arxiv_id
string | latex
string | image
image |
---|---|---|
2010.04404v1
|
\begin{table}[H]
\begin{adjustbox}{width=1\textwidth}
\begin{tabular}{|l|l|l|l|l|}
\hline
Algorithm & Total Returns & Sharpe Ratio & Max Drawdown & Daily Turnover \\
\hline
CNN & 39.56 & 0.52 & 31.79 & 6.69 \\
CNN No Weight Control & 154.25 & 1.0 & 34.1 & 23.67 \\
\hline
\end{tabular}
\end{adjustbox}
\caption{Returns of the CNN model with and without turnover control with 5 bps cost. We see that the returns without turnover control are much higher than the traditional model but with weight control they are similar. Results 24rd March 2017 to 1st June 2020.}
\end{table}
| |
2010.04404v1
|
\begin{table}[H]
\begin{adjustbox}{width=1\textwidth}
\begin{tabular}{|l|l|l|l|l|}
\hline
Algorithm & Total Returns & Sharpe Ratio & Max Drawdown & Daily Turnover \\
\hline
RNN & 53.92 & 0.53 & 30.87 & 23.16 \\
\hline
\end{tabular}
\end{adjustbox}
\caption{Returns of the RNN model with cost of 5 bps. The returns are lower than the CNN model but higher than the traditional models}
\end{table}
| |
2010.04404v1
|
\begin{table}[H]
\begin{adjustbox}{width=1\textwidth}
\begin{tabular}{|l|l|l|l|l|}
\hline
Algorithm & Total Returns & Sharpe Ratio & Max Drawdown & Daily Turnover \\
\hline
LSTM & 55.76 & 0.63 & 29.1 & 12.41 \\
\hline
\end{tabular}
\end{adjustbox}
\caption{Returns of the LSTM model with cost of 5 bps. The returns are higher than RNN but lower than CNN. The turnover is the lowest in this model among RL models}
\end{table}
| |
2010.04404v1
|
\begin{table}[H]
\begin{adjustbox}{width=1\textwidth}
\begin{tabular}{|l|l|l|l|l|}
\hline
Algorithm & Total Returns & Sharpe Ratio & Max Drawdown & Daily Turnover \\
\hline
Equal Weight Portfolio & 38.09 & 0.52 & 30.65 & 4.02 \\
Mean Variance Optimization & 37.74 & 0.51 & 30.43 & 2.98 \\
Risk Parity & 34.51 & 0.49 & 30.88 & 2.00 \\
Minimum Variance & 28.1 & 0.59 & 14.14 & 23.22 \\
\hline
\end{tabular}
\end{adjustbox}
\caption{Returns of the traditional strategies. The equal weighted portfolio gives the best returns but the minimum variance portfolio gives the best Sharpe ratio and minimum drawdown. Results 24rd March 2017 to 1st June 2020.}
\end{table}
| |
2207.13887v1
|
\begin{table}[b]
\vspace{-4mm}
\caption{Training ResNet18 with $S$=1\% subsets every $R$=1 epoch from CIFAR10 using batch size $b$= 512, 256, 128.
\alg can leverage larger mini-bath size and obtain a larger
accuracy gap to \craig and Random. For $b$=512, we have\! 1\! mini-batch (GD).
Std is reported in Appendix Table\! \ref{table:batch_pm}.
}\label{table:batch}
\vspace{-2mm}
\begin{small}
\resizebox{\columnwidth}{!}{
\begin{tabular}{l|lllll}
\hline
& \textsc{AdaC.} & \craig & Rand & \begin{tabular}[c]{@{}l@{}}Gap/\\ \craig\end{tabular} & \begin{tabular}[c]{@{}l@{}}Gap/\\ Rand\end{tabular} \\ \hline
\begin{tabular}[c]{@{}l@{}}GD~~ b=512\end{tabular} & \textbf{58.32}\% & 56.32\% & 49.14\% & 1.69\% & \textbf{8.91}\% \\
\begin{tabular}[c]{@{}l@{}}SGD b=256\end{tabular} & \textbf{68.23}\% & 58.3\% & 60.7\% & \textbf{9.93}\% & 8.16\% \\
\begin{tabular}[c]{@{}l@{}}SGD b=128\end{tabular} & \textbf{66.89}\% & 58.17\% & 65.46\% & \textbf{8.81}\% & 1.52\%
\end{tabular}
}
\end{small}
\end{table}
| |
2207.13887v1
|
\begin{table}[ht]\caption{\alg outperforms other baseline subset selection algorithms as well as training on the full dataset, reaching a better accuracy in less time. This provides up to a 2.3x speedup compared to to the state of the art.}
\begin{tabular}{@{}lllll@{}}
\toprule
\textbf{} & \textbf{BDD100k} & \textbf{} & \multicolumn{2}{l}{Speedup over} \\ \midrule
\multicolumn{1}{l|}{\begin{tabular}[c]{@{}l@{}}$S = 10\%$\\ R = 20\end{tabular}} &
\begin{tabular}[c]{@{}l@{}}Accuracy\\ (epoch)\end{tabular} &
\multicolumn{1}{c}{\begin{tabular}[c]{@{}c@{}}Time\\ (s)\end{tabular}} &
\multicolumn{1}{c}{Rand} &
\multicolumn{1}{c}{Full} \\ \midrule
\multicolumn{1}{l|}{\alg} & $74.3\%(100) $ & 7331 & \textbf{1.8} & \textbf{2.3} \\
\multicolumn{1}{l|}{\craig} & $73.1\%(150)$ & 10996 & 1.3 & 1.6 \\
\multicolumn{1}{l|}{Random} & $73.3\%(180)$ & 13050 & 1 & 1.2 \\
\multicolumn{1}{l|}{\gradmatch} & $72\%(200)$ & 14040 & .7 & 1.1 \\
\multicolumn{1}{l|}{\glister} & $73\%(200)$ & 12665 & 1.03 & 1.2 \\
\multicolumn{1}{l|}{Full Dataset} & $74.3\% (45)$ & 16093 & 0.8 & 1 \\
\bottomrule
\end{tabular}\label{table:bdd100k}
\end{table}
| |
2107.00507v1
|
\begin{table}[!htb]
\caption{Accuracy of four features for XGBoost}\label{tab:2}
\centering
\adjustbox{scale=0.85}{
\begin{tabular}{c|lc}\midrule\midrule
Feature & \multicolumn{1}{c}{Description} & Accuracy\\ \midrule
H & Hold time & 76.91\% \\
DD & Key-down Key-down & 76.39\% \\
UD & Key-up Key-down & 81.10\% \\ \midrule
All & H, DD and UD & 95.15\% \\ \midrule\midrule
\end{tabular}
}
\end{table}
| |
2107.00507v1
|
\begin{table}[!htb]
\caption{Results for MLP}\label{tab:mul-mlp}
\centering
\adjustbox{scale=0.85}{
\begin{tabular}{c|cccc|c}\midrule\midrule
\multirow{2}{*}{Model} & \multicolumn{4}{c|}{Parameters} & \multirow{2}{*}{Accuracy} \\
& input-channel & output-channel & num-layers & learning-rate \\ \midrule
MLP & 31 & 100 & 3 & 0.001 & 95.96\% \\ \midrule\midrule
\end{tabular}
}
\end{table}
| |
2107.00507v1
|
\begin{table}[!htb]
\caption{Results for LSTM and bi-LSTM with one-hot encoding}\label{tab:lstm}
\centering
\adjustbox{scale=0.85}{
\begin{tabular}{c|cccc|c}\midrule\midrule
\multirow{2}{*}{Model} & \multicolumn{4}{c|}{Parameters} & \multirow{2}{*}{Accuracy} \\
& input-size & hidden-size & num-layers & learning-rate \\ \midrule
LSTM & 31 & 5 & 1 & 0.3 & 91.28\% \\
Bi-LSTM & 31 & 5 & 1 & 0.3 & 90.02\% \\ \midrule\midrule
\end{tabular}
}
\end{table}
| |
2011.01813v1
|
\begin{table}[h!]
\centering
\caption{\label{tab:dvs_table5-way}6+5-way one-shot federated classification on the DvsGesture dataset
}
\begin{tabular}{|l|r|r|}
\hline
Model & \multicolumn{1}{l|}{Initial Test Accuracy} & \multicolumn{1}{l|}{Post Federated Learning Accuracy} \\ \hline
1 & 76\% & 88\% \\ \hline
2 & 75.5\% & 88\% \\ \hline
3 & 58\% & 85\% \\ \hline
4 & 54.4\% & 86\% \\ \hline
5 & 59.5\% & 81\% \\ \hline
\end{tabular}
\end{table}
| |
2209.07124v2
|
\begin{table}[ht]
\caption{Simulation parameters.}
\label{tab:sim_param}
\centering
\resizebox{\columnwidth}{!}{
\begin{tabular}{c|ccc}
\toprule
& \textbf{Parameter} & \textbf{Description} & \textbf{Value} \\
\midrule
\multirow{11}{*}{\rotatebox[origin=c]{90}{Fed. Learning }}
& $|w'|$ & Number of FFNN model parameters & $\num{199210}$ \\
& $|w''|$ & Number of CNN model parameters & $\num{582026}$ \\
& $S_{w^'}$ & FFNN model parameters size & $796.84$ KB \\
& $S_{w''}$ & CNN model parameters size & $2.33$ MB \\
& $\eta$ & Learning rate & $0.2$ \\
& $N$ & Number of total clients & $3382$ \\
& $E$ & Local epochs number & $5$ \\
& $R$ & Number of rounds & $200$ \\
& $m$ & Number of clients for each round & $200$ \\
& $B$ & Batch size & $20$ \\
& $\ell_i$ & Local loss function & Sparse Cat. Crossentropy\\
\midrule
\multirow{11}{*}{\rotatebox[origin=c]{90}{Blockchain}}
%& $\lambda$ & Block Generation rate & \\
& $N_{\rm chain}$ & Number of blocks in the main chain & 200 \\
& $BI$ & Block interval & $15$ s\\
& $N_{B}$ & Number of blockchain nodes & $200$\\
& $N_{m}$ & Number of miners & $10$\\
& $C_{\rm P2P}$ & Capacity of P2P links & $100$ Mbps\\
& $S_H$ & Block header size & $25$ KB\\
& $S'_B$ & Block size with FFNN & $160.368$ MB \\
& $S''_B$ & Block size with CNN & $467$ MB \\
& $S'_{\rm tr}$ & Transaction size with FFNN & $796.84$ KB\\
& $S''_{\rm tr}$ & Transaction size with CNN & $2.33$ MB\\
& $P_h$ & Total hashing power & $1350$ W\\
\midrule
\multirow{17}{*}{\rotatebox[origin=c]{90}{Communication (IEEE 802.11ax)}}
& $P_{\rm{Tx}}^{e}$ & Tx power for edge devices & $9$ dBm \\
& $P_{\rm{tx}}^{c}$ & Tx power for a central server & $20$ dBm\\
& $\sigma_{\text{leg}}$ & Legacy OFDM symbol duration & $4$ \textmu s \\
%& $\sigma$ & OFDM symbol duration & 16 \textmu s \\
& $N_{\rm sc}$ & Number of subcarriers ($20$ MHz) & $234$ \\
& $N_{\rm ss}$ & Number of spatial streams & $1$ \\
& $T_{\rm{e}}$ & Empty slot duration & $9$ \textmu s \\
& $T_{\rm{SIFS}}$ & SIFS duration & $16$ \textmu s \\
& $T_{\rm{DIFS}}$ & DIFS duration & $34$ \textmu s \\
& $T_{\rm{PHY}}$ & Preamble duration & $20$ \textmu s \\
& $T_{\rm{HE-SU}}$ & HE single-user field duration & $100$ \textmu s \\
%& $T_{\text{ACK}}$ & ACK duration & 28 \textmu s \\
& $L_{s}$ & Size OFDM symbol & $24$ bits \\
% & $L_{\text{DATA}}$ & Data packet size & 11728 bits \\
%& $N_{\text{agg}}$ & No. of frames in an A-MPDU & 1 \\
& $L_{\rm{RTS}}$ & Length of an RTS packet & $160$ bits \\
& $L_{\rm{CTS}}$ & Length of a CTS packet & $112$ bits \\
& $L_{\rm{ACK}}$ & Length of an ACK packet & $240$ bits \\
& $L_{\rm{SF}}$ & Length of service field & $16$ bits \\
& $L_{\rm{MAC}}$ & Length of MAC header & $320$ bits \\
& $\text{CW}$ & Contention window (fixed) & $15$ \\
\bottomrule
\end{tabular}}
\end{table}
| |
2103.12010v1
|
\begin{table}[htbp]
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline
& Linear & ReLU & Dropout($p = 0.5$) & Linear & ReLU & Dropout($p = 0.5$) & Linear \\ \hline
Input & 25088 & \multicolumn{2}{l|}{\multirow{2}{*}{}} & 4096 & \multicolumn{2}{l|}{\multirow{2}{*}{}} & 4096 \\ \cline{1-2} \cline{5-5} \cline{8-8}
Output & 4096 & \multicolumn{2}{l|}{} & 4096 & \multicolumn{2}{l|}{} & 4 \\ \hline
\end{tabular}
\caption{The trainable layer in our modified VGG model.}
\label{tab:classifier_vgg}
\end{table}
| |
2103.12010v1
|
\begin{table}[htbp]
\centering
\begin{tabular}{|l|l|l|l|}
\hline
& Training Loss & Testing Loss & Testing Accuracy \\ \hline
Federated Training (1 local epoch) & $0.3506$ & $0.3519$ & $98.7\%$ \\ \hline
Federated Training (2 local epochs) & $0.3405$ & $0.3408$ & $98.6\%$ \\ \hline
Federated Training (4 local epochs) & $0.3304$ & $0.3413$ & $98.6\%$ \\ \hline
Non-Federated Training & $0.3360$ & $0.3369$ & $98.75\%$ \\ \hline
\end{tabular}
\caption{Comparison of performance in different training schemes with Cats vs Dogs dataset.}
\label{tab:comparison_performance_cats_dogs}
\end{table}
| |
1906.06248v3
|
\begin{table}[ht]
\caption{The hyperparameters which were used when training feed-forward neural networks with different features (all, without curve features, only with the 10 or 20 most influential features as chosen by the best-performing random forest).}
\centering
\begin{tabular}{|l|c|c|c|c|}
\hline
Hyperparameter & \multicolumn{1}{l|}{All features} & \multicolumn{1}{l|}{\begin{tabular}[c]{@{}l@{}}Without curve \\ features\end{tabular}} & \multicolumn{1}{l|}{\begin{tabular}[c]{@{}l@{}}Selected features \\ ($N_F = 10$)\end{tabular}} & \multicolumn{1}{l|}{\begin{tabular}[c]{@{}l@{}}Selected features \\ ($N_F = 20$)\end{tabular}} \\ \hline
\begin{tabular}[c]{@{}l@{}}Network \\ architecture\end{tabular} & [5, 5, 5] & [5, 5] & [25] * 25 & [25] * 25 \\ \hline
Optimiser & rmsprop & Adam & Adam & Adam \\ \hline
\begin{tabular}[c]{@{}l@{}}Number of \\ epochs\end{tabular} & 100 & 100 & 100 & 100 \\ \hline
Batch size & 128 & 64 & 128 & 128 \\ \hline
\begin{tabular}[c]{@{}l@{}}Activation \\ function\end{tabular} & tanh & relu & relu & relu \\ \hline
Dropout & [0, 0.25, 0] & [0, 0.25, 0] & [0.1] * 25 & [0.1] * 25 \\ \hline
