraction &$[10^{-4}, 10^0]$ & \checkmark \\ shape parameter 1 & $[0,1]$ & \checkmark \\ dropout 0 & $[0.0,0.5]$ & $-$ \\ dropout 1 & $[0.0,0.5]$ & $-$ \\ number of layers & $[1,5]$ & $-$ \\ \hline \end{tabular} \vspace*{-0.08cm} \caption{} \label{tab:table_hyper_mlps} \end{table}
1910.04522v1
\begin{table}[H] \centering \begin{tabular}{|l|c|c|c|} \hline Hyperparameter Name & Value\\ \hline $\eta$ & 2\\ number of iterations & 1000 \\ min time budget (min) & 2\\ max time budget (min) & 10 \\ \hline \end{tabular} \caption{Set-up of BOHB optimizer used to optimize VRNN and LCNet's hyperparameters.} \label{tab:bohb_setting} \end{table}
2408.11759v1
\begin{table}[h] \centering \small \begin{tabular}{|c|l|c|} % Adjust column width \hline \textbf{Rank} & \textbf{Variables} & \textbf{Correlation coefficients} \\ \hline 26 & Mean Closeness Centrality\_3 & 0.09 \\ \hline 25 & Clustering\_5 & 0.09 \\ \hline 24 & Max Eigenvalue Stock Returns\_3 & 0.09 \\ \hline 23 & Mean Clustering\_2 & 0.09 \\ \hline 22 & Resilience\_5 & 0.09 \\ \hline 21 & Eigenvector Centrality\_5 & 0.09 \\ \hline 20 & Resilience\_2 & 0.09 \\ \hline 19 & Mean Eigenvector Centrality\_4 & 0.09 \\ \hline 18 & Max Eigenvalue Stock Returns\_2 & 0.10 \\ \hline 17 & Degree Centrality\_4 & 0.10 \\ \hline 16 & 90th Percentile Degree\_4 & 0.10 \\ \hline 15 & 90th Percentile Degree\_5 & 0.10 \\ \hline 14 & Closeness Centrality\_2 & 0.11 \\ \hline 13 & Degree Centrality\_5 & 0.11 \\ \hline 12 & Resilience\_1 & 0.11 \\ \hline 11 & Mean Eigenvector Centrality\_5 & 0.11 \\ \hline 10 & Closeness Centrality\_3 & 0.12 \\ \hline 9 & Resilience\_4 & 0.12 \\ \hline 8 & Mean Closeness Centrality\_5 & 0.13 \\ \hline 7 & Largest Component\_5 & 0.13 \\ \hline 6 & Largest Component\_2 & 0.15 \\ \hline 5 & 90th Percentile Degree\_2 & 0.15 \\ \hline 4 & Mean Closeness Centrality\_2 & 0.17 \\ \hline 3 & 90th Percentile Degree\_1 & 0.22 \\ \hline 2 & Log Return\_2 & 0.28 \\ \hline 1 & Log Return\_1 & 0.63 \\ \hline \end{tabular} \caption{Selected variables for the training of the long time period} \label{tab:selecvariablelong} \end{table}
2408.11759v1
\begin{table}[h] \centering \begin{tabular}{|c|l|c|} \hline \textbf{Rank} & \textbf{Variables} & \textbf{Correlation coefficients} \\ \hline 42 & Resilience\_9 & 0.10 \\ \hline 41 & Largest Component\_3 & 0.10 \\ \hline 40 & Max Eigenvalue Stock Returns\_11 & 0.10 \\ \hline 39 & Resilience\_8 & 0.11 \\ \hline 38 & Mean Closeness Centrality\_3 & 0.11 \\ \hline 37 & 90th Percentile Degree\_4 & 0.11 \\ \hline 36 & Max Eigenvalue Stock Returns\_10 & 0.11 \\ \hline 35 & Resilience\_7 & 0.11 \\ \hline 34 & Max Eigenvalue Stock Returns\_9 & 0.11 \\ \hline 33 & Max Eigenvalue Stock Returns\_8 & 0.12 \\ \hline 32 & Largest Component\_2 & 0.12 \\ \hline 31 & 90th Percentile Degree\_3 & 0.12 \\ \hline 30 & Mean Closeness Centrality\_2 & 0.12 \\ \hline 29 & Resilience\_6 & 0.12 \\ \hline 28 & Max Eigenvalue Stock Returns\_7 & 0.13 \\ \hline 27 & Resilience\_5 & 0.14 \\ \hline 26 & Mean Closeness Centrality\_1 & 0.14 \\ \hline 25 & Max Eigenvalue Stock Returns\_6 & 0.14 \\ \hline 24 & Largest Component\_1 & 0.14 \\ \hline 23 & 90th Percentile Degree\_2 & 0.14 \\ \hline 22 & Max Eigenvalue Stock Returns\_5 & 0.14 \\ \hline 21 & Resilience\_4 & 0.15 \\ \hline 20 & Max Eigenvalue Stock Returns\_4 & 0.15 \\ \hline 19 & 90th Percentile Degree\_1 & 0.15 \\ \hline 18 & Max Eigenvalue Stock Returns\_3 & 0.16 \\ \hline 17 & Resilience\_3 & 0.17 \\ \hline 16 & Max Eigenvalue Stock Returns\_2 & 0.17 \\ \hline 15 & Max Eigenvalue Stock Returns\_1 & 0.18 \\ \hline 14 & Resilience\_2 & 0.18 \\ \hline 13 & Resilience\_1 & 0.20 \\ \hline 1 to 12 & Log Return\_1 to Log Return\_12 & 0.95--0.44 \\ \hline \end{tabular} \caption{42 Selected variables over 63 for the training of the short time period: we don't show the ones with a correlation coefficient less than 0.10.} \label{tab:selecvariableshort} \end{table}
1911.11746v1
\begin{table}[ht] \caption{Algorithm Dataset Allocation} \def\arraystretch{1.1} \begin{center} \begin{tabular}{|c|c|c|c|c|} \hline %\textbf{}&\multicolumn{4}{|c|}{\textbf{}} \\ %\textbf{}&\textbf{}&\textbf{}&\textbf{}&\textbf{} \\ %\textbf{Algorithm} & \textbf{Training Set (Percentage)} & \textbf{Evaluation Set (Percentage)} & \textbf{Validation Set (Percentage)} & \textbf{Test Set (Percentage)} \\ \textbf{Algorithm} & \textbf{Training} & \textbf{Evaluation} & \textbf{Validation} & \textbf{Test} \\ \hline \textbf{\textit{GRNN}} & 70\% & 10\% & 10\% & 10\% \\ \textbf{\textit{RBFNN}} & 80\% & 0\% & 10\% & 10\% \\ \textbf{\textit{SVM}} & 90\% & 0\% & 0\% & 10\% \\ \textbf{\textit{FFNN}} & 80\% & 0\% & 10\% & 10\% \\ \hline \end{tabular} \label{table:Algorithm_Dataset Allocation_Summary} \end{center} \end{table}
1911.11746v1
\begin{table}[ht] \caption{ANOVA Test Summary} \def\arraystretch{1.1} \begin{center} \begin{tabular}{|c|c|c|c|c|} \hline %\textbf{}&\multicolumn{4}{|c|}{\textbf{}} \\ \textbf{}&\textbf{}&\textbf{}&\textbf{}&\textbf{} \\ \textbf{Groups} & \textbf{Count} & \textbf{Sum} & \textbf{Average} & \textbf{Variance} \\ \hline \textbf{\textit{RBFSVM}} & 30 & 19.08 & 0.636 & 0.00180 \\ \textbf{\textit{LSVM}} & 30 & 21.56 & 0.719 & 0.00237 \\ \textbf{\textit{FFNN}} & 30 & 21.76 & 0.725 & 0.00196 \\ \hline \end{tabular} \label{table:ANOVA_Single_Factor_Summary} \end{center} \end{table}
1911.11746v1
\begin{table}[ht] \caption{Student t-Test: Two-Sample Assuming Equal Variances} \def\arraystretch{1.1} \begin{center} \begin{tabular}{|c|cc|} \hline %\textbf{}&\multicolumn{4}{|c|}{\textbf{}} \\ \textbf{}&\textbf{}&\textbf{} \\ \textbf{} & \textbf{RBFSVM} & \textbf{LSVM} \\ \hline \textbf{Mean} & 0.636 & 0.718 \\ \hline \textbf{Variance} & 0.00180 & 0.00237 \\ \hline \textbf{Observations} & 30 & 30 \\ \hline \textbf{Pooled Variance} & 0.00209 & \\ \hline \textbf{Hypothesized Mean Difference} & 0 & \\ \hline \textbf{df} & 58 & \\ \hline \textbf{t-Stat} & -7.008 & \\ \hline \textbf{P(T\begin{math}{<=}\end{math}t) one-tail} & 1.42E-09 & \\ \hline \textbf{t Critical one-tail} & 1.671 & \\ \hline \textbf{P(T\begin{math}{<=}\end{math}t) two-tail} & 2.84E-09 & \\ \hline \textbf{t Critical two-tail} & 2.002 & \\ \hline \end{tabular} \label{table:tTest_RS_SS} \end{center} \end{table}
