Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
t
float64
0
1.5k
u_1
float64
-1.5
1.5
y_1
float64
-5.6
5.63
x_1
float64
-2.62
2.61
x_2
float64
-3.07
3.03
x_3
float64
-3.75
3.77
x_4
float64
-2.17
2.16
x_5
float64
-4.92
4.95
x_6
float64
-1.66
1.68
x_7
float64
-5.56
5.59
x_8
float64
-1.6
1.61
0
-1.005603
0.015007
0
0
0
0
0
0
0
0
0.2
-1.005603
0.033594
-0.069145
-0.640459
-0.004423
-0.062198
-0.000214
-0.004048
-0.000009
-0.000208
0.4
-1.005603
-0.005529
-0.239495
-1.029086
-0.029466
-0.194676
-0.002766
-0.02476
-0.000226
-0.002595
0.6
-1.005603
-0.022145
-0.469599
-1.249063
-0.083517
-0.346335
-0.011412
-0.064666
-0.001406
-0.010348
0.8
-1.005603
-0.022793
-0.731566
-1.355238
-0.167523
-0.491221
-0.029662
-0.119978
-0.00489
-0.025949
1
-1.005603
0.037626
-1.006919
-1.385004
-0.278637
-0.617762
-0.060094
-0.185198
-0.012389
-0.050659
1.2
-1.005603
-0.041158
-1.277323
-1.294308
-0.412609
-0.715446
-0.104126
-0.255631
-0.025756
-0.084447
1.4
-1.005603
-0.036661
-1.515069
-1.069154
-0.562039
-0.768471
-0.162219
-0.324962
-0.046721
-0.126399
1.6
-1.005603
-0.067614
-1.701617
-0.792279
-0.716971
-0.772984
-0.233516
-0.3863
-0.07673
-0.174484
1.8
-1.005603
-0.121437
-1.831936
-0.514532
-0.868401
-0.735887
-0.315932
-0.435299
-0.116731
-0.2258
2
-1.005603
-0.165428
-1.909501
-0.269792
-1.009364
-0.668775
-0.406726
-0.470057
-0.167047
-0.277261
2.2
-1.005603
-0.172796
-1.943381
-0.076847
-1.134817
-0.585712
-0.502976
-0.490279
-0.227457
-0.326009
2.4
-1.005603
-0.284755
-1.944139
0.058875
-1.243096
-0.497257
-0.602003
-0.497931
-0.297147
-0.369887
2.6
-1.005603
-0.415918
-1.923392
0.140376
-1.334006
-0.413144
-0.701485
-0.495459
-0.374985
-0.407348
2.8
-1.005603
-0.511759
-1.89117
0.175947
-1.409044
-0.339515
-0.799684
-0.485719
-0.459606
-0.437624
3
-1.005603
-0.609093
-1.855393
0.176486
-1.470685
-0.279497
-0.895458
-0.471427
-0.549555
-0.46063
3.2
-1.005603
-0.674393
-1.822134
0.153807
-1.521831
-0.234168
-0.988112
-0.454985
-0.643396
-0.476735
3.4
-1.005603
-0.778805
-1.794826
0.117857
-1.565272
-0.2026
-1.07741
-0.438084
-0.739836
-0.486673
3.6
-1.005603
-0.807644
-1.775279
0.0774
-1.603635
-0.182757
-1.163395
-0.421951
-0.83772
-0.491373
3.8
-1.005603
-0.984273
-1.763763
0.038627
-1.639011
-0.172059
-1.246288
-0.407234
-0.936095
-0.491799
4
-1.005603
-1.059728
-1.759532
0.005286
-1.672895
-0.16788
-1.326384
-0.394119
-1.034212
-0.488846
4.2
-1.005603
-1.081667
-1.761155
-0.020368
-1.706397
-0.167541
-1.404028
-0.382505
-1.131468
-0.483357
4.4
-1.005603
-1.286683
-1.767084
-0.037888
-1.740065
-0.169004
-1.479482
-0.372086
-1.227423
-0.475973
4.6
-1.005603
-1.334757
-1.775815
-0.047947
-1.774055
-0.170778
-1.552922
-0.362459
-1.321755
-0.467162
4.8
-1.005603
-1.395119
-1.785867
-0.05176
-1.808317
-0.171661
-1.624485
-0.353181
-1.414217
-0.457298
5
-1.005603
-1.534964
-1.796163
-0.050818
-1.842613
-0.171028
-1.694199
-0.343878
-1.504621
-0.446604
5.2
-1.005603
-1.618392
-1.805958
-0.046615
-1.876619
-0.168639
-1.76202
-0.334254
-1.59281
-0.435203
5.4
-1.005603
-1.713274
-1.814698
-0.04064
-1.909955
-0.164483
-1.827862
-0.324063
-1.678658
-0.423157
5.6
-1.005603
-1.800263
-1.822153
-0.033973
-1.942296
-0.158745
-1.891599
-0.313178
-1.762034
-0.410486
5.8
-1.005603
-1.825452
-1.828277
-0.027391
-1.973369
-0.151702
-1.953087
-0.301549
-1.84281
-0.397192
6
-1.005603
-1.94768
-1.833155
-0.0215
-2.002922
-0.143712
-2.012171
-0.289175
-1.920866
-0.383258
6.2
-1.005603
-1.998322
-1.836946
-0.016562