\begin{tabular}[c]{@{}l@{}}Batch \\ normalization\end{tabular} & no & yes & yes & yes \\ \hline
\end{tabular}
\label{tab:hyperparameters}
\end{table}
| |
1906.06248v3
|
\begin{table}[ht]
\caption{Comparison of in-sample and out-of-sample errors in EUR per MWh or $\%$ for various price forecasting techniques.}
\centering
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline
\multirow{2}{*}{Forecasting technique} & \multicolumn{3}{l|}{in-sample error} & \multicolumn{3}{l|}{out-of-sample error} \\ \cline{2-7}
& RMSE & MAE & MdAPE & RMSE & MAE & MdAPE \\ \hline
Naive model & 13.55 & 7.87 & 15.31\% & 12.68 & 7.71 & \bf{11.61\%} \\ \hline
Ordinary linear regression & 6.85 & 4.25 & 10.93\% & 9.60 & 7.52 & 16.95\% \\ \hline
Random forest & 6.77 & 4.17 & 9.73\% & 11.92 & 9.32 & 19.9\% \\ \hline
\begin{tabular}[c]{@{}l@{}}Feed-forward neural network\\ with architecture from \cite{keles2016}\end{tabular} & 6.72 & 4.51 & 11.49\% & 14.87 & 12.81 & 30.63\% \\ \hline
\begin{tabular}[c]{@{}l@{}}Feed-forward neural network\\ with architecture from \cite{lago2018}\end{tabular} & 2.27 & 1.65 & 4.45\% & 21.05 & 8.94 & 15.22\% \\ \hline
Feed-forward neural network & 5.45 & 3.57 & 8.89\% & 9.59 & \bf{7.08} & 14.18\% \\ \hline
\begin{tabular}[c]{@{}l@{}}Feed-forward neural network\\ without curve features\end{tabular} & 6.63 & 4.41 & 11.22\% & 10.11 & 7.85 & 16.12\% \\ \hline
\begin{tabular}[c]{@{}l@{}}Feed-forward neural network \\ with feature selection ($N_F = 10$) \end{tabular} & 7.69 & 5.06 & 11.68\% & \bf{9.41} & 7.34 & 15.57\% \\ \hline
\begin{tabular}[c]{@{}l@{}}Feed-forward neural network \\ with feature selection ($N_F = 20$) \end{tabular} & 7.71 & 4.95 & 11.27\% & 13.65 & 10.18 & 21.48\% \\ \hline \hline
EXAA & 6.47 & 3.53 & 7.56\% & 5.58 & 3.92 & 7.22\% \\ \hline
\end{tabular}
\label{tab:results}
\end{table}
| |
1611.04474v1
|
\begin{table}[!ht]
\renewcommand{\arraystretch}{1.3}
\caption{FPGA platform information.}
\label{FPGA_platform_information}
\centering
\begin{tabular}{|c|c|}
\hline
Platform & Convey HC-1ex\\
\hline
FPGA fabric & Virtex-6 VLX760 x 4
\\
\hline
Logic Cell&474K x 4
\\
\hline
DSP&864 x 4\\
\hline
BRAM&26Mb x 4\\
\hline
DDR BW&80GB/s\\
\hline
DDR size&64GB\\
\hline
Power&150W\\
\hline
Technology&40nm\\
\hline
\end{tabular}
\end{table}
| |
1611.04474v1
|
\begin{table}
\renewcommand{\arraystretch}{1.3}
\caption{Performance speedup and energy efficiency breakdown of major HLS optimizations on Convey FPGA platform compared to the Intel 12-core Xeon server.}
\label{different_FPGA_acc}
\centering
\begin{tabular}{|l|l|l|l|}\hline
Platform&Run time&Speedup&Energy Efficiency\\ \hline
Intel 12-core server&3.5 sec&1&1 \\ \hline
Naive HLS result&338 sec&0.01X&0.02X \\ \hline
HLS result with &3.52 sec&1.0X&2X \\
pipeline (single module) &&& \\ \hline
Fully optimized HLS &0.37 sec&9.5X&19X \\
(module duplication) &&& \\ \hline
\end{tabular}
%\vspace{0.1in}
\end{table}
| |
1611.04474v1
|
\begin{table}
\renewcommand{\arraystretch}{1.3}
\caption{FPGA resource utilization for one MD accelerator in Convey FPGA platform.}
\label{FPGA_resource_utilization_for_MD_accelerator}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
BRAM 18K & DSP48E & FF & LUT \\
\hline
153 (10\%) & 222 (23\%) & 26617 (2\%) & 31144 (6\%) \\
\hline
\end{tabular}
%\vspace{-0.1in}
\end{table}
| |
1611.04474v1
|
\begin{table}[!h]
\renewcommand{\arraystretch}{1.3}
\caption{Design space exploration: performance speedup and area overhead with different number of duplicating distance calculation modules and one single computation module on Convey FPGA platform.}
\label{pe_0_dup}
\centering
\begin{tabular}{|c|c|c|c|c|}\hline
Duplication&Execution time&Speedup&Area overhead&Speedup/area \\ \hline
1&3.5 seconds&1X&0&- \\ \hline
2&2.1 seconds&1.7X&8.7\%&1.56 \\ \hline
3&1.64 seconds&2.13X&17.4\%&1.81 \\ \hline
4&1.4 seconds&2.5X&25\%&2.0 \\ \hline
5&1.4 seconds&2.5X&33\%&1.88 \\ \hline
\end{tabular}
\end{table}
| |
1805.05409v2
|
\begin{table}[htbp]
\centering
\begin{tabular}{r|rr}
\hline\hline
& \multicolumn{2}{c}{\textit{Expert Coding}} \\ \hline
\textit{Classifier} & \textbf{Other} & \textbf{Moral} \\
\hline
\textbf{Other} & 29 & 16 \\
\textbf{Moral} & 2 & 13 \\ \hline\hline
\end{tabular}
\caption{Expert coder confusion matrix for classification of tweets}
\label{tab:confusion}
\end{table}
| |
2312.00477v2
|
\begin{table}
\centering
\captionof{table}{Structure of various meta-learning models. Here~$h(x;\theta)\in \R$ and~$v(x;\theta) \in \R^r$ denote arbitrary parametric models, such as neural networks; ~``order" stands for differentiation order.
% For ANIL and~CAVIA, only a restricted number of layers of the neural network are adapted.
}
\label{table:architectures}
\resizebox{\textwidth}{!}{
\begin{tabular}{c||c|c|c}
% \hline
& MAML & CoDA & CAMEL
\\
\hline
% \hline
% \multirow{2}{*}{structure} & \multicolumn{2}{c|}{parameter-} & function-
% \\
% & \multicolumn{2}{c|}{additive} & linear
% \\
% \hline
$\pi$ & \multicolumn{1}{c|}{$\theta$} & $\theta, \Theta, \{\xi_t\}$ & $\theta, \{\omega_t\}$
\\
\hline
$\mathrm{dim} (\pi)$
\rule{0pt}{2.2ex}
& $p$ &
${p {+} p{\times} d_\xi {+} d_\xi{\times} T}$
& $p {+} r {\times} T$
\\
\hline
$\mathrm{dim}(w)$
% \rule{0pt}{2.2ex}
&
\multicolumn{2}{c|}
{ $p$}
&
{$r$ }
\\
\hline
${A}(\pi, D_t)$
\rule{0pt}{2.2ex}
& $-\alpha \nabla_\theta L_t$ & $ \Theta\xi_t$ & $\omega_t $
\\
\hline
% \multirow{2}{*}
{$F(x ; \theta, w)$}
\rule{0pt}{2.2ex}
&
\multicolumn{2}{c|}
{ $h(x; \theta + w )$}
% & { $h(x; \theta + \Theta w )$}
&
% \multirow{2}{*}
{$\transp{w} v(x ; \theta)$ }
% \\
% % \cline{2-3}
% & \multicolumn{2}{c|}{$\delta \theta = w$ \quad $\delta\theta = \Theta w$ } &
\\
\hline
training & \multirow{2}{*}{2} & \multirow{2}{*}{1} & \multirow{2}{*}{1}
\\
order & & &
\\
\hline
adaptation & \multirow{2}{*}{1} & \multirow{2}{*}{1} & \multirow{2}{*}{0}
\\
order & & &
\\
% $R(\pi)$ & $0$ & $\Vert \Theta \Vert ^2$
% & $ \Vert w_t\Vert^2$
% \\
\hline
\end{tabular}
}
% % \label{table:structure}
% \end{table}
| |
2312.00477v2
|
\begin{table}[H]
\centering
\caption{Adaptation performances with standard deviations.}
\begin{tabular}{c|c|c|c|c|}
\multirow{2}{*}{System} & \multicolumn{2}{c|}{Charges{, 30 trials}} & \multicolumn{2}{c|}{Capacitor{, 5 trials}}
% \\
% \hline \hline
% \multirow{2}{*}{dipole} & error & - & - & -
% \\
% & time & - & - & -
\\
% \hline
& 3-shot & 10-shot & 5-shot & 40-shot
\\
\hline
\hline
MAML & \textsc{4.1e-0 $\pm$ 2e-0} & \textsc{1.6e-1 $\pm$ 5e-2} & N/A & N/A
\\
\hline
ANIL & \textsc{3.5e0 $\pm$ 5e-1} & \textsc{9.2e-4 $\pm$ 5e-4} & \textsc{4.4e-2 $\pm$ 2e-2} & \textsc{3.6e-2$\pm$ 1e-2}
\\
\hline
CoDA & \textsc{1.0e-1 $\pm$ 9e-2} & \textsc{8.2e-2 $\pm$ 3e-2} & \textsc{4.7e-2 $\pm$ 5e-5} & \textsc{2.6e-2$\pm$ 1e-2}
\\
\hline
CAMEL & \textsc{2.0e-4 $\pm$ 1e-4} & \textsc{1.0e-4 $\pm$ 5e-5} & \textsc{3.6e-2 $\pm$ 2e-2} & \textsc{2.6e-2 $\pm$ 1e-2}
\\
\hline
\hline
$\varphi$-CAMEL & \multicolumn{2}{c|}{\textsc{3.0e-3} } & \multicolumn{2}{c|}{\textsc{6.5e-2}}
\\
\hline
\end{tabular}
\label{table:time}
\end{table}
| |
2312.00477v2
|
\begin{table}[H]
\centering
% \caption{Adaptation performances with standard deviations.}
\begin{tabular}{c|c|c|}
% \multirow{2}{*}
{System} &
% \multicolumn{2}{c|}
{Upkie{, 15 trials}}
% \\
% \hline \hline
% \multirow{2}{*}{dipole} & error & - & - & -
% \\
% & time & - & - & -
\\
\hline
\hline
MAML & \textsc{1.5e-2 $\pm$ 7e-3}
\\
\hline
ANIL & \textsc{1.9e-2 $\pm$ 6e-3}
\\
\hline
CoDA & \textsc{2.1e-2 $\pm$ 3e-3}
\\
\hline
CAMEL & \textsc{8.2e-3 $\pm$ 5e-3}
\\
\hline
\end{tabular}
\end{table}
| |
2202.07742v2
|
\begin{table}[tb]
\caption{An overview of DeFi's naming taxonomy.}
\begin{tabular}{|l|l|ll|l|}
\hline
\textbf{DeFi Protocol} & \textbf{Smart Contract} & \multicolumn{1}{l|}{\textbf{Investor}} & \textbf{User} & \textbf{Financial Service} \\ \hline
\textit{PLFs} & Lending Pool & \multicolumn{1}{l|}{Lender} & Borrower & Loan \\ \hline
\textit{DEXs} & Liquidity Pool & \multicolumn{1}{l|}{Liquidity Provider} & Buyer/Trader & Exchange \\ \hline
\textit{Yield Aggregators} & Vault & Vault User & & Asset Management \\ \hline
\end{tabular}
\label{tab:sok}
\end{table}
| |
2107.01611v2
|
\begin{table}[!h]
\centering
\begin{tabular}{|C{3cm}|C{3cm}|C{3cm}|C{3cm}|}
\hline
& $\mathcal{NN}^{PtM}_{(SPX, VIX)}$ & $\mathcal{NN}^{MtP}_{SPX}$ & $\mathcal{NN}^{MtP}_{VIX}$\\
\hline
Input dimension & 120 & 15 & 15 \\
\hline
Output dimension & 15 & 60 & 60 \\
\hline
Hidden layers & \multicolumn{3}{C{9cm}|}{7 with 25 hidden nodes for each, followed by SiLU activation function,
see \cite{hendrycks2016gaussian}} \\
\hline
Training epochs & \multicolumn{3}{C{9cm}|}{150 epochs with early stopping if not improved on validation set for 5 epochs} \\
\hline
Others & \multicolumn{3}{C{9cm}|}{Adam optimizer, initial learning rate 0.001, reduced by a factor of 2 every 10 epochs, mini-batch size 128} \\
\hline
\end{tabular}
\caption{Some key characteristics of the networks and the training process.}
\label{tab:nn_summary}
\end{table}
| |
2003.00130v1
|
\begin{table}[!htb]
\scriptsize
\begin{center}
\begin{tabular}{|p{3cm}||p{2cm}|p{2cm}|p{2cm}|p{2cm}|}
\hline
Model & Accuracy & Precision & Recall & F1\\
\hline\hline
CNN \cite{Ts} & 63.06 & 63.29 & 63.06 & 62.97 \\
TransLOB & \textbf{91.62} & \textbf{91.63} & \textbf{91.62} & \textbf{91.61} \\
\hline
\end{tabular}
\end{center}
\caption{Prediction horizon $k=100$.}
\label{table:horizon100}
\end{table}
| |
2209.02057v3
|
\begin{table}[H]
\centering
\begin{tabular}{|c|ccc|}
\hline
& \textbf{Group A} & \textbf{Group B} & \textbf{Total} \\ \hline
\textit{Death} & $d_{Ai}$ & $d_{Bi}$ & $d_{i}$ \\
\textit{Survivorship} & $n_{Ai} - d_{Ai}$ & $n_{Bi} - d_{Bi}$ & $n_{i} - d_{i}$ \\
\textit{Total} & $n_{Ai}$ & $n_{Bi}$ & $n_{i}$ \\ \hline
\end{tabular}
\caption{Notation used for the number at time i}
\label{lr}
\end{table}
| |
2209.02057v3
|
\begin{table}[H]
\centering
\scalebox{0.9}{
\begin{tabular}{|c|cc|cc|}
\hline
\textit{\textbf{}} & \textit{\textbf{Age}} & \textit{\textbf{Gender}} & \textit{Y} & \textit{$\delta$} \\ \hline
\textit{\textbf{$S_{1}$}} & \textit{40} & \textit{Female} & \textit{7.1} & \textit{1} \\
\textit{\textbf{$S_{2}$}} & \textit{30} & \textit{Male} & \textit{4.9} & \textit{0} \\
\textit{\textbf{$S_{3}$}} & \textit{52} & \textit{Male} & \textit{3.4} & \textit{0} \\
\textit{\textbf{$S_{4}$}} & \textit{60} & \textit{Female} & \textit{3} & \textit{1} \\ \hline
\end{tabular}}
\caption{Example of survival data table}
\label{surData}
\end{table}
| |
2209.02057v3
|
\begin{table}[H]
\centering
\scalebox{0.8}{
\begin{tabular}{|r|cc|cc|}
\hline
\textbf{Models} & \textit{SMR Train} & \textit{SMR Test} \\ \hline
\textit{\textbf{Binomial Regression}} & 0.99 & 0.99 \\
\textit{\textbf{Poisson Regression}} & 1.00 & 0.98 \\
\textit{\textbf{logistic GAM}} & 1.00 & 0.96 \\
\textit{\textbf{Random Forest}} & 0.99 & 0.99 \\
\textit{\textbf{LightGBM}} & 0.99 & 0.98 \\
\textit{\textbf{XGBoost}} & 0.99 & 0.94 \\
\textit{\textbf{Catboost}} & 1.01 & 0.99 \\ \hline
\end{tabular}}
\caption{Validation metrics for discrete models}
\label{ev}
\end{table}
| |
2209.02057v3
|
\begin{table}[H]
\centering
\begin{tabular}{|c|cccccccccc|}
\hline
& \textit{\textbf{1}} & \textit{\textbf{2}} & \textit{\textbf{3}} & \textit{\textbf{4}} & \textit{\textbf{5}} & \textit{\textbf{6}} & \textit{\textbf{7}} & \textit{\textbf{8}} & \textit{\textbf{9}} & \textit{\textbf{10}} \\ \hline