1911.11746v1
\begin{table}[ht] \caption{Student t-Test: Two-Sample Assuming Unequal Variances} \def\arraystretch{1.1} \begin{center} \begin{tabular}{|c|cc|} \hline %\textbf{}&\multicolumn{4}{|c|}{\textbf{}} \\ \textbf{}&\textbf{}&\textbf{} \\ \textbf{} & \textbf{LSVM} & \textbf{FFNN} \\ \hline \textbf{Mean} & 0.719 & 0.725 \\ \hline \textbf{Variance} & 0.00237 & 0.00196 \\ \hline \textbf{Observations} & 30 & 30 \\ %\hline %\textbf{Pooled Variance} & & \\ \hline \textbf{Hypothesized Mean Difference} & 0 & \\ \hline \textbf{df} & 57 & \\ \hline \textbf{t-Stat} & -0.555 & \\ \hline \textbf{P(T\begin{math}{<=}\end{math}t) one-tail} & 0.290 & \\ \hline \textbf{t Critical one-tail} & 1.672 & \\ \hline \textbf{P(T\begin{math}{<=}\end{math}t) two-tail} & 0.581 & \\ \hline \textbf{t Critical two-tail} & 2.002 & \\ \hline \end{tabular} \label{table:tTest_SS_SA} \end{center} \end{table}
1801.07624v1
\begin{table}[h] \centering \caption{Steps statistics by Slurm state} \label{table_job_steps} \begin{adjustbox}{width=0.9\textwidth} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l} \hline \multirow{2}{*}{State} & \multirow{2}{*}{count} & \multicolumn{4}{l|}{\textbf{Allocated nodes}} & \multicolumn{4}{l|}{\textbf{Duration {[}s{]}}} & \multicolumn{4}{l|}{\textbf{Ave Disk Read {[}GB{]}}} & \multicolumn{4}{l}{\textbf{Ave Disk Write {[}GB{]}}} \\ \cline{3-18} & & mean & SD & min & max & mean & SD & min & max & mean & SD & min & max & mean & SD & min & max \\ \hline \hline CANCELLED & 53579 & 28 & 87 & 1 & 3264 & 3322 & 8679 & 1 & 183k & 16 & 151 & 0 & 7821 & 3 & 37 & 0 & 2341 \\ \hline COMPLETED & 4853842 & 3.4 & 17 & 1 & 3276 & 414 & 1902 & 1 & 235k & 1 & 10 & 0 & 6993 & 0.2 & 5 & 0 & 30742 \\ \hline FAILED & 197704 & 18 & 28 & 1 & 3249 & 1111 & 5273 & 1 & 346k & 3 & 73 & 0 & 6629 & 0.2 & 15 & 0 & 4078 \\ \hline ALL & 5105125 & 4.2 & 20 & 1 & 3276 & 471 & 2326 & 1 & 346k & 1 & 23 & 0 & 7821 & 0.2 & 7 & 0 & 4078 \\ \hline \end{tabular} \end{adjustbox} \end{table}
1801.07624v1
\begin{table}[h] \centering \caption{Power statistics depending on a submitted job state, for submissions longer than 120s} \label{table_powers_v1} \begin{adjustbox}{width=0.7\textwidth} \begin{tabular}{|l|l|l|} \hline \textbf{Job finish state} & \textbf{Average blade power {[}W{]}} & \textbf{\begin{tabular}[c]{@{}l@{}}Average last registered\\ blade power {[}W{]}\end{tabular}} \\ \hline \textbf{Completed} & 265 & 228 \\ \hline \textbf{Failed} & 242 & 227 \\ \hline \textbf{Cancelled} & 240 & 203 \\ \hline \textbf{Node failed} & 226 & 190 \\ \hline \end{tabular} \end{adjustbox} \end{table}
1801.07624v1
