Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
10M - 100M
ArXiv:
DOI:
License:
restructuring-main-table
#75
by
kris927b
- opened
- CHANGELOG.md +10 -0
- README.md +146 -12
- descriptive_stats.json +1 -1
- images/domain_distribution.png +2 -2
- images/tokens_over_time.html +1 -1
- images/tokens_over_time.svg +1 -1
- pyproject.toml +1 -1
- src/dynaword/tables.py +103 -8
- src/dynaword/update_descriptive_statistics.py +13 -3
- test_results.log +3 -3
- uv.lock +0 -0
CHANGELOG.md
CHANGED
@@ -5,6 +5,16 @@ All notable changes to this project will be documented in this file.
|
|
5 |
|
6 |
The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
## [v1.2.5] - 2025-07-08
|
9 |
|
10 |
### Added
|
|
|
5 |
|
6 |
The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
7 |
|
8 |
+
## [v1.2.6] - 2025-07-21
|
9 |
+
|
10 |
+
### Added
|
11 |
+
|
12 |
+
- Added two table to get an overview of data by license and domain
|
13 |
+
|
14 |
+
### Changed
|
15 |
+
|
16 |
+
- Dataset overview table now appears in a drop down menu
|
17 |
+
|
18 |
## [v1.2.5] - 2025-07-08
|
19 |
|
20 |
### Added
|
README.md
CHANGED
@@ -182,7 +182,7 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
|
|
182 |
<!-- START README TABLE -->
|
183 |
| | |
|
184 |
| ------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
185 |
-
| **Version** | 1.2.
|
186 |
| **Language** | dan, dansk, Danish |
|
187 |
| **License** | Openly Licensed, See the respective dataset |
|
188 |
| **Models** | For model trained used this data see [danish-foundation-models](https://huggingface.co/danish-foundation-models) |
|
@@ -198,7 +198,9 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
|
|
198 |
- [Dataset Description](#dataset-description)
|
199 |
- [Dataset Summary](#dataset-summary)
|
200 |
- [Loading the dataset](#loading-the-dataset)
|
201 |
-
- [Languages
|
|
|
|
|
202 |
- [Dataset Structure](#dataset-structure)
|
203 |
- [Data Instances](#data-instances)
|
204 |
- [Data Fields](#data-fields)
|
@@ -261,7 +263,7 @@ You can also load a single subset at a time:
|
|
261 |
ds = load_dataset(name, revision="{desired revision}")
|
262 |
```
|
263 |
|
264 |
-
### Languages
|
265 |
This dataset includes the following languages:
|
266 |
|
267 |
- dan-Latn
|
@@ -270,6 +272,137 @@ This dataset includes the following languages:
|
|
270 |
|
271 |
Language is denoted using [BCP-47](https://en.wikipedia.org/wiki/IETF_language_tag), using the langauge code ISO 639-3 and the script code ISO 15924. The last element denote the region variant.
|
272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
## Dataset Structure
|
274 |
|
275 |
The dataset contains text from different sources which are thoroughly defined in [Source Data](#source-data).
|
@@ -320,7 +453,13 @@ This data generally contains no annotation besides the metadata attached to each
|
|
320 |
|
321 |
### Source Data
|
322 |
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
<!-- START-MAIN TABLE -->
|
326 |
| Source | Description | Domain | N. Tokens | License |
|
@@ -412,8 +551,7 @@ Below follows a brief overview of the sources in the corpus along with their ind
|
|
412 |
[Danish Copyright Law]: ./data/domsdatabasen/domsdatabasen.md#license-information
|
413 |
<!-- END-MAIN TABLE -->
|
414 |
|
415 |
-
|
416 |
-
You can learn more about each dataset by pressing the link in the first column.