\textit{\textbf{$\delta$}} & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\textit{\textbf{ei}} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0.2 & 0.8 & 0.5 \\ \hline
\end{tabular}
\label{ind}
\end{table}
| |
2402.17168v1
|
\begin{table}[t]
\centering
\small
\resizebox{\linewidth}{!}{\begin{tabular}{c|cc|cc}
\toprule
\multirow{2}*{Context} & \multicolumn{2}{c}{DSEval-Kaggle} & \multicolumn{2}{c}{DSEval-Exercise} \\
& Pass Rate & w/ Error Prop & Pass Rate & w/ Error Prop \\
\midrule
Q & 13.9 & 13.9 & 13.9 & 13.9 \\
C+Q & 53.8 & 40.4 & \bfseries 81.3 & \bfseries 80.7 \\
V+Q & 52.3 & 51.5 & 73.3 & 71.1 \\
C+V+Q & \bfseries 61.4 & 52.5 & 80.7 & 80.2 \\
V+C+Q & 59.8 & \bfseries 56.8 & 78.6 & 78.6 \\
Q+V+C & 58.3 & 53.5 & 74.3 & 71.7 \\
\bottomrule
\end{tabular}%
}
\caption{Comparison of combinations in the context. ``C'' stands for ``Code history'', ``V'' stands for ``Variable descriptions'' and ``Q'' stands for ``Query''.}
\label{tab:compare-context-orders}
\end{table}
| |
1907.13634v1
|
\begin{table}[H]
\begin{center}
\small
\begin{tabular}{ccc}
\hline
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{1}{c|}{SketchyCoreSVD} \\
\hline
\multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.3} \\
\hline
\multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.0016} & \multicolumn{1}{c|}{0.0016} \\
\hline
\multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{0.0097} & \multicolumn{1}{c|}{0.0062} \\
\hline
\end{tabular}
\caption{Performance comparisons for Navier Stokes dataset.}
\end{center}
\end{table}
| |
1907.13634v1
|
\begin{table}[H]
\begin{center}
\small
\begin{tabular}{ccccccc}
\hline
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{1} & \multicolumn{1}{c|}{2} & \multicolumn{1}{c|}{3} & \multicolumn{1}{c|}{4} & \multicolumn{1}{c|}{5} & \multicolumn{1}{c|}{6} \\
\hline
\multicolumn{1}{|c|}{SketchySVD} & \multicolumn{1}{c|}{115.3884} & \multicolumn{1}{c|}{116.2469} & \multicolumn{1}{c|}{112.3364} & \multicolumn{1}{c|}{96.8527} & \multicolumn{1}{c|}{97.7459} & \multicolumn{1}{c|}{88.7866} \\
\hline
\multicolumn{1}{|c|}{SketchyCoreSVD} & \multicolumn{1}{c|}{107.3097} & \multicolumn{1}{c|}{107.2117} & \multicolumn{1}{c|}{98.2154} & \multicolumn{1}{c|}{84.5132} & \multicolumn{1}{c|}{83.6819} & \multicolumn{1}{c|}{85.8143} \\
\hline
\end{tabular}
\caption{Comparison of PSNR ratios for the first six left singular vectors computed on the Navier Stokes dataset, where $p=0.3$ for our SketchyCoreSVD method.}
\end{center}
\end{table}
| |
1907.13634v1
|
\begin{table}[H]
\begin{center}
\small
\begin{tabular}{ccccc}
\hline
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{Yale Face} & \multicolumn{1}{c|}{Cardiac MRI} & \multicolumn{1}{c|}{BR1003} & \multicolumn{1}{c|}{Video} \\
\hline
\multicolumn{1}{|c|}{$\mu$} & \multicolumn{1}{c|}{4.1137} & \multicolumn{1}{c|}{127.5935} & \multicolumn{1}{c|}{5.4270} & \multicolumn{1}{c|}{20.3505} \\
\hline
\multicolumn{1}{|c|}{$\mu^{\prime}$} & \multicolumn{1}{c|}{5.9454} & \multicolumn{1}{c|}{159.8982} & \multicolumn{1}{c|}{5.2750} & \multicolumn{1}{c|}{22.8109} \\
\hline
\multicolumn{1}{|c|}{$\nu$} & \multicolumn{1}{c|}{2.7068} & \multicolumn{1}{c|}{2.1507} & \multicolumn{1}{c|}{32.8387} & \multicolumn{1}{c|}{14.0194} \\
\hline
\multicolumn{1}{|c|}{$\nu^{\prime}$} & \multicolumn{1}{c|}{4.1355} & \multicolumn{1}{c|}{2.2260} & \multicolumn{1}{c|}{57.4357} & \multicolumn{1}{c|}{6.7429} \\
\hline
\end{tabular}
\caption{Comparison of $(\mu,\nu)$ and $(\mu^{\prime},\nu^{\prime})$ on different datasets. The parameters $(r,k,s,p)$ for each dataset are chosen as the same values as used to show all the visual comparisons.}
\end{center}
\end{table}
| |
1907.13634v1
|
\begin{table}[H]
\begin{center}
\small
\begin{tabular}{ccccc}
\hline
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{3}{c|}{SketchyCoreSVD} \\
\hline
\multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.3} & \multicolumn{1}{c|}{0.35} & \multicolumn{1}{c|}{0.4} \\
\hline
\multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.066} & \multicolumn{1}{c|}{0.0765} & \multicolumn{1}{c|}{0.0737} & \multicolumn{1}{c|}{0.0717} \\
\hline
\multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{0.0239} & \multicolumn{1}{c|}{0.0134} & \multicolumn{1}{c|}{0.0146} & \multicolumn{1}{c|}{0.0166} \\
\hline
\end{tabular}
\caption{Performance comparisons for Yale Face dataset.}
\end{center}
\end{table}
| |
1907.13634v1
|
\begin{table}[H]
\begin{center}
\small
\begin{tabular}{ccccc}
\hline
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{3}{c|}{SketchyCoreSVD} \\
\hline
\multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.3} & \multicolumn{1}{c|}{0.35} & \multicolumn{1}{c|}{0.4} \\
\hline
\multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.0019} & \multicolumn{1}{c|}{0.0021} & \multicolumn{1}{c|}{0.0021} & \multicolumn{1}{c|}{0.0019} \\
\hline
\multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{0.0567} & \multicolumn{1}{c|}{0.0316} & \multicolumn{1}{c|}{0.038} & \multicolumn{1}{c|}{0.0396} \\
\hline
\end{tabular}
\caption{Performance comparisons for Cardiac MRI dataset.}
\end{center}
\end{table}
| |
1907.13634v1
|
\begin{table}[H]
\begin{center}
\small
\begin{tabular}{ccccc}
\hline
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{3}{c|}{SketchyCoreSVD} \\
\hline
\multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.04} & \multicolumn{1}{c|}{0.06} & \multicolumn{1}{c|}{0.08} \\
\hline
\multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.0025} & \multicolumn{1}{c|}{0.0031} & \multicolumn{1}{c|}{0.0029} & \multicolumn{1}{c|}{0.0027} \\
\hline
\multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{3.2049} & \multicolumn{1}{c|}{0.816} & \multicolumn{1}{c|}{1.1643} & \multicolumn{1}{c|}{1.3614} \\
\hline
\end{tabular}
\caption{Performance comparisons for BR1003 dataset.}
\end{center}
\end{table}
| |
1907.13634v1
|
\begin{table}[H]
\begin{center}
\small
\begin{tabular}{ccccc}
\hline
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{SketchySVD} & \multicolumn{3}{c|}{SketchyCoreSVD} \\
\hline
\multicolumn{1}{|c|}{$p$} & \multicolumn{1}{c|}{-} & \multicolumn{1}{c|}{0.1} & \multicolumn{1}{c|}{0.15} & \multicolumn{1}{c|}{0.2} \\
\hline
\multicolumn{1}{|c|}{$err$} & \multicolumn{1}{c|}{0.0148} & \multicolumn{1}{c|}{0.0213} & \multicolumn{1}{c|}{0.0177} & \multicolumn{1}{c|}{0.0165} \\
\hline
\multicolumn{1}{|c|}{time (sec)} & \multicolumn{1}{c|}{8.0062} & \multicolumn{1}{c|}{2.3224} & \multicolumn{1}{c|}{2.6266} & \multicolumn{1}{c|}{3.5619} \\
\hline
\end{tabular}
\caption{Performance comparisons for Video dataset.}
\end{center}
\end{table}
| |
2103.04112v2
|
\begin{table}[htbp]
\centering
\caption{Data extraction items}
\label{tab:data_items}\vspace{-5pt}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Item ID} & \textbf{Item} & \textbf{Use} \\ \hline
F1 & Authors & Documentation \\ \hline
F2 & Year & Documentation \\ \hline
F3 & Title & Documentation \\ \hline
F4 & Venue & Documentation \\ \hline
F5 & Citation count & Documentation \\ \hline
F6 & Quality score & RQ1-3 \\ \hline
F7 & Adaptation problem & RQ1 \\ \hline
F8 & Learning problem & RQ1 \\ \hline
F9 & MAPE function(s) supported by learning & RQ2 \\ \hline
F10 & Dimensions of learning methods & RQ2 \\ \hline
F11 & Learning method(s) used to support self-adaptation & RQ2 \\ \hline
F12 & Application domain & RQ1 \\ \hline
F13 & Limitations & RQ3 \\ \hline
F14 & Challenges & RQ3 \\ \hline
\end{tabular}
\vspace{5pt}
\end{table}
| |
2103.04112v2
|
\begin{table}
\centering
\caption{Venue types with the number of studies and top venues per type, and the mean values and standard deviations of the quality scores for the different venue types (i.e., data of venues with at least three papers among the selected papers; the number or papers for each top venue is specified inside brackets).
}
\label{tab:quality_scores}
\begin{tabular}{|l|c|c|c|l|}
\hline
\thead{Venue Type} & \thead{\makecell{Number of \\ Studies}} & \thead{Mean \\ Quality Score} & \thead{Standard Deviation \\ Quality Score} & \thead{\makecell{Top Venues \\ (with $\geq 3$ studies)}} \\ \hline
Journals & 36 & 8.6 & 1.7 & \makecell[l]{TAAS (4) \\ IEEE Access (4) \\ TSE (3) \\ Cluster Computing (3)}\\ \hline
Conferences & 50 & 7.0 & 1.7 & \makecell[l]{ICAC (5) \\ SASO (3)}\\ \hline
Symposia & 13 & 7.8 & 2.4 & SEAMS (8)\\ \hline
Books & 4 & 8.3 & 1.0 & \\ \hline
Workshops & 6 & 6.5 & 1.0 & FAS*W (4)\\ \hline\hline
Overall & 109 & 7.7 & 1.9 & \\ \hline
\end{tabular}
\vspace{-5pt}
\vspace{0pt}
\end{table}
| |
2103.04112v2
|
\begin{table}[htbp]
\centering
\caption{Application domains of the collected papers.}
\label{tab:application_domains}
\vspace{-5pt}
\begin{tabular}{|c|c|}
\hline
\textbf{Application domain} & \textbf{Number} \\ \hline
Cloud & 33 \\ \hline
Client-server system & 18 \\ \hline
Cyber-physical system & 16 \\ \hline
Internet-of-things & 9 \\ \hline
Service-based system & 8 \\ \hline
Robotics & 7 \\ \hline
Network management & 6 \\ \hline
Business process management
& 4 \\ \hline
Remote data mirroring & 3 \\ \hline
Traffic management & 3 \\ \hline
Stream processing
& 2 \\ \hline
Grid computing & 1 \\ \hline
Medical simulation & 1 \\ \hline
No specific domain & 3 \\ \hline
\end{tabular}
\vspace{5pt}
\end{table}
| |
2103.04112v2
|
\begin{table}[htbp]
\centering
\caption{Themes of challenges with concrete focus as reported in the papers.}
\vspace{-5pt}
\label{tab:chal_reported}
\begin{tabular}{|p{3cm}|p{10cm}|}
\hline
\textbf{Challenge Theme} & \textbf{Concrete Focus} \\ \hline
Qualities & Scalability of learning, remove performance penalty \\ \hline
Uncertainty & Monitor uncertainty, detect novelty, support open world \\ \hline
Goals & Deal with changing goals, conflict of goals, new types of goals \\ \hline
Guarantees & Ensure quality goals, avoid sub-optimality, support explainability \\ \hline
Domain / Design & Deal with parameter tuning, transfer solutions, reusability of solution \\ \hline
\end{tabular}
\end{table}
| |
2103.04112v2
|
\begin{table}[htbp]
\centering
\caption{Additional opportunities for future research driven by learning methods.}
\vspace{-5pt}
\label{tab:chal_additional}
\begin{tabular}{|p{4cm}|p{9cm}|}
\hline
\textbf{Learning Method} & \textbf{Concrete Opportunities} \\ \hline
Unsupervised learning & Detecting new structures in complex data, support other learning methods \\ \hline
Active learning & Involve stakeholders in decision-making, reduce learning cost, increase speed of learning \\ \hline
Adversarial learning & Improve rules and policies, detect anomalies \\ \hline
Other learning methods & Detection of novel phenomena in environment, synchronize execution workflows in complex settings \\ \hline
\end{tabular}
\end{table}
| |
2106.13485v2
|
\begin{table}[]
% \begin{tabular}{|c|c|c|}
% \hline
% Model & Central charge \\\hline
% $(A_{k+1}, A_k), k=3,5,7,9,11$ & $1-6/(k(k+1))$\\ \hline
% $\mathbb{Z}_k$ parafermion, $k=4,6,8,10$ & $2(k-1)/(k+2)$ \\\hline
% $N=1$ SCFT, $k=5,7,9,11$ & $3/2-12/(k(k+2))$ \\\hline
% \end{tabular}
% \caption{CFTs included in unsupervised learning.}
% \label{untable}
% \end{table}
| |
2002.06306v1
|
\begin{table}[h!]