\begin{table}[h] \centering \caption{Computing nodes in Mistral} \label{table:computing_nodes} \begin{tabular}{|l|r|r|ll} \cline{1-3} \textbf{Node type}& \textbf{Quantity} & \textbf{Homogeneous racks, 72 blades}\\ \cline{1-3} B720\_36\_64 & 1454 & 20\\ \cline{1-3} B720\_24\_64 & 1404 & 19\\ \cline{1-3} B720\_36\_128 & 270 & 3\\ \cline{1-3} B720\_24\_128 & 110 & 1\\ \cline{1-3} B720\_36\_256 & 50 & -\\ \cline{1-3} B720\_24\_256 & 48 & -\\ \cline{1-3} \end{tabular} \end{table}
1801.07624v1
\begin{table}[h] \centering \caption{Jobs statistics by Slurm state} \label{main_jobs} \begin{adjustbox}{width=0.8\textwidth} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l} \hline \multirow{2}{*}{State} & \multirow{2}{*}{count} & \multicolumn{6}{l|}{Allocated nodes} & \multicolumn{6}{l}{Duration {[}s{]}} \\ \cline{3-14} & & mean & SD & min & 50\% & 75\% & max & mean & SD & min & 50\% & 75\% & max \\ \hline \hline CANCELLED & 23087 & 25 & 100 & 1 & 5 & 16 & 3264 & 2680 & 14952 & 1 & 310 & 1591 & 1.6M \\ \hline COMPLETED & 1238585 & 12 & 34 & 1 & 6 & 16 & 3276 & 1954 & 4190 & 1 & 419 & 1953 & 0.3M \\ \hline FAILED & 75897 & 15 & 39 & 1 & 6 & 16 & 1700 & 1763 & 4288 & 1 & 164 & 2979 & 0.4M \\ \hline NODE\_FAIL & 390 & 67 & 289 & 1 & 10 & 46 & 3264 & 11087 & 105332 & 38 & 2472 & 6202 & 2.1M \\ \hline TIMEOUT & 17864 & 16 & 57 & 1 & 1 & 16 & 3078 & 11586 & 18140 & 60 & 2408 & 28803 & 0.6M \\ \hline ALL & 1355823 & 13 & 37 & 1 & 6 & 16 & 3276 & 2085 & 5444 & 1 & 425 & 2001 & 2.1M \\ \hline \end{tabular} \end{adjustbox} \end{table}
2208.08280v1
\begin{table}[t!] \resizebox{\linewidth}{!}{ \begin{tabular}{l|c|c} \midrule Hyperparameter & TOWE model & Sentiment Classifier \\ \midrule Batch size &16(96) & 128 \\ Epochs &50 & - \\ Steps &- & 3000 \\ Learning rate (BERT) &2e-5 & 1e-5 \\ Learning rate (Others) &2e-4 & 1e-4 \\ Hidden dimension &512& 512 \\ Optimizer &AdamW & AdamW \\ \midrule \end{tabular} } \caption{Experimental setting of the training of the TOWE model and the sentiment classifier. For the TOWE model, batch size for labeled data is 16 and 96 for unlabeled data.} \label{tbl:para} \centering \end{table}
2111.09395v1
\begin{table}[t] \small \renewcommand{\arraystretch}{1.2} \centering \begin{tabular}{|l|l|m{200pt}<{\centering}|} \hline \textbf{Key components} & \textbf{Attributes} \\ \hline \multirow{4}{2cm}{State} & Balance ${b}_{t}\in \mathbb{R}_+$;~~~~Shares $\bm{k}_{t}\in \mathbb{Z}_+^{n}$ \\ %\arrayrulecolor{gray} \cdashline{2-3}[0.8pt/2pt] %& Shares $\bm{h}_{t}\in \mathbb{Z}_+^{n}$ \\ %\cdashline{2-3}[0.8pt/2pt] %& Closing price $\bm{p}_{t}\in \mathbb{R}_+^{n}$ \\ \cdashline{2-3}[0.8pt/2pt] & OHLCV data $\bm{o}_{t}, \bm{h}_{t}, \bm{l}_{t},\bm{p}_{t},\bm{v}_{t} \in \mathbb{R}_+^{n}$ \\ \cdashline{2-3}[0.8pt/2pt] & Technical indicators; Fundamental indicators \\ \cdashline{2-3}[0.8pt/2pt] & Smart beta \\ \cdashline{2-3}[0.8pt/2pt] & NLP market sentiment features\\ %\cdashline{2-3}[0.8pt/2pt] %& Fundamental indicators \\ \hline \multirow{2}{2cm}{Action} & Buy/Sell/Hold;~~~~~~Short/Long \\ %\cdashline{2-3}[0.8pt/2pt] %& Short/Long \\ \cdashline{2-3}[0.8pt/2pt] & Portfolio weights \\ \hline \multirow{3}{2cm}{Rewards} & Change of portfolio value \\ \cdashline{2-3}[0.8pt/2pt] & Portfolio