-2.030798
-0.135076
-2.068708
-0.276109
-1.996074
-0.368685
6.4
-1.005603
-2.074342
-1.839835
-0.012598
-2.056914
-0.126031
-2.122574
-0.262439
-2.068302
-0.353494
6.6
-1.005603
-2.105314
-1.842032
-0.009573
-2.081201
-0.116816
-2.173653
-0.248264
-2.137431
-0.337705
6.8
-1.005603
-2.181463
-1.843723
-0.007333
-2.103641
-0.107601
-2.221852
-0.23369
-2.203347
-0.321355
7
-1.005603
-2.317042
-1.845024
-0.005696
-2.124243
-0.098463
-2.267104
-0.21881
-2.265941
-0.304504
7.2
-1.005603
-2.342278
-1.846031
-0.004481
-2.14303
-0.089458
-2.30936
-0.203714
-2.32512
-0.287214
7.4
-1.005603
-2.37847
-1.846827
-0.003495
-2.160036
-0.080619
-2.348582
-0.188488
-2.380802
-0.269552
7.6
-1.005603
-2.405157
-1.847442
-0.002604
-2.175292
-0.071949
-2.384751
-0.1732
-2.43292
-0.251591
7.8
-1.005603
-2.481038
-1.847878
-0.001736
-2.188828
-0.063436
-2.41786
-0.157903
-2.481423
-0.233402
8
-1.005603
-2.534084
-1.848134
-0.000814
-2.200675
-0.055069
-2.447914
-0.14265
-2.526271
-0.215058
8.2
-1.005603
-2.567555
-1.848197
0.000196
-2.210865
-0.046833
-2.474926
-0.127484
-2.56744
-0.196626
8.4
-1.005603
-2.648841
-1.848051
0.001292
-2.219419
-0.038726
-2.498917
-0.112443
-2.604919
-0.178171
8.6
-1.005603
-2.586662
-1.847682
0.002464
-2.226363
-0.030749
-2.519913
-0.097561
-2.63871
-0.159753
8.8
-1.005603
-2.653163
-1.847069
0.003685
-2.231725
-0.022898
-2.537952
-0.08287
-2.668827
-0.141431
9
-1.005603
-2.704424
-1.846203
0.004927
-2.235532
-0.015185
-2.553076
-0.0684
-2.695293
-0.123259
9.2
-1.005603
-2.731347
-1.845088
0.006162
-2.237812
-0.007633
-2.565331
-0.054183
-2.718143
-0.105284
9.4
-1.005603
-2.73388
-1.843735
0.007371
-2.238599
-0.000265
-2.57477
-0.040252
-2.737422
-0.087554
9.6
-1.005603
-2.789098
-1.842144
0.008532
-2.237932
0.006904
-2.581453
-0.026635
-2.753184
-0.070113
9.8
-1.005603
-2.779381
-1.840327
0.009626
-2.235853
0.013853
-2.585446
-0.01336
-2.76549
-0.053003
10
-1.005603
-2.734501
-1.838297
0.010646
-2.232406
0.020562
-2.586822
-0.000457
-2.77441
-0.036264
10.2
-1.005603
-2.771808
-1.836071
0.011592
-2.227644
0.027015
-2.585656
0.012048
-2.780023
-0.019933
10.4
-1.005603
-2.756999
-1.833662
0.012461
-2.221618
0.033198
-2.582031
0.02413
-2.782412
-0.004047
10.6
-1.005603
-2.773407
-1.831088
0.01325
-2.214385
0.039094
-2.576034
0.035764
-2.781672
0.011363
10.8
-1.005603
-2.840932
-1.828366
0.013961
-2.206002
0.044689
-2.567757
0.04693
-2.777901
0.026267
11
-1.005603
-2.751663
-1.825511
0.014598
-2.196529
0.049975
-2.557295
0.057607
-2.771202
0.040634
11.2
-1.005603
-2.738192
-1.822536
0.015166
-2.18603
0.054946
-2.544747
0.067778
-2.761686
0.05444
11.4
-1.005603
-2.732841
-1.819451
0.01567
-2.174569
0.059602
-2.530217
0.077429
-2.749465
0.067657
11.6
-1.005603
-2.704855
-1.816268
0.016103
-2.162207
0.063936
-2.513809
0.086549
-2.734661
0.080267
11.8
-1.005603
-2.759511
-1.813003
0.016472
-2.14901
0.067942
-2.495631
0.095124
-2.717397
0.09225
12
-1.005603
-2.685575
-1.809671
0.016785
-2.135047
0.071621
-2.475795
0.103146
-2.697802
0.103588
12.2
-1.005603
-2.613733
-1.806286
0.017047
-2.120383
0.07497
-2.454411
0.110606
-2.676006
0.114269
12.4
-1.005603
-2.667439
-1.802858
0.01726
-2.105084
0.07799
-2.431592
0.1175
-2.652142
0.124279
12.6
-1.005603
-2.607577
-1.799397
0.01742
-2.089214
0.080684
-2.407451
0.123826
-2.626343
0.133609
12.8
-1.005603
-2.614456
-1.795911
0.017524
-2.072838
0.083055
-2.3821
0.129583
-2.598745
0.142253
13
-1.005603
-2.58974
-1.792405
0.017563
-2.056018
0.085109
-2.355655