\centering
\scriptsize
\sffamily
\vspace{-1.5ex}
\def\arraystretch{1.2}
\setlength{\tabcolsep}{2pt}
\begin{tabular*}{\textwidth}{|l|l||l|l|}
\hhline{|--||--|}
\multicolumn{2}{|c||}{\textbf{Reward Functions}} & \multicolumn{2}{c|}{\textbf{Reward Schedules}} \\
\hhline{:==::==:}
\texttt{Action[$v$]} & \makecell[l]{Give $v$ to agents when they take \\ an action (i.e., not a no-op).} & \texttt{Fixed[$r$]} & \makecell[l]{The reward function is always fixed to $r$, and is \\ thus stationary.} \\
\hhline{|--||--|}
\texttt{Collect[$i$,$v$]} & \makecell[l]{Give $v$ to agents for each item of \\ type $i$ that they collect.} & \texttt{Curriculum[$\{r_i,t_i\}^R_{i=1}$]} & \makecell[l]{Use reward function $r_1$ for the first $t_1$ steps, \\ then $r_2$ for $t_2$ steps, ..., and keep using $r_R$ \\ after the list of reward functions is exhausted.} \\
\hhline{|--||--|}
\texttt{Explore[$v$]} & \makecell[l]{Give $v$ to agents each time they \\ move further away from their \\ starting position in the world map.} & \texttt{Cyclical[$\{r_i,t_i\}^R_{i=1}$]} & \makecell[l]{Use reward function $r_1$ for the first $t_1$ steps, \\ then $r_2$ for $t_2$ steps, ..., and then repeat \\ after the list of reward functions is exhausted.} \\
\hhline{|--||--|}
\end{tabular*}
\vspace{-2ex}
\end{table}
| |
1610.08664v1
|
\begin{table}[!ht]
\tiny
%\centering
%\hline
\begin{adjustwidth}{-2.5in}{0in} % comment out/remove adjustwidth environment if table fits in text column.
\begin{tabular}{|c|c|l|c|}
\hline
{\bf \#} & {\bf PDB} & {\bf Ligands} & {\bf Res \AA }\\
\hline
1 & 1BM0 & N/A & 2,5\\
\hline
2 & 1E78 & N/A & 2,6\\
\hline
3 & 1E7A & 2,6-BIS(1-METHYLETHYL)PHENOL (PROPOFOL) & 2,2\\
\hline
4 & 1E7C & MYRISTIC ACID; 2-BROMO-2-CHLORO-1,1,1-TRIFLUOROETHANE & 2,4\\
\hline
5 & 1E7E & DECANOIC ACID & 2,5\\
\hline
6 & 1E7F & LAURIC ACID & 2,43\\
\hline
7 & 1E7G & MYRISTIC ACID & 2,5\\
\hline
8 & 1E7H & PALMITIC ACID & 2,43\\
\hline
9 & 1E7I & STEARIC ACID & 2,7\\
\hline
10 & 1GNI & OLEIC ACID & 2,4\\
\hline
11 & 1GNJ & ARACHIDONIC ACID & 2,6\\
\hline
12 & 1H9Z & R-WARFARIN; MYRISTIC ACID & 2,5\\
\hline
13 & 1HA2 & S-WARFARIN; MYRISTIC ACID & 2,5\\
\hline
14 & 1HK4 & 3,5,3',5'-TETRAIODO-L-THYRONINE; MYRISTIC ACID & 2,4\\
\hline
15 & 1HK5 & 3,5,3',5'-TETRAIODO-L-THYRONINE; MYRISTIC ACID & 2,7\\
\hline
16 & 1N5U & PROTOPORPHYRIN IX CONTAINING FE (HEME); MYRISTIC ACID & 1,9\\
\hline
17 & 1O9X & PROTOPORPHYRIN IX CONTAINING FE (HEME); MYRISTIC ACID & 3,2\\
\hline
18 & 1UOR & N/A & 2,8\\
\hline
19 & 2BX8 & AZAPROPAZONE & 2,7\\
\hline
20 & 2BXB & 4-BUTYL-1-(4-HYDROXYPHENYL)-2-PHENYLPYRAZOLIDINE- 3,5-DIONE (OXYPHENBUTAZONE) & 3,2\\
\hline
21 & 2BXC & 4-BUTYL-1,2-DIPHENYL-PYRAZOLIDINE-3,5-DIONE & 3,1\\
\hline
22 & 2BXD & R-WARFARIN & 3,05\\
\hline
23 & 2BXF & 7-CHLORO-1-METHYL-5-PHENYL-1,3-DIHYDRO-2H- 1,4-BENZODIAZEPIN-2-ONE & 2,95\\
\hline
24 & 2BXG & 2-(4-ISOBUTYLPHENYL)PROPIONIC ACID (IBUPROFEN) & 2,7\\
\hline
25 & 2BXI & AZAPROPAZONE; MYRISTIC ACID & 2,5\\
\hline
26 & 2BXK & INDOMETHACIN; AZAPROPAZONE; MYRISTIC ACID & 2,4\\
\hline
27 & 2BXL & 2-HYDROXY-3,5-DIIODO-BENZOIC ACID; MYRISTIC ACID & 2,6\\
\hline
28 & 2BXM & INDOMETHACIN; MYRISTIC ACID & 2,5\\
\hline
29 & 2BXN & 3-[5-[(3-CARBOXY-2,4,6-TRIIODO-PHENYL)CARBAMOYL]PENTANOYLAMINO]- 2,4,6-TRIIODO-BENZOIC ACID; MYRISTIC ACID & 2,65\\
\hline
30 & 2BXO & 4-BUTYL-1-(4-HYDROXYPHENYL)-2-PHENYLPYRAZOLIDINE- 3,5-DIONE (OXYPHENBUTAZONE); MYRISTIC ACID & 2,6\\
\hline
31 & 2BXP & 4-BUTYL-1,2-DIPHENYL-PYRAZOLIDINE-3,5-DIONE; MYRISTIC ACID & 2,3\\
\hline
32 & 2BXQ & INDOMETHACIN; 4-BUTYL-1,2-DIPHENYL-PYRAZOLIDINE-3,5-DIONE; MYRISTIC ACID & 2,6\\
\hline
33 & 2I2Z & MYRISTIC ACID; 2-HYDROXYBENZOIC ACID (SALICYLIC ACID) & 2,7\\
\hline
34 & 2I30 & MYRISTIC ACID; 2-HYDROXYBENZOIC ACID (SALICYLIC ACID) & 2,9\\
\hline
35 & 2XSI & DANSYL-L-GLUTAMATE; MYRISTIC ACID & 2,7\\
\hline
36 & 2XVV & DANSYL-L-ASPARAGINE; MYRISTIC ACID & 2,4\\
\hline
37 & 2XVW & DANSYL-L-ARGININE; MYRISTIC ACID & 2,65\\
\hline
38 & 3B9L & 3'-AZIDO-3'-DEOXYTHYMIDINE (AZIDOTHYMIDINE); MYRISTIC ACID & 2,6\\
\hline
39 & 3B9M & 3'-AZIDO-3'-DEOXYTHYMIDINE (AZIDOTHYMIDINE); MYRISTIC ACID; 2-HYDROXYBENZOIC ACID (SALICYLIC ACID) & 2,7\\
\hline
40 & 3CX9 & (2S)-3-{[(R)-(2-AMINOETHOXY)(HYDROXY)PHOSPHORYL]OXY}- 2-HYDROXYPROPYL HEXADECANOATE; MYRISTIC ACID & 2,8\\
\hline
41 & 3JRY & SULFATE ION & 2,3\\
\hline
42 & 3LU6 & [(1R,2R)-2-{[(5-FLUORO-1H-INDOL-2-YL)CARBONYL]AMINO}- 2,3-DIHYDRO-1H-INDEN-1-YL]ACETIC ACID & 2,7\\
\hline
43 & 3LU7 & 4-[(1R,2R)-2-{[(5-FLUORO-1H-INDOL-2-YL)CARBONYL]AMINO}- 2,3-DIHYDRO-1H-INDEN-1-YL]BUTANOIC ACID; PHOSPHATE ION & 2,8\\
\hline
44 & 3SQJ & MYRISTIC ACID & 2,05\\
\hline
45 & 3UIV & MYRISTIC ACID; (3S,5S,7S)-TRICYCLO[3.3.1.1~3,7~]DECAN-1- AMINE (AMANTADINE) & 2,2\\
\hline
46 & 4BKE & PALMITIC ACID & 2,35\\
\hline
47 & 4G03 & N/A & 2,22\\
\hline
48 & 4G04 & N/A & 2,3\\
\hline
49 & 4IW2 & ALPHA-D-GLUCOSE; D-GLUCOSE IN LINEAR FORM; PHOSPHATE ION & 2,41\\
\hline
50 & 4K2C & N/A & 3,23\\
\hline
51 & 4L8U & (2S)-2-[1-AMINO-8-(HYDROXYMETHYL)-9-OXO-9,11- DIHYDROINDOLIZINO[1,2-B]QUINOLIN-7-YL]-2- HYDROXYBUTANOIC ACID; MYRISTIC ACID & 2,01\\
\hline
52 & 4L9K & (2S)-2-HYDROXY-2-[8-(HYDROXYMETHYL)-9-OXO- 9,11-DIHYDROINDOLIZINO[1,2-B]QUINOLIN-7-YL]BUTANOIC ACID & 2,4\\
\hline
53 & 4L9Q & TENIPOSIDE & 2,7\\
\hline
54 & 4LA0 & R-BICALUTAMIDE & 2,4\\
\hline
55 & 4LB2 & IDARUBICIN & 2,8\\
\hline
56 & 4LB9 & ETOPOSIDE; MYRISTIC ACID & 2,7\\
\hline
57 & 4Z69 & 2-[2,6-DICHLOROPHENYL)AMINO]BENZENEACETIC ACID (DICLOFENAC); PALMITIC ACID; PENTADECANOIC ACID & 2,19\\
\hline
58 & 5IFO & MYRISTIC ACID; RUTHENIUM ION & 3,2\\
\hline
\end{tabular}
\caption*{{\bf Supplementary Table 1.} Ligands, resolution and literature references of the HSA dataset.}
\end{adjustwidth}
\end{table}
| |
1610.08664v1
|
\begin{table}[!ht]
\scriptsize
\centering
%\hline
\begin{adjustwidth}{-0.75in}{0in}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\# & PDB & bound fatty acids & Qh tree & RMSD Tree & RCA cluster \\
\hline
1 & 1BM0 & no & A & A & A \\
\hline
2 & 1E78 & no & A & A & A \\
\hline
3 & 1E7A & no & A & A & A \\
\hline
4 & 1E7C & yes & B & B & B \\
\hline
5 & 1E7E & yes & B & B & B \\
\hline
6 & 1E7F & yes & B & B & B \\
\hline
7 & 1E7G & yes & B & B & B \\
\hline
8 & 1E7H & yes & B & B & B \\
\hline
9 & 1E7I & yes & B & B & B \\
\hline
10 & 1GNI & yes & B & B & B \\
\hline
11 & 1GNJ & yes & B & B & B \\
\hline
12 & 1H9Z & yes & B & B & B \\
\hline
13 & 1HA2 & yes & B & B & B \\
\hline
14 & 1HK4 & yes & B & B & B \\
\hline
15 & 1HK5 & yes & B & B & B \\
\hline
16 & 1N5U & yes & B & B & B \\
\hline
17 & 1O9X & yes & B & B & B \\
\hline
18 & 1UOR & no & A & A & A \\
\hline
19 & 2BX8 & no & A & A & A \\
\hline
20 & 2BXB & no & A & A & A \\
\hline
21 & 2BXC & no & A & A & A \\
\hline
22 & 2BXD & no & A & A & A \\
\hline
23 & 2BXF & no & A & A & A \\
\hline
24 & 2BXG & no & A & A & A \\
\hline
25 & 2BXI & yes & B & B & B \\
\hline
26 & 2BXK & yes & B & B & B \\
\hline
27 & 2BXL & yes & B & B & B \\
\hline
28 & 2BXM & yes & B & B & B \\
\hline
29 & 2BXN & yes & B & B & B \\
\hline
30 & 2BXO & yes & B & B & B \\
\hline
31 & 2BXP & yes & B & B & B \\
\hline
32 & 2BXQ & yes & B & B & B \\
\hline
33 & 2I2Z & yes & B & B & B \\
\hline
34 & 2I30 & yes & B & B & B \\
\hline
35 & 2XSI & yes & B & B & B \\
\hline
36 & 2XVV & yes & B & B & B \\
\hline
37 & 2XVW & yes & B & B & B \\
\hline
38 & 3B9L & yes & B & B & B \\
\hline
39 & 3B9M & yes & B & B & B \\
\hline
40 & 3CX9 & yes & B & B & B \\
\hline
41 & 3JRY & no & A & A & A \\
\hline
42 & 3LU6 & no & A & A & A \\
\hline
43 & 3LU7 & no & A & A & A \\
\hline
44 & 3SQJ & yes & B & B & B \\
\hline
45 & 3UIV & yes & B & B & B \\
\hline
46 & 4BKE & yes & B & B & B \\
\hline
47 & 4G03 & no & A & A & A \\
\hline
48 & 4G04 & no & A & A & A \\
\hline
49 & 4IW2 & no & A & A & A \\
\hline
50 & 4K2C & no & A & A & A \\
\hline
51 & 4L8U & yes & B & B & B \\
\hline
52 & 4L9K & no & A & A & A \\
\hline
53 & 4L9Q & no & A & A & A \\
\hline
54 & 4LA0 & no & A & A & A \\
\hline
55 & 4LB2 & no & A & A & A \\
\hline
56 & 4LB9 & yes & B & B & B \\
\hline
57 & 4Z69 & yes & B & B & B \\
\hline
58 & 5IFO & yes & B & B & B \\
\hline
\end{tabular}
\caption*{{\bf Supplementary Table 2.} HSA dataset clusters.}
\end{adjustwidth}
\end{table}
| |
2403.16451v4
|
\begin{table}
\caption{Machining Configuration of Datasets}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
\multirow{2}{*}{ Dataset } & \multirow{2}{*}{ Spindle RPM } & Feed Rate & \# of Configuration \\
& & (mm/rev) & Changes \\ \hline
WC\_AO-MS & 1100 to 2700 & [0.25,0.1] & 14 \\ \hline
WC\_TAN-MS & 1600 to 2200 & [0.25,0.12] & 2 \\ \hline
WC\_TC-AS & 1000 to 2100 & [0.12,0.25] & 3 \\ \hline
\end{tabular}
\end{center}
\end{table}
| |
2403.16451v4
|
\begin{table}
\caption{Train/Test Split of Pre-trained Datasets}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
\multirow{2}{*}{ Dataset } & Train & Test & Total \\
& (\#Workpieces) & (\#Workpieces) & (\#Workpieces) \\ \hline
WC\_AO-MS & \multirow{2}{*}{ 277[$277$] } & \multirow{2}{*}{ 70[70] } & \multirow{2}{*}{ 347 } \\
(Random) & & & \\ \hline
WC\_AO-MS & \multirow{2}{*}{ 281[$277$,2,2] } & \multirow{2}{*}{ 66[11,7,48] } & \multirow{2}{*}{ 347 } \\
(Sequential) & & & \\ \Xhline{1pt}
\end{tabular}
\end{center}
\label{table:Datasets1}
\end{table}
| |
2403.16451v4
|
\begin{table}
\caption{Train/Test Split of Adapted Datasets}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
\multirow{2}{*}{ Dataset } & Train & Test & Total \\
& (\#Workpieces) & (\#Workpieces) & (\#Workpieces) \\ \hline
WC\_TAN-MS & 4[2,2] & 83[37,46] & 87 \\ \hline
WC\_TC-AS & 6[2,2,2] & 28[5,2,19] & 34 \\ \hline
\end{tabular}
\end{center}
\label{table:Datasets2}
\end{table}
| |
2005.10966v2
|
\begin{table}[h]
\small
\begin{tabular}{|r|p{1.08in}|p{1.08in}|p{1.08in}|p{1.08in}|}
\hline
Name & Barrier Condition & Knocked-in Instrument Rebate & Knocked-In
Instrument Value & Final Payoff if not Breached \\
\hline \hline
Up-and-Out Call & $S_t \geq U_t$ (Upper Barrier Position) & $G_t$ & $0$ &
$\max(S_T-K,0)$ \\
\hline
Down-and-Out Call & $S_t \leq L_t$ (Lower Barrier Position) & $G_t$ & $0$ &
$\max(S_T-K,0)$ \\
\hline
Up-and-In Call & $S_t \geq U_t$ (Upper Barrier Position) & $0$ & $V(S_t, K,
T-t)$ & $0$ \\
\hline
Down-and-In Call & $S_t \leq L_t$ (Lower Barrier Position) & $0$ & $V(S_t, K,
T-t)$ & $0$ \\
\hline
\end{tabular}
\caption{Summary of basic barrier Call instruments}
\label{table:barriervariants}
\end{table}
| |
2005.10966v2
|
\begin{table}
\centering
\begin{tabular}{|r|l|l|l|l|}
\hline
$\sigma$ & $r$ & $T$ & $B$ (Barrier Position) & $K$ (Strike) \\
\hline \hline
0.2 &0.05 & 0.5 Years &150.0 & 100.0 \\
\hline
\end{tabular}
\caption{Parameters for the $X$ dynamics, the generator, and the instruments}
\label{table:rfmodel}
\end{table}
| |
2304.03691v1
|
\begin{table}
\caption{Details of the composed traffic dataset}
\begin{tabular}{|l|l|l|}
\hline
\textbf{No.} & \textbf{Malicious Traffic types} & \textbf{Encrypted Session} \\
\hline
1 & Ammyy & 14245 \\
\hline
2 & Artemis Trojan & 10246 \\
\hline
3 & Barys & 19438 \\
\hline
4 & Bunitu Botnet & 8060 \\
\hline
5 & Bunitu Botnet (Stripped) & 5560 \\
\hline
6 & Caphaw/Kazy & 24948 \\
\hline