log-return \\ \cdashline{2-3}[0.8pt/2pt] & Shape ratio \\ \hline \multirow{3}{2cm}{Environment} & Dow-$30$, NASDAQ-$100$, S\&P-$500$ \\ % \cdashline{2-3}[0.8pt/2pt] % & NASDQQ-$100$ \\ \cdashline{2-3}[0.8pt/2pt] & Cryptocurrencies \\ \cdashline{2-3}[0.8pt/2pt] & Foreign currency and exchange \\ \cdashline{2-3}[0.8pt/2pt] & Futures and options \\ \cdashline{2-3}[0.8pt/2pt] & Living trading \\ \hline \end{tabular} \caption{Key components and attributes. OHLCV stands for Open, High, Low, Close and Volume.}\vspace{-0.25in} \label{event:eventTypes} \vspace{-0.1in} \end{table}
1008.2410v1
\begin{table} \begin{center} \begin{tabular}{|l|c|} \hline a & $\frac{1}{r} \left( 16 t - 15 \right)$ \\ \hline b & $\frac{1}{3 r} \left( 84 - 48 t + 571 t^2 \right)$ \\ \hline c & $\frac{1}{3 r} \left( 128 - 48 t + 844 t^2 \right)$ \\ \hline d & $\frac{1}{r} 198$ \\ \hline \end{tabular} \caption{Coefficients for the complexity expression in~\eqref{eq:complexity} in terms of the flop rate $r$ and the expansion order $t$.} \label{tab:coeff} \end{center} \end{table}
2102.10387v1
\begin{table}[ht] % {\small % \begin{tabular}{ |p{2.5cm}|p{4.5cm}|p{5.7cm}| } % \hline % % \multicolumn{4}{|c|}{Country List} \\ % % \hline % % \hspace{1cm} % \textbf{Heuristic} & \textbf{Description} & \textbf{Conversational Guidance} \\ % \hline % & & \\ % \noindent Internally relevant words & Words from the text that are most relevant to the $category$ & I wonder which words are most relevant while categorizing this text to the $category$?\\ % & & \\ % Internally irrelevant words & Words from the text that are least relevant to the $category$ & Which words are least relevant while categorizing this text to the $category$? \\ % & & \\ % Externally relevant words & Words 'outside' the text that will most likely describe the $category$ & Can you tell me few more words that should describe the $category$ but are not in the text?\\ % & & \\ % \hline % \end{tabular}} % \caption{Three types of heuristic teaching guidance} % \label{table:heuristic} % \end{table}
1906.01668v1
\begin{table}[] \centering \begin{tabular}{|c|c|} \hline Varaible & Search Space \\ \hline $\Psi$ & \{GMR,MCR,NSCR,LMSR\\ & SLR,GUR,NSCoR,MOR\}\\ \hline $\alpha$ & [1e-03, 1e-00]\\ \hline $\beta_1$ & [1e-05, 1]\\ \hline $\beta_2$ & [1e-05, 1]\\ \hline $\beta_3$ & [1e-05, 1]\\ \hline \end{tabular} \caption{Search space considered to jointly optimize over the eight meta-learning rules and their parameters.} \label{tab:search_space} \vspace{-0.2in} \end{table}
1906.01668v1
\begin{table}[] \centering \begin{tabular}{|c|c|c|} \hline Dataset & Meta-Learning Rule & Accuracy\\ \hline MNIST & LMSR & 0.903 \\ \hline FashionMNIST & GMR & 0.900 \\ \hline \end{tabular} \caption{Best-performing meta-learning rule and corresponding testing accuracy with each dataset.} \label{tab:accuracy} \vspace{-0.3in} \end{table}
1703.00564v3