|
417 |
|
418 |
|
419 |
### Data Collection and Processing
|
@@ -431,11 +569,7 @@ In addition to data specific processing we also run a series automated quality c
|
|
431 |
|
432 |
|
433 |
### Dataset Statistics
|
434 |
-
The following plot
|
435 |
-
|
436 |
-
<p align="center">
|
437 |
-
<img src="./images/domain_distribution.png" width="400" style="margin-right: 10px;" />
|
438 |
-
</p>
|
439 |
|
440 |
<details>
|
441 |
<summary>Per dataset histograms</summary>
|
@@ -456,7 +590,7 @@ We welcome contributions to the dataset such as new sources, better data filteri
|
|
456 |
|
457 |
## Citation Information
|
458 |
|
459 |
-
We are currently working on a paper on Danish Dynaword, however if you do
|
460 |
> Enevoldsen, K., Jensen, K. N., Kostkan, J., Szabó, B., Vahlstrup, P., Dalum, P. M., Elliot, D., & Nielbo, K. (2023). Dynaword: From One-shot to Continuously Developed Datasets. Hugging Face. https://huggingface.co/datasets/danish-foundation-models/danish-dynaword
|
461 |
|
462 |
|
|
|
182 |
<!-- START README TABLE -->
|
183 |
| | |
|
184 |
| ------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
185 |
+
| **Version** | 1.2.6 ([Changelog](/CHANGELOG.md)) |
|
186 |
| **Language** | dan, dansk, Danish |
|
187 |
| **License** | Openly Licensed, See the respective dataset |
|
188 |
| **Models** | For model trained used this data see [danish-foundation-models](https://huggingface.co/danish-foundation-models) |
|
|
|
198 |
- [Dataset Description](#dataset-description)
|
199 |
- [Dataset Summary](#dataset-summary)
|
200 |
- [Loading the dataset](#loading-the-dataset)
|
201 |
+
- [Languages](#languages)
|
202 |
+
- [Domains](#domains)
|
203 |
+
- [Licensing](#licensing)
|
204 |
- [Dataset Structure](#dataset-structure)
|
205 |
- [Data Instances](#data-instances)
|
206 |
- [Data Fields](#data-fields)
|
|
|
263 |
ds = load_dataset(name, revision="{desired revision}")
|
264 |
```
|
265 |
|
266 |
+
### Languages
|
267 |
This dataset includes the following languages:
|
268 |
|
269 |
- dan-Latn
|
|
|
272 |
|
273 |
Language is denoted using [BCP-47](https://en.wikipedia.org/wiki/IETF_language_tag), using the langauge code ISO 639-3 and the script code ISO 15924. The last element denote the region variant.
|
274 |
|
275 |
+
|
276 |
+
### Domains
|
277 |
+
|
278 |
+
This dynaword consist of data from various domains (e.g., legal, books, social media). The following table and figure give an overview of the relative distributions of these domains. To see a full overview of the source check out the [source data section](#source-data)
|
279 |
+
|
280 |
+
<div style="display: flex; gap: 20px; align-items: flex-start;">
|
281 |
+
|
282 |
+
<div style="flex: 1;">
|
283 |
+
|
284 |
+
|
285 |
+
<!-- START-DOMAIN TABLE -->
|
286 |
+
| Domain | Sources | N. Tokens |
|
287 |
+
|:-------------|:---------------------------------------------------------------------------------------------------------|:------------|
|
288 |
+
| Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
|
289 |
+
| Books | [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 722.00M |
|
290 |
+
| Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M |
|
291 |
+
| Social Media | [hest] | 389.32M |
|
292 |
+
| Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M |
|
293 |
+
| Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M |
|
294 |
+
| Encyclopedic | [wikisource], [wiki] | 127.35M |
|
295 |
+
| News | [ncc_newspaper], [tv2r], [nordjyllandnews] | 60.63M |
|
296 |
+
| Medical | [health_hovedstaden] | 27.07M |
|
297 |
+
| Readaloud | [nota] | 7.30M |
|
298 |
+
| Dialect | [botxt] | 847.97K |
|
299 |
+
| **Total** | | 4.78B |
|
300 |
+
|
301 |
+
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
302 |
+
[cellar]: data/cellar/cellar.md
|
303 |
+
[danske-taler]: data/danske-taler/danske-taler.md