7 & Cerber Ransomware & 26253 \\
\hline
8 & Dridex & 6225 \\
\hline
9 & HPEmotet & 13736 \\
\hline
10 & HtBot & 10606 \\
\hline
11 & Miuref & 4634 \\
\hline
12 & omQUd & 11257 \\
\hline
13 & PUA.Taobao & 11341 \\
\hline
14 & Ransom.Locky & 26960 \\
\hline
15 & Razy & 3207 \\
\hline
16 & Sathurbot & 1361 \\
\hline
17 & TrickBot & 8752 \\
\hline
18 & Trickster & 11644 \\
\hline
19 & Trojan.Banker & 9296 \\
\hline
20 & Trojan.Yakes & 1820 \\
\hline
21 & TrojanDownloader & 3015 \\
\hline
22 & Upatre & 1251 \\
\hline
23 & Ursnif & 10552 \\
\hline
24 & Vawtrak & 26632 \\
\hline
25 & WisdomEyes & 24228 \\
\hline
26 & Zbot with others & 11062 \\
\hline
& \textbf{Summary} & \textbf{306329} \\
\hline
\hline
\textbf{No.} & \textbf{Benign Datasets} & \textbf{Encrypted Session} \\
\hline
1 & CIRA-CIC-DoHBRW-2020 & 105524 \\
\hline
2 & \begin{tabular}[c]{@{}l@{}}Benign Capture and\\Mixture Capture\end{tabular} & 79619 \\
\hline
3 & CICIDS-2017 & 92975 \\
\hline
4 & CICIDS-2012 & 26209 \\
\hline
& \textbf{Summary} & \textbf{304327} \\
\hline
\end{tabular}
\end{table}
| |
2210.12090v1
|
\begin{table}[]
\resizebox{\textwidth}{!}{
\begin{tabular}{l|lllll}
\toprule
\textbf{Pipeline Stage} & \multicolumn{5}{c}{\textbf{Algorithm (No. Hyperparameters Optimized by {\proposed})}} \\
\midrule
\midrule
\textbf{Imputation} & HyperImpute & Mean (0) & Median (0) & Most-Frequent (0) & MissForest (2) \\
& (M)ICE (0) & SoftImpute (2) & EM (1) & Sinkhorn (6) & None (0) \\
\midrule
\textbf{Dimensionality} & Fast ICA (1) & Feat. Agg. (1) & Gauss. Rand. Proj. (1) & PCA (1) & Var. Thresh. (0) \\
\textbf{Reduction} & & & & & \\
\midrule
\textbf{Feature} & L2 Norm. (0) & Max (0) & MinMax (0) & Normal Trans. (0) & Quant. Trans. (0) \\
\textbf{Scaling} & Unif. Trans. (0) & None (0) & & & \\
\midrule
\textbf{Classification} & ADABoost (3) & Bagging (4) & Bernoulli NB (1) & CatBoost (2) & Decision Tree (1) \\
& ExtraTree (1) & Gauss. NB (0) & Grad. Boost. (3) & Hist. Grad. Boost. (2) & KNN (4) \\
& LDA (0) & Light GBM (6) & Linear SVM (1) & Log. Reg. (4) & Multi. NB (1) \\
& Neural Net. (6) & Perceptron (2) & QDA (0) & Random Forest (5) & Ridge Class. (1) \\
& TabNet (8) & XGBoost (11) & & & \\
\midrule
\textbf{Regression} & Bayesian RR (1) & CatBoost (2) & Linear (0) & MLP (0) & Neural Net. (6) \\
& TabNet (8) & XGBoost (2) & & & \\
\midrule
\textbf{Survival} & Cox PH (2) & CoxNet (6) & DeepHit (7) & LogLogistic AFT (1) & LogNorm. AFT (2) \\
\textbf{Analysis} & Surv. XGB (4) & Weibull AFT (2) & & & \\
\midrule
\textbf{Interpretability} & INVASE & KernelSHAP & LIME & Effect Size & Shap Permutation \\
& SimplEx & Symb. Persuit & & & \\
\bottomrule
\end{tabular}
}
\caption{List of algorithms currently included in {\proposedf}, grouped by pipeline stage. Numbers in brackets correspond to the number of hyperparameters optimized over by {\proposed}. {\proposed} is readily extendable to additional methods, algorithms, and hyperparameters.}
\label{tbl:algorithms}
\end{table}
| |
1405.1116v1
|
\begin{table}
\centering
%\resizebox{22em}{!} {
%\begin{tabular}{|c|>{\raggedright\hspace{0pt}}p{7em}|>{\raggedright\hspace{0pt}}p{7em}|>{\raggedright\hspace{0pt}}p{8em} l|}
%\begin{tabularx}{\columnwidth}{|c|m{3mm}|p|p|}
\begin{tabularx}{25em}{|c|X|X|X|}
\hline
\bfseries n &
\bfseries CFG nodes \newline \scriptsize \normalfont (mCODE\_n/CODE\_n) &
\bfseries Variables &
\bfseries Analysis Time (s) \newline \scriptsize \normalfont (mCODE\_n/CODE\_n)
\\
\hline
\hline
1&
235 / 117 &
107 &
0.4 / 0.3
\\
2&
463 / 231 &
211 &
1.3 / 0.7
\\
3&
919 / 459 &
419 &
4.9 / 2.5
\\
4&
1831 / 915 &
835 &
22.8 / 10.3
\\
% 4&
%1259 / 670 &
%91?? / 106 &
%23.3 / 12.0 &
% \\
\hline
\end{tabularx}
%}
\\
\medskip
\caption{The evaluation results.}
\label{table:evalresults}
\vspace{-3pt}
\end{table}
| |
1704.00683v1
|
\begin{table}[h]
\caption{Sample 7-dimensional data. Finding the largest 7-dimensional hole is not intuitive.}
\centering
\begin{tabular}{| c | c | c | c | c | c | c |}
\hline
\textbf{ID} & \textbf{Age} & \textbf{GPA} & \textbf{Gender} & \textbf{Height} & \textbf{Weight} & \textbf{Income}\\
\hline
1 & 20 & 3.6 & male & 60in. & 170lb & \$100,000\\
\hline
2 & 19 & 4.0 & female & 75in. & 160lb & \$20,000\\
\hline
3 & 21 & 3.7 & female & 71in. & 250lb & \$94,000\\
\hline
4 & 26 & 3.4 & female & 62in. & 150lb & \$112,000\\
\hline
\end{tabular}
\label{tbl:Sample}
\end{table}
| |
1704.00683v1
|
\begin{table}[htb]
\centering
\caption{Execution Time}
\label{validity-table}
\begin{tabular}{|l|l|l|}
\hline
data set & Liu's algorithm (s) & Our algorithm (s)\\ \hline
1 & 3.845 & 0.077 \\ \hline
2 & 521.426 & 97.46 \\ \hline
3 & 1523.75 & 0.44 \\ \hline
4 & 19916.4 & 3.6 \\ \hline
\end{tabular}
\end{table}
| |
1704.00683v1
|
\begin{table}[h]
\caption{Summary of 39 dimensional data. Upper-case three-letter combinations refer to the 20 naturally occurring amino acids. }
\centering
\begin{tabular}{|p{1.2cm}|p{6.5cm}|}
\hline
\textbf{Dimension(s)} & \textbf{Description} \\
\hline
1-7 & \textbf{Biological Data, Number of :} atoms, total bonds, hydrogen bonds, single covalent bonds, double covalent bonds, hydrophobic interactions, resonance bonds \\
\hline
8-28 & \textbf{Residue Data, Number of :} total residues, ALA, ARG, ASN, ASP, CYS, GLN, GLU, GLY, HIS, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TRP, TYR, VAL \\
\hline
29-33 & \textbf{Rigidity Properties, Number of :} Hinges, Bodies, Degrees of Freedom (DOF), size of largest rigid cluster, average cluster size \\
\hline
34, 35 & \textbf{Largest Cavity :} Surface Area in \AA$^2$, number of residues \\
\hline
36, 37 & \textbf{Second Largest Cavity :} Surface Area in \AA$^2$, number of residues \\
\hline
38, 39 & \textbf{Third Largest Cavity :} Surface Area in \AA$^2$, number of residues \\
\hline
\end{tabular}
\label{tbl:39metrics}
\end{table}
| |
1801.08881v5
|
\begin{table}
\caption{Relationship between the optimality criteria of different algorithms. }
\label{table-criteria}
\begin{center}
\begin{threeparttable}
{
\begin{tabular}{lll}
\headrow
\thead{CorrCA} & \thead{LDA} & \thead{JD} \\
$\rho=\frac{1}{N-1}\frac{{\bf v}^\top {\bf R}_B {\bf v}}{{\bf v}^\top {\bf R}_W {\bf v}}$
\hspace{1.5cm}
&
$S=\frac{{\bf v}^\top {\bf S}_B {\bf v}}{{\bf v}^\top {\bf S}_W {\bf v}} \stackrel{*}{=} \frac{\rho+(N-1)^{-1}}{1-\rho}$
\hspace{1.5cm}
&
$\frac{{\bf v}^\top {\bf S}_B {\bf v}}{{\bf v}^\top {\bf S}_T {\bf v}}\stackrel{*}{=}(N-1)\rho + 1$
\hspace{1.5cm}
\\
\hline
\end{tabular}
}
\begin{tablenotes}
\item $\rho$: inter-subject correlation, $S$: class-separation. * assuming zero-mean signals, or unbiased raters (${\bf S}_M=0$).
\end{tablenotes}
\end{threeparttable}
\end{center}
\end{table}
| |
2002.06163v6
|
\begin{table}[t]
\centering
\scriptsize
% \vspace{-0.7em}
\begin{tabular}{|l|c|c|c|}
\hline
\textbf{} & \textbf{$\phi_1$} & \textbf{$\phi_1+\phi_2$} & \textbf{$\phi_1+\phi_2+\phi_3$} \\
\hline
Full cleaning & 51 sec & 49 sec & 118 sec \\
\hline
\system & 49 sec & 40 sec & 92 sec\\
\hline
Holoclean & 1020 sec & 1108 sec & 1188 sec \\
\hline
\end{tabular}
\caption{Response time when increasing number of rules. }
\label{tab:hospital_time}
\vspace{-2em}
\end{table}
| |
2002.06163v6
|
\begin{table}[t]
\centering
\scriptsize
% \vspace{-0.7em}
\begin{tabular}{|l|c|c|c|c|}
\hline
\textbf{} & \textbf{$\phi_1$} & \textbf{$\phi_1+\phi_2$} & \textbf{$\phi_1+\phi_2+\phi_3$} & Total\\
\hline
\system (3 executions) & 51 sec & 49 sec & 118 sec & 218 sec\\
\hline
\system (1 execution) & 51 sec& 41 sec& 40 sec& 132 sec\\
\hline
Holoclean & 1020 sec & 1108 sec & 1188 sec & 3316 sec\\
\hline
\end{tabular}
\caption{Response time when increasing the number of rules. \system maintains provenance information and updates the probabilistic data based on the new rule without having to execute the task from scratch.}
\label{tab:hospital_time_incr}
\vspace{-1.5em}
\end{table}
| |
2002.06163v6
|
\begin{table}[t]
\centering
\scriptsize
\begin{tabular}{|l|c|c|}
\hline
\textbf{Dataset} & \textbf{\system} & \textbf{Offline}\\
\hline
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ADD%%%%%%%%%%%%%%%%%%%%
Nestle (20MB) & 2.9 min & 3.97 min\\
\hline
Nestle (200MB) & 26.8 min & 8.5 hours\\
\hline
Air quality 30\% & 10.5 min & - \\
\hline
Air quality 97\% & 49 min & - \\
\hline
\end{tabular}
\caption{Response time on realistic scenarios. }
\label{tab:real}
\vspace{-2.4em}
\end{table}
| |
2002.06163v6
|
\begin{table}[t]
\footnotesize
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
\textbf{Name} & \textbf{Zip} & \textbf{City}\\
\hline
Jon & 9001 & Los Angeles\\
\hline
Jim & 9001 & San Francisco\\
\hline
Mary & 10001 & New York\\
\hline
Jane & 10002 & New York\\
\hline
\end{tabular}
% \vspace{-1.em}
\caption{Employees dataset.}
\label{tab:employees}
\vspace{-3em}
\end{center}
\end{table}
| |
2002.06163v6
|
\begin{table}[t]
\centering
\footnotesize
\begin{tabular}{|c|c|}
\hline
\textbf{Zip} & \textbf{City}\\
\hline
\pbox{10cm}{9001} & \pbox{10cm}{Los Angeles, 67\% San Francisco, 33\%} \\
\hline
% \pbox{10cm}{9001, (a,100\%) (b,50\% )\\10001, (b,50\%)} & \pbox{10cm}{Los Angeles, (a,67\%)\\ San Francisco, (a, 33\%) (b, 50\%)}\\
\pbox{20cm}{9001} & \pbox{20cm}{Los Angeles, 67\% San Francisco, 33\%}\\ \hdashline
\pbox{20cm}{9001 50\%, 10001 50\%} & \pbox{20cm}{San Francisco}\\
\hline
\pbox{20cm}{9001} & \pbox{20cm}{Los Angeles, 67\% San Francisco, 33\%}\\
\hline
10001 & \pbox{20cm}{San Francisco, 50\% New York, 50\%}\\ \hdashline
\pbox{20cm}{9001 50\%, 10001 50\%} & \pbox{20cm}{San Francisco}\\
\hline
\end{tabular}
% \subcaption{Accurate version of the query answer.}
% \label{tab:correct_answer}
% \end{minipage}
\caption{Correct query result given condition on the \textit{lhs}. The query result becomes accurate after traversing the dataset again to fetch more correlated entities.}
\label{tab:correct_lhs_answer}
\vspace{-2em}
\end{table}
| |
2002.06163v6
|
\begin{table}[t]
\begin{minipage}{.22\textwidth}
\centering
\footnotesize
\begin{tabular}{c|c|c|}
\cline{2-3}
&\textbf{Zip} & \textbf{City}\\
\cline{2-3}
t1 & 9001 & Los Angeles\\
\cline{2-3}
t2 & 9001 & San Francisco\\
\cline{2-3}
t3 & 10001 & San Francisco\\
\cline{2-3}
\end{tabular}
\subcaption{Cities dataset.}
\label{tab:R_rel}
\end{minipage}
% \quad
\begin{minipage}{.22\textwidth}
\centering
\footnotesize
\begin{tabular}{|c|c|c|}
\hline
\textbf{Zip} & \textbf{Name} & \textbf{Phone}\\
\hline
9001 & Peter & 23456 \\
\hline
10001 & Mary & 12345 \\
\hline
10002 & Jon & 12345 \\
\hline
\end{tabular}
\subcaption{Employee dataset.}
\label{tab:S_rel}
\end{minipage}
\begin{minipage}{0.4\textwidth}
\centering
\footnotesize
\begin{tabular}{|c|c|}
\hline
\textbf{Zip} & \textbf{Name}\\
\hline
9001 & Peter \\
\hline
% 9001 & Peter \\
% \hline
\end{tabular}
\subcaption{Dirty version of the join result.}
\label{tab:join_dirty}
\end{minipage}
\quad
\begin{minipage}{0.15\textwidth}
% \centering
\footnotesize
\begin{tabular}{|c|}
\hline
\textbf{Zip}\\
\hline
\pbox{20cm}{9001}\\
\hline
\pbox{20cm}{9001, 50\%\\10001, 50\%}\\
\hline
\end{tabular}
\subcaption{Relaxed result of Select Operator over Cities.}
\label{tab:join_it1}
\end{minipage}
\begin{minipage}{0.3\textwidth}
\centering
\footnotesize
\begin{tabular}{|c|c|c|}
\hline