\begin{table}[h] \caption{Dataset Details: number of compounds and tasks, recommended splits and metrics} \label{tab:n_samples} \centering \tiny \begin{tabular}{ |c|c|c|c|c|c|c|c| } \hline \textbf{Category} & \textbf{Dataset} & \textbf{Data Type} & \textbf{\# Tasks} & \textbf{Task Type} & \textbf{\# Compounds} & \textbf{Rec - Split} & \textbf{Rec - Metric}\\ \hline \multirow{4}{*}{Quantum Mechanics} & QM7 & SMILES, 3D coordinates & 1 & Regression & 7160 & Stratified & MAE\\\cline{2-8} & QM7b & 3D coordinates & 14 & Regression & 7210 & Random & MAE\\\cline{2-8} & QM8 & SMILES, 3D coordinates & 12 & Regression & 21786 & Random & MAE \\\cline{2-8} & QM9 & SMILES, 3D coordinates & 12 & Regression & 133885 & Random & MAE \\\cline{2-8} \hline \multirow{3}{*}{Physical Chemistry} & ESOL & SMILES & 1 & Regression & 1128 & Random & RMSE \\\cline{2-8} & FreeSolv & SMILES & 1 & Regression & 642 & Random & RMSE \\\cline{2-8} & Lipophilicity & SMILES & 1 & Regression & 4200 & Random & RMSE \\ \hline \multirow{5}{*}{Biophysics} & PCBA & SMILES & 128 & Classification & 437929 & Random & PRC-AUC \\\cline{2-8} & MUV & SMILES & 17 & Classification & 93087 & Random & PRC-AUC \\\cline{2-8} & HIV & SMILES & 1 & Classification & 41127 & Scaffold & ROC-AUC \\\cline{2-8} & PDBbind & SMILES, 3D coordinates & 1 & Regression & 11908 & Time & RMSE \\\cline{2-8} & BACE & SMILES & 1 & Classification & 1513 & Scaffold & ROC-AUC \\ \hline \multirow{5}{*}{Physiology} & BBBP & SMILES & 1 & Classification & 2039 & Scaffold & ROC-AUC \\\cline{2-8} & Tox21 & SMILES & 12 & Classification & 7831 & Random & ROC-AUC \\\cline{2-8} & ToxCast & SMILES & 617 & Classification & 8575 & Random & ROC-AUC \\\cline{2-8} & SIDER & SMILES & 27 & Classification & 1427 & Random & ROC-AUC \\\cline{2-8} & ClinTox & SMILES & 2 & Classification & 1478 & Random & ROC-AUC \\ \hline \end{tabular} \end{table}
1703.00564v3
\begin{table}[h] \caption{Task details and area under curve(AUC) values of sample curves} \label{tab:ROCvsPRC_AUC} \centering \begin{tabular}{ |c|c|c|c|c| } \hline \textbf{Task} & \textbf{P/N}* & \textbf{Model} & \textbf{ROC} & \textbf{PRC}\\ \hline \multirow{2}{*}{\tabincell{l}{``FDA\_APPROVED''\\ClinTox, test subset}} & \multirow{2}{*}{128/21} &{\scriptsize Logistic Regression} & 0.691 & 0.932 \\\cline{3-5} & & {\scriptsize Graph Convolution} & 0.791 & 0.959 \\ \hline \multirow{2}{*}{\tabincell{l}{``Hepatobiliary disorders''\\SIDER, test subset}} & \multirow{2}{*}{64/79} & {\scriptsize Logistic Regression} & 0.659 & 0.612 \\\cline{3-5} & & {\scriptsize Graph Convolution} & 0.675 & 0.620 \\ \hline \multirow{2}{*}{\tabincell{l}{``NR-ER''\\Tox21, valid subset}} & \multirow{2}{*}{81/553} & {\scriptsize Logistic Regression} & 0.612 & 0.308 \\\cline{3-5} & & {\scriptsize Graph Convolution} & 0.705 & 0.333 \\ \hline \multirow{2}{*}{\tabincell{l}{``HIV\_active''\\HIV, test subset}} & \multirow{2}{*}{132/4059} & {\scriptsize Logistic Regression} & 0.724 & 0.236 \\\cline{3-5} & & {\scriptsize Graph Convolution} & 0.783 & 0.169 \\ \hline \end{tabular} \begin{tablenotes} \item * Number of positive samples/Number of negative samples \end{tablenotes} \end{table}