0.134775
-2.569488
0.150205
13.2
-1.005603
-2.594486
-1.788891
0.017537
-2.038815
0.086845
-2.328226
0.139405
-2.538707
0.157464
13.4
-1.005603
-2.47974
-1.785386
0.017454
-2.021295
0.088267
-2.299926
0.143472
-2.506543
0.164029
13.6
-1.005603
-2.499997
-1.781902
0.017323
-2.003522
0.08938
-2.27087
0.146983
-2.473136
0.169903
13.8
-1.005603
-2.389085
-1.778451
0.01715
-1.98556
0.090189
-2.241168
0.149942
-2.438625
0.175089
14
-1.005603
-2.385127
-1.775041
0.016937
-1.967467
0.090702
-2.21093
0.152359
-2.403147
0.179592
14.2
-1.005603
-2.415603
-1.771683
0.016686
-1.949302
0.090927
-2.180263
0.154242
-2.366837
0.18342
14.4
-1.005603
-2.344394
-1.768381
0.016397
-1.93112
0.090874
-2.149272
0.155603
-2.329828
0.186582
14.6
-1.005603
-2.319767
-1.765141
0.016067
-1.912976
0.090551
-2.118058
0.156456
-2.292252
0.189089
14.8
-1.005603
-2.276292
-1.761968
0.015692
-1.89492
0.089971
-2.086723
0.156816
-2.254237
0.190953
15
-1.005603
-2.218363
-1.758866
0.015269
-1.877003
0.089143
-2.055362
0.156695
-2.21591
0.19219
15.2
-1.005603
-2.104775
-1.755849
0.014807
-1.859274
0.088074
-2.02407
0.156109
-2.177395
0.192815
15.4
-1.005603
-2.139535
-1.752926
0.014315
-1.841784
0.086771
-1.992942
0.155072
-2.138816
0.192846
15.6
-1.005603
-2.108237
-1.750107
0.013802
-1.824578
0.085246
-1.962065
0.153603
-2.10029
0.1923
15.8
-1.005603
-2.062671
-1.747397
0.013273
-1.8077
0.08351
-1.931527
0.151719
-2.061932
0.191197
16
-1.005603
-2.015239
-1.7448
0.01273
-1.79119
0.081574
-1.901407
0.149438
-2.02385
0.189557
16.2
-1.005603
-2.014733
-1.74232
0.012173
-1.775087
0.079452
-1.871782
0.146779
-1.98615
0.187401
16.4
-1.005603
-1.935398
-1.739957
0.011599
-1.759425
0.077159
-1.842725
0.143762
-1.94893
0.184752
16.6
-1.005603
-1.842729
-1.737708
0.011005
-1.744236
0.074712
-1.814305
0.140407
-1.912286
0.181633
16.8
-1.005603
-1.94809
-1.735572
0.010383
-1.729551
0.072128
-1.786586
0.136734
-1.87631
0.178068
17
-1.005603
-1.798202
-1.733557
0.009737
-1.715398
0.069419
-1.759628
0.132758
-1.841089
0.174085
17.2
-1.005603
-1.818507
-1.731671
0.00908
-1.701801
0.066579
-1.733492
0.128511
-1.806706
0.169704
17.4
-1.005603
-1.762454
-1.729919
0.008423
-1.688782
0.063613
-1.708232
0.124023
-1.773235
0.164948
17.6
-1.005603
-1.785712
-1.728303
0.007769
-1.676362
0.060535
-1.683899
0.119313
-1.740749
0.159842
17.8
-1.005603
-1.742876
-1.72682
0.007114
-1.664563
0.057368
-1.660532
0.114392
-1.709316
0.154416
18
-1.005603
-1.688831
-1.725466
0.006449
-1.653407
0.054146
-1.638167
0.109264
-1.678998
0.148703
18.2
-1.005603
-1.641686
-1.724241
0.005776
-1.642908
0.050883
-1.616839
0.103947
-1.649852
0.142731
18.4
-1.005603
-1.622237
-1.72315
0.005111
-1.633069
0.04756
-1.596587
0.098491
-1.621926
0.136515
18.6
-1.005603
-1.569965
-1.722193
0.004463
-1.623895
0.044175
-1.577443
0.09293
-1.595264
0.130074
18.8
-1.005603
-1.57707
-1.721368
0.003828
-1.615394
0.040748
-1.559429
0.087278
-1.569906
0.123439
19
-1.005603
-1.580119
-1.720668
0.003195
-1.607581
0.037322
-1.542554
0.081522
-1.545893
0.116646
19.2
-1.005603
-1.483178
-1.720091
0.002558
-1.600462
0.033922
-1.526828
0.07567
-1.523256
0.109727
19.4
-1.005603
-1.531424
-1.719638
0.001937
-1.594025
0.030518
-1.512276
0.069781
-1.502015
0.102691
19.6
-1.005603
-1.528787
-1.719311
0.001341
-1.588263
0.027103
-1.498908
0.063889
-1.482189
0.095556
19.8
-1.005603
-1.446568
-1.719104
0.000767
-1.583175
0.023694
-1.486728
0.058006
-1.463794
0.088351
End of preview. Expand in Data Studio