\textbf{C.Zip} & \textbf{E.Zip} & \textbf{Name}\\
\hline
\pbox{20cm}{9001} & 9001 & Peter \\
\hline
\pbox{20cm}{9001, 50\%\\10001, 50\%} & 9001 & Peter \\
\hline
\pbox{20cm}{9001, 50\%\\10001, 50\%} & \pbox{20cm}{10001, 50\%\\10002, 50\%} & Mary \\
\hline
\pbox{20cm}{9001, 50\%\\10001, 50\%} &\pbox{20cm}{10001, 50\%\\10002, 50\%} & Jon \\
\hline
\end{tabular}
\subcaption{Clean join result.}
\label{tab:join_it2}
\end{minipage}
\caption{Join operation over two tables that involve violations on the join key. }
\label{tab:join_ex}
\vspace{-1.7em}
\end{table}
| |
2004.00503v1
|
\begin{table}[!h]
\renewcommand{\arraystretch}{1.3}
\centering
\caption{Binary class Twitter data samples.}
\label{Tab:1}
\scalebox{1.1}{\begin{tabular}{|l|l|l|}
\hline
\textbf{Data set} & \textbf{Relevant} & \textbf{Irrelevant} \\ \hline
\textbf{Train} & 11,781 & 5,313 \\ \hline
\textbf{Test} & 2,989 & 1,285 \\ \hline
\end{tabular}}
\end{table}
| |
2004.00503v1
|
\begin{table}[!h]
\renewcommand{\arraystretch}{1.3}
\centering
\caption{Multiclass Twitter data samples.}
\label{Tab:2}
\scalebox{1.1}{\begin{tabular}{|l|c|c|}
\hline
\textbf{Category} & \textbf{Train data set} & \textbf{Test data set} \\ \hline
\textbf{Vulnerability} & 5,926 & 1,428 \\ \hline
\textbf{Ransomware} & 2,549 & 654 \\ \hline
\textbf{DDoS} & 1,776 & 469 \\ \hline
\textbf{Data leak} & 106 & 30 \\ \hline
\textbf{General} & 5,588 & 1,410 \\ \hline
\textbf{Day} & 585 & 145 \\ \hline
\textbf{Botnet} & 564 & 138 \\ \hline
\end{tabular}}
\end{table}
| |
2004.00503v1
|
\begin{table}[!h]
\renewcommand{\arraystretch}{1.3}
\centering
\caption{Average performance metrics.}
\label{Tab:5}
\begin{tabular}{|l|l|l|l|l|} \hline
\textbf{Model} & \textbf{Accuracy (\%)} & \textbf{Precision (\%)} & \textbf{ Recall (\%)} & \textbf{F1-Score (\%)} \\ \hline
\multicolumn{5}{|c|}{\textbf{Binary class classification}} \\ \hline
SVM-TDM & 81.9 & 68.8 & 72.8 & 70.7 \\ \hline
SVM-TF-IDF & 82.2 & 69.2 & 73.6 & 71.3 \\ \hline
DNN-3gram & 82.9 & 73.5 & 67.6 & 70.4 \\ \hline
CNN-Keras word embedding \cite{12} & 83.6 & 71.4 & 75.9 & 73.6 \\ \hline
RNN-Keras word embedding & 83.1 & 71.7 & 72.1 & 71.9 \\ \hline
LSTM-Keras word embedding & 84.3 & 70.1 & 83.1 & 76.0 \\ \hline
GRU-Keras word embedding & 84.7 & 73.9 & 76.0 & 74.9 \\ \hline
\textbf{CNN-GRU-Keras word embedding} &\textbf{85.8} &\textbf{ 73.7 } & \textbf{82.3} &\textbf{77.8 } \\ \hline
fastText & 84.4 & 74.6 & 73.2 & 73.9
\\ \hline
\multicolumn{5}{|c|}{\textbf{Multiclass classification}} \\ \hline
SVM-TDM & 86.2 & 86.2 & 86.2 & 86.2 \\ \hline
SVM-TF-IDF & 86.3 & 86.4 & 86.3 & 86.3 \\ \hline
DNN-3gram & 86.9 & 87.0 & 86.9 & 86.9 \\ \hline
CNN-Keras word embedding \cite{12} & 87.5 & 87.8 & 87.5 & 87.6 \\ \hline
RNN-Keras word embedding & 87.0 & 87.1 & 87.0 & 87.0 \\ \hline
LSTM-Keras word embedding & 88.0 & 88.1 & 88.0 & 88.0 \\ \hline
GRU-Keras word embedding & 88.4 & 88.8 & 88.4 & 88.5 \\ \hline
\textbf{CNN-GRU-Keras word embedding} & \textbf{89.3} & \textbf{90.3} & \textbf{89.3} & \textbf{89.3} \\ \hline
fastText & 87.9 & 88.0 & 87.9 & 87.9
\\ \hline
\end{tabular}
\end{table}
| |
2308.16491v1
|
\begin{table}[t]
\centering
\renewcommand{\arraystretch}{1.5} % Default value: 1
\begin{tabular}{l|l}
\multicolumn{2}{l}{\textbf{Control paper of the same type as replicated}} \\
\midrule
H4a: Expected time & 1.73 hour increase ($p=0.0129$). \\
& Pre-test: $M=8.81$, post-test: $M=10.54$. \\
\hline
H4b: Expected level of challenge & Difference not significant (p=0.836). \\
\hline
H4c: Expected distribution & Significant disturbance in the ranking ($p<10^{-307}$).\\
& Wrangling: +0.36, Analysis: -0.04, Interpretation: -0.32. \\
\hline
H4d: Expected outcomes & Difference not significant ($p=0.0804$). \\ \toprule
\multicolumn{2}{l}{\textbf{Control paper of a different type than replicated}} \\
\midrule
H4a: Expected time & 2.07 hour increase ($p=0.000434$).\\
& Pre-test: $M=8.75$, post-test: $M=10.82$. \\
\hline
H4b: Expected level of challenge & Difference not significant (p=0.161). \\
\hline
H4c: Expected distribution & Significant disturbance in the ranking ($p<10^{-307}$). \\
& Wrangling: +0.37, Analysis: -0.07, Interpretation: -0.31. \\
\hline
H4d: Expected outcomes & Difference not significant ($p=0.0841$).
\end{tabular}
\caption{\textbf{Spillover effects: Modified expectations regarding papers that students did not replicate (H4).} Summary of the results comparing pre- and post-replication expectations, across the four hypotheses (H4a--H4c), for the two types of control papers that were not replicated.}
\label{tab:h4}
\end{table}
| |
2012.03661v1
|
\begin{table}[h]
\begin{tabular}{|lp{2.2cm}|p{4.4cm}|p{4.4cm}|}
\hline
\multicolumn{2}{|l|}{Task characteristic} & Attributes & This work \\ \hline
\multicolumn{1}{|c|}{} & Data type & e.g. numeric data, binary data & binary data \\ \cline{2-4}
\multicolumn{1}{|c|}{Input} & Data representation & e.g. table, picture, audio & picture (humans), table (machines) \\ \hline
\multicolumn{2}{|c|}{Output} & classification, regression & binary classification \\ \hline
\multicolumn{2}{|c|}{Instances} & number of instances & 5 to 50 \\ \hline
\multicolumn{2}{|c|}{Features} & number of features & 9 features \\ \hline
\end{tabular}
\caption{Overview of the task characteristics of interest and their implementation in this work}
\label{tab:characteristics}
\end{table}
| |
2012.03661v1
|
\begin{table}[htbp]
\centering
\begin{tabular}{|l|l|c|}
\hline
& P-value & Significance \\ \hline
Sessions & 0.1769 & Not significant \\ \hline
Rules & $1.0\mathrm{e}{-13}$ & $***$ \\ \hline
Instances & $6.6\mathrm{e}{-29}$ & $***$ \\ \hline
Games & 0.0002 & $***$ \\ \hline
\end{tabular}
\caption{ANOVA results for session, rules, instances, and games. Significance is depicted with three different levels of statistical significance ($* \ \widehat{=} \ p<0.05$, $** \ \widehat{=} \ p<0.01$, $*** \ \widehat{=} \ p<0.001$), represented with one, two, or three stars.}
\label{tab:humananova}
\end{table}
| |
1909.09908v1
|
\begin{table}[h!t]
\renewcommand{\arraystretch}{1}
%\vspace{-10pt}
\centering
\begin{tabular}{|c|c|c|}
\hline
& \textbf{\#Nodes} & \textbf{\#Edges} \\
\hline
\textbf{American} & 270 & 746 \\
\hline
\textbf{Southwest} & 270 & 717 \\
\hline
\textbf{Delta} & 270 & 688 \\
\hline
\textbf{Frontier} & 270 & 346 \\
\hline
\textbf{Spirit} & 270 & 189 \\
\hline
\textbf{Allegient} & 270 & 379 \\
\hline
\end{tabular}
\caption{US Airline HoMLN Statistics}
\label{table:USAirlineHoMLNStats}
%\vspace{-10pt}
\end{table}
| |
1909.09908v1
|
\begin{table}[h!t]
\renewcommand{\arraystretch}{1}
%\vspace{-10pt}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
& \textbf{Co-Acting} & \textbf{Genre} & \textbf{AvgRating} \\
\hline
\textbf{\#Nodes} & 9485 & 9485 & 9485 \\
\hline
\textbf{\#Edges} & 45,581 & 996,527 & 13,945,912 \\
\hline
\textbf{\#Communities} & 2246 & 63 & 8 \\
\hline
\textbf{Avg. Community Size} & 4.2 & 148.5 & 1185.6 \\
\hline
\end{tabular}
\caption{IMDB HoMLN Statistics}
\label{table:IMDbHoMLNStats}
%\vspace{-10pt}
\end{table}
| |
1909.09908v1
|
\begin{table}[h!t]
\renewcommand{\arraystretch}{1}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
& \textbf{Actor} & \textbf{Director} & \textbf{Movie} \\
\hline
\textbf{\#Nodes} & 9485 & 4510 & 7951 \\
\hline
\textbf{\#Edges} & 996,527 & 250,845 & 8,777,618 \\
\hline
\textbf{\#Communities} & 63 & 61 & 9 \\
\hline
\textbf{Avg. Community Size} & 148.5 & 73 & 883.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
{\bf Actor-Director Edges} & 32033 \\ \hline
{\bf Actor-Movie Edges} & 31422 \\ \hline
{\bf Director-Movie Edges} & 8581 \\ \hline
\end{tabular}
\caption{IMDB HeMLN Statistics. Top Table: statistics of each layer. Bottom Table: inter-layer edges across layers.}
\label{table:IMDbHeMLNStats}
%\vspace{-10pt}
\end{table}
| |
1909.09908v1
|
\begin{table}[h!t]
\renewcommand{\arraystretch}{1}
\centering
\begin{tabular}{|p{5.4cm}|p{2.5cm}|}
\hline
\textbf{Actors/Actresses} & \textbf{Common Prominent Genres} \\
\hline
Willem Dafoe, Russell Crowe & Action, Crime\\%, Drama \\
\hline
Hilary Swank, Kate Winslet & Drama \\
\hline
Tom Hanks, Reese Witherspoon, Cameron Diaz & Comedy, Romance\\%, Drama\\
\hline
% Anne Hathaway, Salma Hayek & \\
% \hline
\textcolor{blue}{Johnny Depp, Tom Cruise} & \textcolor{blue}{Adventure, Action}\\%, Drama \\
\hline
% Brad Pitt, Will Smith & \\
% \hline
Leonardo DiCaprio, Ryan Gosling & Crime, Romance\\%, Drama\\
\hline
Nicolas Cage, Antonio Banderas & Action, Thriller \\%, Drama
\hline
Hugh Grant, Kate Hudson, Emma Stone & Comedy, Romance \\%Drama
\hline
\end{tabular}
\caption{{\bf (A6)}: Highly rated genre actors who have not co-acted}
\label{table:actorcollab}
%\vspace{-15pt}
\end{table}
| |
2402.18746v1
|
\begin{table}[!h]
\begin{center}
\caption{\label{tab:Config}System Configuration Used for Experiments}
\begin{tabular}{|p{2.45cm}|p{1cm}|p{1.3cm}|p{1cm}|}
\hline
Features & Baseline & Aggressive & Lean \\
%\multicolumn{2}{|c|}{Processors} \\
\hline
Number of cores & 8 & 8 & 8 \\
Core type & OoO & OoO & OoO \\
Core width & 8 & 16 & 4 \\
ROB entries/core & 192 & 384 & 96 \\
%\hline
%\multicolumn{2}{|c|}{On-chip Caches} \\
\hline
Private L1 Inst. & 32 KB & 64 KB & 16 KB \\
Private L1 Data & 512 KB & 1024 KB & 256 KB \\
Shared L2 & 8 MB & 16 MB & 4 MB \\
\hline
\multicolumn{4}{|c|}{Main Memory} \\
\hline
DRAM size & \multicolumn{3}{|c|}{128GiB} \\ \hline
DRAM device & \multicolumn{3}{|c|}{DDR4\_2400, LPDDR5\_6400, DDR5\_6400} \\
\hline
\end{tabular}
\label{tab:conftable}
\end{center}
\end{table}
| |
2402.18746v1
|
\begin{table}
\centering
\caption{Features Used in the Model}
\begin{tabular}{|p{2cm}|p{6cm}|}
\Xhline{2\arrayrulewidth}
\textbf{Feature} & \textbf{Description} \\ \Xhline{2\arrayrulewidth}
\textbf{numLoadInsts} & number of load instructions in the application \\ \hline
\textbf{numStoreInsts} & number of store instructions in the application \\ \hline
\textbf{numInsts} & total instructions in the application \\ \hline
\textbf{numBranches} & number of branch instructions in the application \\ \hline
\textbf{numOps} & number of micro-operations in the application \\ \hline
\textbf{L1IcacheSize} & L1 instruction cache size \\ \hline
\textbf{L1Dcache} & L1 data cache size \\ \hline
\textbf{L2cache} & L2 cache size \\ \hline
\textbf{pipelineWidth} & width of the processor's execution pipeline \\ \Xhline{2\arrayrulewidth}
\end{tabular}
\label{tab:inpfeatures}
\end{table}
| |
1201.1277v1
|
\begin{table}
\centering
\begin{tabular}{| l || c | c | c || c | c |} \hline
\multicolumn{1}{| c || }{} & \multicolumn{3}{c || }{Static Match Rate} & \multicolumn{2}{c | }{Runtime Precise Rate}\\
\hline
Benchmark & \hspace{1mm} Region \hspace{1mm} & \hspace{1mm} Shape \hspace{1mm} & Injectivity & \hspace{1mm} Shape \hspace{1mm} & Injectivity\\
\hline
\bench{power} & 100\% & 100\% & 100\% & 100\% & 100\% \\
\bench{bh} & 100\% & 90\% & 87\% & 100\% & 100\% \\
\hline
\bench{db} & 100\% & 100\% & 81\% & 100\% & 100\% \\
\bench{raytracer} & 80\% & 85\% & 83\% & 89\% & 98\% \\
\hline
\bench{luindex} & 95\% & 95\% & 82\% & 100\% & 91\% \\
\bench{lusearch} & 93\% & 90\% & 84\% & 96\% & 89\% \\
\bench{runabs} & 97\% & 98\% & 87\% & 94\% & 90\% \\