|
304 |
+
[ncc_books]: data/ncc_books/ncc_books.md
|
305 |
+
[ncc_newspaper]: data/ncc_newspaper/ncc_newspaper.md
|
306 |
+
[ncc_maalfrid]: data/ncc_maalfrid/ncc_maalfrid.md
|
307 |
+
[ncc_parliament]: data/ncc_parliament/ncc_parliament.md
|
308 |
+
[eur-lex-sum-da]: data/eur-lex-sum-da/eur-lex-sum-da.md
|
309 |
+
[miljoeportalen]: data/miljoeportalen/miljoeportalen.md
|
310 |
+
[fm-udgivelser]: data/fm-udgivelser/fm-udgivelser.md
|
311 |
+
[memo]: data/memo/memo.md
|
312 |
+
[opensubtitles]: data/opensubtitles/opensubtitles.md
|
313 |
+
[retsinformationdk]: data/retsinformationdk/retsinformationdk.md
|
314 |
+
[ep]: data/ep/ep.md
|
315 |
+
[ft]: data/ft/ft.md
|
316 |
+
[wikisource]: data/wikisource/wikisource.md
|
317 |
+
[spont]: data/spont/spont.md
|
318 |
+
[tv2r]: data/tv2r/tv2r.md
|
319 |
+
[adl]: data/adl/adl.md
|
320 |
+
[hest]: data/hest/hest.md
|
321 |
+
[skat]: data/skat/skat.md
|
322 |
+
[dannet]: data/dannet/dannet.md
|
323 |
+
[retspraksis]: data/retspraksis/retspraksis.md
|
324 |
+
[wikibooks]: data/wikibooks/wikibooks.md
|
325 |
+
[jvj]: data/jvj/jvj.md
|
326 |
+
[gutenberg]: data/gutenberg/gutenberg.md
|
327 |
+
[botxt]: data/botxt/botxt.md
|
328 |
+
[depbank]: data/depbank/depbank.md
|
329 |
+
[naat]: data/naat/naat.md
|
330 |
+
[synne]: data/synne/synne.md
|
331 |
+
[wiki]: data/wiki/wiki.md
|
332 |
+
[nordjyllandnews]: data/nordjyllandnews/nordjyllandnews.md
|
333 |
+
[relig]: data/relig/relig.md
|
334 |
+
[nota]: data/nota/nota.md
|
335 |
+
[health_hovedstaden]: data/health_hovedstaden/health_hovedstaden.md
|
336 |
+
[domsdatabasen]: data/domsdatabasen/domsdatabasen.md
|
337 |
+
<!-- END-DOMAIN TABLE -->
|
338 |
+
|
339 |
+
</div>
|
340 |
+
|
341 |
+
<div style="flex: 1;">
|
342 |
+
|
343 |
+
<p align="center">
|
344 |
+
<img src="./images/domain_distribution.png" width="400" style="margin-right: 10px;" />
|
345 |
+
</p>
|
346 |
+
|
347 |
+
</div>
|
348 |
+
|
349 |
+
</div>
|
350 |
+
|
351 |
+
|
352 |
+
### Licensing
|
353 |
+
|
354 |
+
The following gives an overview of the licensing in the Dynaword. To get the exact license of the individual datasets check out the [overview table](#source-data).
|
355 |
+
These license is applied to the constituent data, i.e., the text. The collection of datasets (metadata, quality control, etc.) is licensed under [CC-0](https://creativecommons.org/publicdomain/zero/1.0/legalcode.en).
|
356 |
+
|
357 |
+
<!-- START-LICENSE TABLE -->
|
358 |
+
| License | Sources | N. Tokens |
|
359 |
+
|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
|
360 |
+
| CC-0 | [danske-taler], [ncc_books], [ncc_newspaper], [miljoeportalen], [opensubtitles], [ep], [ft], [wikisource], [spont], [adl], [hest], [skat], [retspraksis], [wikibooks], [botxt], [naat], [synne], [wiki], [nordjyllandnews], [relig], [nota], [health_hovedstaden] | 1.99B |
|
361 |
+
| CC-BY-SA 4.0 | [cellar], [eur-lex-sum-da], [fm-udgivelser], [memo], [tv2r], [jvj], [depbank] | 1.37B |
|
362 |
+
| Other (No attribution required) | [retsinformationdk], [domsdatabasen] | 904.61M |
|
363 |
+
| Other (Attribution required) | [ai-aktindsigt], [ncc_maalfrid], [ncc_parliament], [dannet], [gutenberg] | 515.61M |
|
364 |
+
| **Total** | | 4.78B |
|
365 |
+
|
366 |
+
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
367 |
+
[cellar]: data/cellar/cellar.md
|
368 |
+
[danske-taler]: data/danske-taler/danske-taler.md
|
369 |
+
[ncc_books]: data/ncc_books/ncc_books.md
|
370 |
+
[ncc_newspaper]: data/ncc_newspaper/ncc_newspaper.md
|
371 |
+
[ncc_maalfrid]: data/ncc_maalfrid/ncc_maalfrid.md
|
372 |
+
[ncc_parliament]: data/ncc_parliament/ncc_parliament.md
|
373 |
+
[eur-lex-sum-da]: data/eur-lex-sum-da/eur-lex-sum-da.md
|
374 |
+
[miljoeportalen]: data/miljoeportalen/miljoeportalen.md
|
375 |
+
[fm-udgivelser]: data/fm-udgivelser/fm-udgivelser.md