Overview

This dataset contains input-output data of a coupled mass-spring-damper system with a nonlinear force profile. The data was generated with statesim [1], a python package for simulating linear and nonlinear ODEs, for the system coupled-msd. The configuration .json files for the corresponding datasets (in-distribution and out-of-distribution) can be found in the respective folders. After creating the dataset, the files are stored in the raw folder. Then, they are split into subsets for training, testing, and validation and can be found in the processed folder; details about the splitting are found in the config.json file.

The dataset can be used to test system identification algorithms and methods that aim to identify nonlinear dynamics from input-output measurements. The training dataset is used to optimize the model parameters, the validation set for hyperparameter optimization, and the test set only for the final evaluation.

In [2], the authors use the same underlying dynamics to create their dataset.

Input generation

Input trajectories are piecewise constant trajectories.

Noise

Gaussian white noise of approximately 30dB is added at the output.

Statistics

The input and output size is one.

  • In-distribution data: 1,500,000 data points
    • Training: 120 trajectories of length 7500
    • Validation: 20 trajectories of length 7500
    • Test: 60 trajectories of length 7500
  • Out-of-distribution data: 10 times 3000 data points

    10 different datasets were only used for testing. Each dataset contains 50 trajectories of length 6000.

References

  1. Frank, D. statesim [Computer software]. https://github.com/Dany-L/statesim
  2. Revay, M., Wang, R., & Manchester, I. R. (2020). A convex parameterization of robust recurrent neural networks. IEEE Control Systems Letters, 5(4), 1363-1368.
Downloads last month
38