\hline
\end{tabular}
\vspace{3mm}
\caption{Static Match is percentage of each property correctly predicted by the static analysis
when compared to \emph{perfect analysis}. Runtime Precise is the percentage of properties that
the \emph{perfect analysis} captures precisely.}
\label{tab:precision}
\end{table}
| |
2106.05466v2
|
\begin{table}
\begin{tabulary}
{\linewidth}{|C|C|C|C|C|C|C|}
\hline
\textbf{Reference and date} & \textbf{Optimization property} & \textbf{Surrogate model} & \textbf{Acq. func.} & \textbf{Generative model / design space} & \textbf{Seq. opt.?} & \textbf{In-vitro?} \\ \hline
Fox et al.\ (2007)~\cite{Fox2007} & Enzyme catalytic activity & Linear regression & Greedy & Sequence recombination & Yes & Yes \\ \hline
Romero et al.\ (2013)~\cite{Romero2013} & Protein thermostability & Gaussian process & UCB & Sequence recombination & Yes & Yes \\ \hline
Bedbrook et al.\ (2017)~\cite{Bedbrook2017} & Protein localization & Gaussian process & UCB & Sequence recombination & Yes & Yes \\ \hline
Wu et al.\ (2019)~\cite{Wu2019} & Enzyme catalytic activity & Regressor ensemble & Greedy & Explicitly-defined design space & Yes & Yes \\ \hline
Brookes et al.\ (2019)~\cite{Brookes2019} & Protein fluorescence & Neural network ensemble & Greedy & Neural network (VAE) & No & No \\ \hline
Kumar and Levine (2019)~\cite{Kumar2019} & Protein fluorescence & Neural network ensemble & Greedy & Neural network (GAN) & No & No \\ \hline
Gupta and Zou (2020)~\cite{Gupta2019} & Antimicrobial activity & Neural network (RNN) & Greedy & Neural network (GAN) & No & No \\ \hline
Liu et al.\ (2020)~\cite{Liu2020} & Antibody affinity & Neural network ensemble & Greedy & Activation maximization & No & Yes \\ \hline
Wittmann et al.\ (2020)~\cite{Wittmann2020} & Protein expression and binding & Regressor ensemble & Greedy & Explicitly-defined design space & Yes & No \\ \hline
Anishchenko et al.\ (2020)~\cite{Anishchenko2020} & Valid folding & Neural network (CNN) & Greedy & Sequence mutation & No & Yes \\ \hline
Biswas et al.\ (2021)~\cite{Biswas2021} & Protein fitness, fluorescence & Linear regression & Greedy & Sequence mutation & No & Yes \\ \hline
Bryant et al.\ (2021)~\cite{Bryant2021} & Protein viability & Classifier ensemble & Greedy & Sequence mutation & No & Yes \\ \hline
Greenhalgh et al.\ (2021)~\cite{Greenhalgh2021} & Enzyme catalytic activity & Gaussian process & UCB & Sequence recombination & Yes & Yes \\ \hline
\end{tabulary}
\caption{Examples of adaptive learning for protein engineering. Acq.\ func.: Acquisition function. Seq.\ opt.: Sequential optimization, indicates studies that performed multiple rounds of variant selection and surrogate model training. In-vitro: Indicates studies that obtained in-vitro measurements of new protein sequences. RNN: Recurrent neural network~\cite{Hochreiter1997}. CNN: Convolutional neural network~\cite{Fukushima1980}.}
\label{tab:examples}
\end{table}
| |
2403.14452v1
|
\begin{table}[h]
\centering
\caption{Number of genes where the weighted regression produced a larger Wald test statistic than the unweighted regression, and vice versa. Across all seven sample populations, the weighted regression consistently produced larger test statistics for more genes.}
\label{tab:diff}
\begin{tabular}{|c|c|c|c|}
\hline
Sample Population & Weighted $>$ Unweighted & Weighted $\leq$ Unweighted & Total \\
\hline
Archer Control & 3,526 & 949 & 4,475 \\
Archer Experimental & 2,772 & 1,827 & 4,599 \\
Archer Combined & 2,728 & 961 & 3,689 \\
Braun & 6,766 & 849 & 7,615 \\
M\"{o}ller-Levet Control & 5,249 & 2,366 & 7,615 \\
M\"{o}ller-Levet Experimental & 5,887 & 1,728 & 7,615 \\
M\"{o}ller-Levet Combined & 5,796 & 1,819 & 7,615 \\
\hline
\end{tabular}%
%}
\end{table}
| |
1910.04522v1
|
\begin{table}[h]
\vspace*{2cm}
\centering
\begin{tabular}{|l|c|c|}
\hline
Hyperparameter Name & Range & Log-Scale \\
\hline
initial learning rate & $[10^{-6}, 10^{-2}]$ & \checkmark
\\
batch size & [16, 256] & \checkmark \\
average units per layer &$[2^4, 2^8]$ & \checkmark \\
final learning rate fraction &$[10^{-4}, 10^0]$ & \checkmark \\
shape parameter 1 & $[0,1]$ & \checkmark \\
dropout 0 & $[0.0,0.5]$ & $-$ \\
dropout 1 & $[0.0,0.5]$ & $-$ \\
number of layers & $[1,5]$ & $-$ \\
\hline
\end{tabular}
\vspace*{-0.08cm}
\caption{}
\label{tab:table_hyper_mlps}
\end{table}
| |
1910.04522v1
|
\begin{table}[H]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
Hyperparameter Name & Value\\
\hline
$\eta$ & 2\\
number of iterations & 1000 \\
min time budget (min) & 2\\
max time budget (min) & 10 \\
\hline
\end{tabular}
\caption{Set-up of BOHB optimizer used to optimize VRNN and LCNet's hyperparameters.}
\label{tab:bohb_setting}
\end{table}
| |
2408.11759v1
|
\begin{table}[h]
\centering
\small
\begin{tabular}{|c|l|c|} % Adjust column width
\hline
\textbf{Rank} & \textbf{Variables} & \textbf{Correlation coefficients} \\ \hline
26 & Mean Closeness Centrality\_3 & 0.09 \\ \hline
25 & Clustering\_5 & 0.09 \\ \hline
24 & Max Eigenvalue Stock Returns\_3 & 0.09 \\ \hline
23 & Mean Clustering\_2 & 0.09 \\ \hline
22 & Resilience\_5 & 0.09 \\ \hline
21 & Eigenvector Centrality\_5 & 0.09 \\ \hline
20 & Resilience\_2 & 0.09 \\ \hline
19 & Mean Eigenvector Centrality\_4 & 0.09 \\ \hline
18 & Max Eigenvalue Stock Returns\_2 & 0.10 \\ \hline
17 & Degree Centrality\_4 & 0.10 \\ \hline
16 & 90th Percentile Degree\_4 & 0.10 \\ \hline
15 & 90th Percentile Degree\_5 & 0.10 \\ \hline
14 & Closeness Centrality\_2 & 0.11 \\ \hline
13 & Degree Centrality\_5 & 0.11 \\ \hline
12 & Resilience\_1 & 0.11 \\ \hline
11 & Mean Eigenvector Centrality\_5 & 0.11 \\ \hline
10 & Closeness Centrality\_3 & 0.12 \\ \hline
9 & Resilience\_4 & 0.12 \\ \hline
8 & Mean Closeness Centrality\_5 & 0.13 \\ \hline
7 & Largest Component\_5 & 0.13 \\ \hline
6 & Largest Component\_2 & 0.15 \\ \hline
5 & 90th Percentile Degree\_2 & 0.15 \\ \hline
4 & Mean Closeness Centrality\_2 & 0.17 \\ \hline
3 & 90th Percentile Degree\_1 & 0.22 \\ \hline
2 & Log Return\_2 & 0.28 \\ \hline
1 & Log Return\_1 & 0.63 \\ \hline
\end{tabular}
\caption{Selected variables for the training of the long time period}
\label{tab:selecvariablelong}
\end{table}
| |
2408.11759v1
|
\begin{table}[h]
\centering
\begin{tabular}{|c|l|c|}
\hline
\textbf{Rank} & \textbf{Variables} & \textbf{Correlation coefficients} \\ \hline
42 & Resilience\_9 & 0.10 \\ \hline
41 & Largest Component\_3 & 0.10 \\ \hline
40 & Max Eigenvalue Stock Returns\_11 & 0.10 \\ \hline
39 & Resilience\_8 & 0.11 \\ \hline
38 & Mean Closeness Centrality\_3 & 0.11 \\ \hline
37 & 90th Percentile Degree\_4 & 0.11 \\ \hline
36 & Max Eigenvalue Stock Returns\_10 & 0.11 \\ \hline
35 & Resilience\_7 & 0.11 \\ \hline
34 & Max Eigenvalue Stock Returns\_9 & 0.11 \\ \hline
33 & Max Eigenvalue Stock Returns\_8 & 0.12 \\ \hline
32 & Largest Component\_2 & 0.12 \\ \hline
31 & 90th Percentile Degree\_3 & 0.12 \\ \hline
30 & Mean Closeness Centrality\_2 & 0.12 \\ \hline
29 & Resilience\_6 & 0.12 \\ \hline
28 & Max Eigenvalue Stock Returns\_7 & 0.13 \\ \hline
27 & Resilience\_5 & 0.14 \\ \hline
26 & Mean Closeness Centrality\_1 & 0.14 \\ \hline
25 & Max Eigenvalue Stock Returns\_6 & 0.14 \\ \hline
24 & Largest Component\_1 & 0.14 \\ \hline
23 & 90th Percentile Degree\_2 & 0.14 \\ \hline
22 & Max Eigenvalue Stock Returns\_5 & 0.14 \\ \hline
21 & Resilience\_4 & 0.15 \\ \hline
20 & Max Eigenvalue Stock Returns\_4 & 0.15 \\ \hline
19 & 90th Percentile Degree\_1 & 0.15 \\ \hline
18 & Max Eigenvalue Stock Returns\_3 & 0.16 \\ \hline
17 & Resilience\_3 & 0.17 \\ \hline
16 & Max Eigenvalue Stock Returns\_2 & 0.17 \\ \hline
15 & Max Eigenvalue Stock Returns\_1 & 0.18 \\ \hline
14 & Resilience\_2 & 0.18 \\ \hline
13 & Resilience\_1 & 0.20 \\ \hline
1 to 12 & Log Return\_1 to Log Return\_12 & 0.95--0.44 \\ \hline
\end{tabular}
\caption{42 Selected variables over 63 for the training of the short time period: we don't show the ones with a correlation coefficient less than 0.10.}
\label{tab:selecvariableshort}
\end{table}
| |
1911.11746v1
|
\begin{table}[ht]
\caption{Algorithm Dataset Allocation}
\def\arraystretch{1.1}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
%\textbf{}&\multicolumn{4}{|c|}{\textbf{}} \\
%\textbf{}&\textbf{}&\textbf{}&\textbf{}&\textbf{} \\
%\textbf{Algorithm} & \textbf{Training Set (Percentage)} & \textbf{Evaluation Set (Percentage)} & \textbf{Validation Set (Percentage)} & \textbf{Test Set (Percentage)} \\
\textbf{Algorithm} & \textbf{Training} & \textbf{Evaluation} & \textbf{Validation} & \textbf{Test} \\
\hline
\textbf{\textit{GRNN}} & 70\% & 10\% & 10\% & 10\% \\
\textbf{\textit{RBFNN}} & 80\% & 0\% & 10\% & 10\% \\
\textbf{\textit{SVM}} & 90\% & 0\% & 0\% & 10\% \\
\textbf{\textit{FFNN}} & 80\% & 0\% & 10\% & 10\% \\
\hline
\end{tabular}
\label{table:Algorithm_Dataset Allocation_Summary}
\end{center}
\end{table}
| |
1911.11746v1
|
\begin{table}[ht]
\caption{ANOVA Test Summary}
\def\arraystretch{1.1}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
%\textbf{}&\multicolumn{4}{|c|}{\textbf{}} \\
\textbf{}&\textbf{}&\textbf{}&\textbf{}&\textbf{} \\
\textbf{Groups} & \textbf{Count} & \textbf{Sum} & \textbf{Average} & \textbf{Variance} \\
\hline
\textbf{\textit{RBFSVM}} & 30 & 19.08 & 0.636 & 0.00180 \\
\textbf{\textit{LSVM}} & 30 & 21.56 & 0.719 & 0.00237 \\
\textbf{\textit{FFNN}} & 30 & 21.76 & 0.725 & 0.00196 \\
\hline
\end{tabular}
\label{table:ANOVA_Single_Factor_Summary}
\end{center}
\end{table}
| |
1911.11746v1
|
\begin{table}[ht]
\caption{Student t-Test: Two-Sample Assuming Equal Variances}
\def\arraystretch{1.1}
\begin{center}
\begin{tabular}{|c|cc|}
\hline
%\textbf{}&\multicolumn{4}{|c|}{\textbf{}} \\
\textbf{}&\textbf{}&\textbf{} \\
\textbf{} & \textbf{RBFSVM} & \textbf{LSVM} \\
\hline
\textbf{Mean} & 0.636 & 0.718 \\
\hline
\textbf{Variance} & 0.00180 & 0.00237 \\
\hline
\textbf{Observations} & 30 & 30 \\
\hline
\textbf{Pooled Variance} & 0.00209 & \\
\hline
\textbf{Hypothesized Mean Difference} & 0 & \\
\hline
\textbf{df} & 58 & \\
\hline
\textbf{t-Stat} & -7.008 & \\
\hline
\textbf{P(T\begin{math}{<=}\end{math}t) one-tail} & 1.42E-09 & \\
\hline
\textbf{t Critical one-tail} & 1.671 & \\
\hline
\textbf{P(T\begin{math}{<=}\end{math}t) two-tail} & 2.84E-09 & \\
\hline
\textbf{t Critical two-tail} & 2.002 & \\
\hline
\end{tabular}
\label{table:tTest_RS_SS}
\end{center}
\end{table}
| |
1911.11746v1
|
\begin{table}[ht]
\caption{Student t-Test: Two-Sample Assuming Unequal Variances}
\def\arraystretch{1.1}
\begin{center}
\begin{tabular}{|c|cc|}
\hline
%\textbf{}&\multicolumn{4}{|c|}{\textbf{}} \\
\textbf{}&\textbf{}&\textbf{} \\
\textbf{} & \textbf{LSVM} & \textbf{FFNN} \\
\hline
\textbf{Mean} & 0.719 & 0.725 \\
\hline
\textbf{Variance} & 0.00237 & 0.00196 \\
\hline
\textbf{Observations} & 30 & 30 \\
%\hline
%\textbf{Pooled Variance} & & \\
\hline
\textbf{Hypothesized Mean Difference} & 0 & \\
\hline
\textbf{df} & 57 & \\
\hline
\textbf{t-Stat} & -0.555 & \\
\hline
\textbf{P(T\begin{math}{<=}\end{math}t) one-tail} & 0.290 & \\
\hline
\textbf{t Critical one-tail} & 1.672 & \\
\hline
\textbf{P(T\begin{math}{<=}\end{math}t) two-tail} & 0.581 & \\
\hline
\textbf{t Critical two-tail} & 2.002 & \\
\hline
\end{tabular}
\label{table:tTest_SS_SA}
\end{center}
\end{table}
| |
1801.07624v1
|
\begin{table}[h]
\centering
\caption{Steps statistics by Slurm state}
\label{table_job_steps}
\begin{adjustbox}{width=0.9\textwidth}
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
\hline
\multirow{2}{*}{State} & \multirow{2}{*}{count} & \multicolumn{4}{l|}{\textbf{Allocated nodes}} & \multicolumn{4}{l|}{\textbf{Duration {[}s{]}}} & \multicolumn{4}{l|}{\textbf{Ave Disk Read {[}GB{]}}} & \multicolumn{4}{l}{\textbf{Ave Disk Write {[}GB{]}}} \\ \cline{3-18}
& & mean & SD & min & max & mean & SD & min & max & mean & SD & min & max & mean & SD & min & max \\ \hline \hline
CANCELLED & 53579 & 28 & 87 & 1 & 3264 & 3322 & 8679 & 1 & 183k & 16 & 151 & 0 & 7821 & 3 & 37 & 0 & 2341 \\ \hline
COMPLETED & 4853842 & 3.4 & 17 & 1 & 3276 & 414 & 1902 & 1 & 235k & 1 & 10 & 0 & 6993 & 0.2 & 5 & 0 & 30742 \\ \hline
FAILED & 197704 & 18 & 28 & 1 & 3249 & 1111 & 5273 & 1 & 346k & 3 & 73 & 0 & 6629 & 0.2 & 15 & 0 & 4078 \\ \hline
ALL & 5105125 & 4.2 & 20 & 1 & 3276 & 471 & 2326 & 1 & 346k & 1 & 23 & 0 & 7821 & 0.2 & 7 & 0 & 4078 \\ \hline
\end{tabular}
\end{adjustbox}
\end{table}
| |
1801.07624v1
|
\begin{table}[h]
\centering
\caption{Power statistics depending on a submitted job state, for submissions longer than 120s}
\label{table_powers_v1}
\begin{adjustbox}{width=0.7\textwidth}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Job finish state} & \textbf{Average blade power {[}W{]}} & \textbf{\begin{tabular}[c]{@{}l@{}}Average last registered\\ blade power {[}W{]}\end{tabular}} \\ \hline
\textbf{Completed} & 265 & 228 \\ \hline
\textbf{Failed} & 242 & 227 \\ \hline
\textbf{Cancelled} & 240 & 203 \\ \hline
\textbf{Node failed} & 226 & 190 \\ \hline
\end{tabular}
\end{adjustbox}
\end{table}
| |
1801.07624v1
|
\begin{table}[h]
\centering
\caption{Computing nodes in Mistral}
\label{table:computing_nodes}
\begin{tabular}{|l|r|r|ll}
\cline{1-3}
\textbf{Node type}& \textbf{Quantity} & \textbf{Homogeneous racks, 72 blades}\\ \cline{1-3}
B720\_36\_64 & 1454 & 20\\ \cline{1-3}
B720\_24\_64 & 1404 & 19\\ \cline{1-3}
B720\_36\_128 & 270 & 3\\ \cline{1-3}
B720\_24\_128 & 110 & 1\\ \cline{1-3}
B720\_36\_256 & 50 & -\\ \cline{1-3}
B720\_24\_256 & 48 & -\\ \cline{1-3}
\end{tabular}
\end{table}
| |
1801.07624v1
|
\begin{table}[h]
\centering
\caption{Jobs statistics by Slurm state}
\label{main_jobs}
\begin{adjustbox}{width=0.8\textwidth}
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l}
\hline
\multirow{2}{*}{State} & \multirow{2}{*}{count} & \multicolumn{6}{l|}{Allocated nodes} & \multicolumn{6}{l}{Duration {[}s{]}} \\ \cline{3-14}
& & mean & SD & min & 50\% & 75\% & max & mean & SD & min & 50\% & 75\% & max \\ \hline \hline
CANCELLED & 23087 & 25 & 100 & 1 & 5 & 16 & 3264 & 2680 & 14952 & 1 & 310 & 1591 & 1.6M \\ \hline
COMPLETED & 1238585 & 12 & 34 & 1 & 6 & 16 & 3276 & 1954 & 4190 & 1 & 419 & 1953 & 0.3M \\ \hline
FAILED & 75897 & 15 & 39 & 1 & 6 & 16 & 1700 & 1763 & 4288 & 1 & 164 & 2979 & 0.4M \\ \hline
NODE\_FAIL & 390 & 67 & 289 & 1 & 10 & 46 & 3264 & 11087 & 105332 & 38 & 2472 & 6202 & 2.1M \\ \hline
TIMEOUT & 17864 & 16 & 57 & 1 & 1 & 16 & 3078 & 11586 & 18140 & 60 & 2408 & 28803 & 0.6M \\ \hline
ALL & 1355823 & 13 & 37 & 1 & 6 & 16 & 3276 & 2085 & 5444 & 1 & 425 & 2001 & 2.1M \\ \hline
\end{tabular}
\end{adjustbox}
\end{table}
| |
2208.08280v1
|
\begin{table}[t!]
\resizebox{\linewidth}{!}{
\begin{tabular}{l|c|c}
\midrule
Hyperparameter & TOWE model & Sentiment Classifier \\ \midrule
Batch size &16(96) & 128 \\
Epochs &50 & - \\
Steps &- & 3000 \\
Learning rate (BERT) &2e-5 & 1e-5 \\
Learning rate (Others) &2e-4 & 1e-4 \\
Hidden dimension &512& 512 \\
Optimizer &AdamW & AdamW \\ \midrule
\end{tabular}
}
\caption{Experimental setting of the training of the TOWE model and the sentiment classifier. For the TOWE model, batch size for labeled data is 16 and 96 for unlabeled data.}
\label{tbl:para}
\centering
\end{table}
| |
2111.09395v1
|
\begin{table}[t]
\small
\renewcommand{\arraystretch}{1.2}
\centering
\begin{tabular}{|l|l|m{200pt}<{\centering}|}
\hline
\textbf{Key components} & \textbf{Attributes} \\
\hline
\multirow{4}{2cm}{State} & Balance ${b}_{t}\in \mathbb{R}_+$;~~~~Shares $\bm{k}_{t}\in \mathbb{Z}_+^{n}$ \\
%\arrayrulecolor{gray} \cdashline{2-3}[0.8pt/2pt]
%& Shares $\bm{h}_{t}\in \mathbb{Z}_+^{n}$ \\
%\cdashline{2-3}[0.8pt/2pt]
%& Closing price $\bm{p}_{t}\in \mathbb{R}_+^{n}$ \\
\cdashline{2-3}[0.8pt/2pt]
& OHLCV data $\bm{o}_{t}, \bm{h}_{t}, \bm{l}_{t},\bm{p}_{t},\bm{v}_{t} \in \mathbb{R}_+^{n}$ \\
\cdashline{2-3}[0.8pt/2pt]
& Technical indicators; Fundamental indicators \\
\cdashline{2-3}[0.8pt/2pt]
& Smart beta \\
\cdashline{2-3}[0.8pt/2pt]
& NLP market sentiment features\\
%\cdashline{2-3}[0.8pt/2pt]
%& Fundamental indicators \\
\hline
\multirow{2}{2cm}{Action} & Buy/Sell/Hold;~~~~~~Short/Long \\
%\cdashline{2-3}[0.8pt/2pt]
%& Short/Long \\
\cdashline{2-3}[0.8pt/2pt]
& Portfolio weights \\
\hline
\multirow{3}{2cm}{Rewards} & Change of portfolio value \\
\cdashline{2-3}[0.8pt/2pt]
& Portfolio log-return \\
\cdashline{2-3}[0.8pt/2pt]
& Shape ratio \\
\hline
\multirow{3}{2cm}{Environment} & Dow-$30$, NASDAQ-$100$, S\&P-$500$ \\
% \cdashline{2-3}[0.8pt/2pt]
% & NASDQQ-$100$ \\
\cdashline{2-3}[0.8pt/2pt]
& Cryptocurrencies \\
\cdashline{2-3}[0.8pt/2pt]
& Foreign currency and exchange \\
\cdashline{2-3}[0.8pt/2pt]
& Futures and options \\
\cdashline{2-3}[0.8pt/2pt]
& Living trading \\
\hline
\end{tabular}
\caption{Key components and attributes. OHLCV stands for Open, High, Low, Close and Volume.}\vspace{-0.25in}
\label{event:eventTypes}
\vspace{-0.1in}
\end{table}
| |
1008.2410v1
|
\begin{table}
\begin{center}
\begin{tabular}{|l|c|}
\hline
a & $\frac{1}{r} \left( 16 t - 15 \right)$ \\
\hline
b & $\frac{1}{3 r} \left( 84 - 48 t + 571 t^2 \right)$ \\
\hline
c & $\frac{1}{3 r} \left( 128 - 48 t + 844 t^2 \right)$ \\
\hline
d & $\frac{1}{r} 198$ \\
\hline
\end{tabular}
\caption{Coefficients for the complexity expression in~\eqref{eq:complexity} in terms of the flop rate $r$ and the
expansion order $t$.}
\label{tab:coeff}
\end{center}
\end{table}
| |
2102.10387v1
|
\begin{table}[ht]
% {\small
% \begin{tabular}{ |p{2.5cm}|p{4.5cm}|p{5.7cm}| }
% \hline
% % \multicolumn{4}{|c|}{Country List} \\
% % \hline
% % \hspace{1cm}
% \textbf{Heuristic} & \textbf{Description} & \textbf{Conversational Guidance} \\
% \hline
% & & \\
% \noindent Internally relevant words & Words from the text that are most relevant to the $category$ & I wonder which words are most relevant while categorizing this text to the $category$?\\
% & & \\
% Internally irrelevant words & Words from the text that are least relevant to the $category$ & Which words are least relevant while categorizing this text to the $category$? \\
% & & \\
% Externally relevant words & Words 'outside' the text that will most likely describe the $category$ & Can you tell me few more words that should describe the $category$ but are not in the text?\\
% & & \\
% \hline
% \end{tabular}}
% \caption{Three types of heuristic teaching guidance}
% \label{table:heuristic}
% \end{table}
| |
1906.01668v1
|
\begin{table}[]
\centering
\begin{tabular}{|c|c|}
\hline
Varaible & Search Space \\ \hline
$\Psi$ & \{GMR,MCR,NSCR,LMSR\\
& SLR,GUR,NSCoR,MOR\}\\ \hline
$\alpha$ & [1e-03, 1e-00]\\ \hline
$\beta_1$ & [1e-05, 1]\\ \hline
$\beta_2$ & [1e-05, 1]\\ \hline
$\beta_3$ & [1e-05, 1]\\ \hline
\end{tabular}
\caption{Search space considered to jointly optimize over the eight meta-learning rules and their parameters.}
\label{tab:search_space}
\vspace{-0.2in}
\end{table}
| |
1906.01668v1
|
\begin{table}[]
\centering
\begin{tabular}{|c|c|c|}
\hline
Dataset & Meta-Learning Rule & Accuracy\\
\hline
MNIST & LMSR & 0.903 \\
\hline
FashionMNIST & GMR & 0.900 \\
\hline
\end{tabular}
\caption{Best-performing meta-learning rule and corresponding testing accuracy with each dataset.}
\label{tab:accuracy}
\vspace{-0.3in}
\end{table}
| |
1703.00564v3
|
\begin{table}[h]
\caption{Dataset Details: number of compounds and tasks, recommended splits and metrics}
\label{tab:n_samples}
\centering
\tiny
\begin{tabular}{ |c|c|c|c|c|c|c|c| }
\hline
\textbf{Category} & \textbf{Dataset} & \textbf{Data Type} & \textbf{\# Tasks} & \textbf{Task Type} & \textbf{\# Compounds} & \textbf{Rec - Split} & \textbf{Rec - Metric}\\
\hline
\multirow{4}{*}{Quantum Mechanics} & QM7 & SMILES, 3D coordinates & 1 & Regression & 7160 & Stratified & MAE\\\cline{2-8}
& QM7b & 3D coordinates & 14 & Regression & 7210 & Random & MAE\\\cline{2-8}
& QM8 & SMILES, 3D coordinates & 12 & Regression & 21786 & Random & MAE \\\cline{2-8}
& QM9 & SMILES, 3D coordinates & 12 & Regression & 133885 & Random & MAE \\\cline{2-8}
\hline
\multirow{3}{*}{Physical Chemistry} & ESOL & SMILES & 1 & Regression & 1128 & Random & RMSE \\\cline{2-8}
& FreeSolv & SMILES & 1 & Regression & 642 & Random & RMSE \\\cline{2-8}
& Lipophilicity & SMILES & 1 & Regression & 4200 & Random & RMSE \\
\hline
\multirow{5}{*}{Biophysics} & PCBA & SMILES & 128 & Classification & 437929 & Random & PRC-AUC \\\cline{2-8}
& MUV & SMILES & 17 & Classification & 93087 & Random & PRC-AUC \\\cline{2-8}
& HIV & SMILES & 1 & Classification & 41127 & Scaffold & ROC-AUC \\\cline{2-8}
& PDBbind & SMILES, 3D coordinates & 1 & Regression & 11908 & Time & RMSE \\\cline{2-8}
& BACE & SMILES & 1 & Classification & 1513 & Scaffold & ROC-AUC \\
\hline
\multirow{5}{*}{Physiology} & BBBP & SMILES & 1 & Classification & 2039 & Scaffold & ROC-AUC \\\cline{2-8}
& Tox21 & SMILES & 12 & Classification & 7831 & Random & ROC-AUC \\\cline{2-8}
& ToxCast & SMILES & 617 & Classification & 8575 & Random & ROC-AUC \\\cline{2-8}
& SIDER & SMILES & 27 & Classification & 1427 & Random & ROC-AUC \\\cline{2-8}
& ClinTox & SMILES & 2 & Classification & 1478 & Random & ROC-AUC \\
\hline
\end{tabular}
\end{table}
| |
1703.00564v3
|
\begin{table}[h]
\caption{Task details and area under curve(AUC) values of sample curves}
\label{tab:ROCvsPRC_AUC}
\centering
\begin{tabular}{ |c|c|c|c|c| }
\hline
\textbf{Task} & \textbf{P/N}* & \textbf{Model} & \textbf{ROC} & \textbf{PRC}\\
\hline
\multirow{2}{*}{\tabincell{l}{``FDA\_APPROVED''\\ClinTox, test subset}} & \multirow{2}{*}{128/21} &{\scriptsize Logistic Regression} & 0.691 & 0.932 \\\cline{3-5}
& & {\scriptsize Graph Convolution} & 0.791 & 0.959 \\
\hline
\multirow{2}{*}{\tabincell{l}{``Hepatobiliary disorders''\\SIDER, test subset}} & \multirow{2}{*}{64/79} & {\scriptsize Logistic Regression} & 0.659 & 0.612 \\\cline{3-5}
& & {\scriptsize Graph Convolution} & 0.675 & 0.620 \\
\hline
\multirow{2}{*}{\tabincell{l}{``NR-ER''\\Tox21, valid subset}} & \multirow{2}{*}{81/553} & {\scriptsize Logistic Regression} & 0.612 & 0.308 \\\cline{3-5}
& & {\scriptsize Graph Convolution} & 0.705 & 0.333 \\
\hline
\multirow{2}{*}{\tabincell{l}{``HIV\_active''\\HIV, test subset}} & \multirow{2}{*}{132/4059} & {\scriptsize Logistic Regression} & 0.724 & 0.236 \\\cline{3-5}
& & {\scriptsize Graph Convolution} & 0.783 & 0.169 \\
\hline
\end{tabular}
\begin{tablenotes}
\item * Number of positive samples/Number of negative samples
\end{tablenotes}
\end{table}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.