|
376 |
+
[memo]: data/memo/memo.md
|
377 |
+
[opensubtitles]: data/opensubtitles/opensubtitles.md
|
378 |
+
[retsinformationdk]: data/retsinformationdk/retsinformationdk.md
|
379 |
+
[ep]: data/ep/ep.md
|
380 |
+
[ft]: data/ft/ft.md
|
381 |
+
[wikisource]: data/wikisource/wikisource.md
|
382 |
+
[spont]: data/spont/spont.md
|
383 |
+
[tv2r]: data/tv2r/tv2r.md
|
384 |
+
[adl]: data/adl/adl.md
|
385 |
+
[hest]: data/hest/hest.md
|
386 |
+
[skat]: data/skat/skat.md
|
387 |
+
[dannet]: data/dannet/dannet.md
|
388 |
+
[retspraksis]: data/retspraksis/retspraksis.md
|
389 |
+
[wikibooks]: data/wikibooks/wikibooks.md
|
390 |
+
[jvj]: data/jvj/jvj.md
|
391 |
+
[gutenberg]: data/gutenberg/gutenberg.md
|
392 |
+
[botxt]: data/botxt/botxt.md
|
393 |
+
[depbank]: data/depbank/depbank.md
|
394 |
+
[naat]: data/naat/naat.md
|
395 |
+
[synne]: data/synne/synne.md
|
396 |
+
[wiki]: data/wiki/wiki.md
|
397 |
+
[nordjyllandnews]: data/nordjyllandnews/nordjyllandnews.md
|
398 |
+
[relig]: data/relig/relig.md
|
399 |
+
[nota]: data/nota/nota.md
|
400 |
+
[health_hovedstaden]: data/health_hovedstaden/health_hovedstaden.md
|
401 |
+
[domsdatabasen]: data/domsdatabasen/domsdatabasen.md
|
402 |
+
<!-- END-LICENSE TABLE -->
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
## Dataset Structure
|
407 |
|
408 |
The dataset contains text from different sources which are thoroughly defined in [Source Data](#source-data).
|
|
|
453 |
|
454 |
### Source Data
|
455 |
|
456 |
+
|
457 |
+
Below follows a brief overview of the sources in the corpus along with their individual license. To get more information about the individual dataset click the hyperlink in the table.
|
458 |
+
|
459 |
+
<details>
|
460 |
+
<summary><b>Overview Table (click to unfold)</b></summary>
|
461 |
+
|
462 |
+
You can learn more about each dataset by pressing the link in the first column.
|
463 |
|
464 |
<!-- START-MAIN TABLE -->
|
465 |
| Source | Description | Domain | N. Tokens | License |
|
|
|
551 |
[Danish Copyright Law]: ./data/domsdatabasen/domsdatabasen.md#license-information
|
552 |
<!-- END-MAIN TABLE -->
|
553 |
|
554 |
+
</details>
|
|
|
555 |
|
556 |
|
557 |
### Data Collection and Processing
|
|
|
569 |
|
570 |
|
571 |
### Dataset Statistics
|
572 |
+
The following plot pr. dataset histograms displaying document lengths.
|
|
|
|
|
|
|
|
|
573 |
|
574 |
<details>
|
575 |
<summary>Per dataset histograms</summary>
|
|
|
590 |
|
591 |
## Citation Information
|
592 |
|
593 |
+
We are currently working on a paper on Danish Dynaword, however if you do use Danish Dynaword we recommend citing the following:
|
594 |
> Enevoldsen, K., Jensen, K. N., Kostkan, J., Szabó, B., Vahlstrup, P., Dalum, P. M., Elliot, D., & Nielbo, K. (2023). Dynaword: From One-shot to Continuously Developed Datasets. Hugging Face. https://huggingface.co/datasets/danish-foundation-models/danish-dynaword
|
595 |
|
596 |
|
descriptive_stats.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"number_of_samples": 960357,
|
3 |
"average_document_length": 15301.724414983179,
|
4 |
"number_of_tokens": 4784823570,
|
5 |
-
"revision": "
|
6 |
}
|
|
|
2 |
"number_of_samples": 960357,
|
3 |
"average_document_length": 15301.724414983179,
|
4 |
"number_of_tokens": 4784823570,
|
5 |
+
"revision": "3d87e24d35c186fbb994478238e7ccba03a4d8a2"
|
6 |
}
|
images/domain_distribution.png
CHANGED
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
images/tokens_over_time.html
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
<head><meta charset="utf-8" /></head>
|
3 |
<body>
|
4 |
<div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
|
5 |
-
<script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="c0935e4f-c069-48ca-a414-42556becd26f" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("c0935e4f-c069-48ca-a414-42556becd26f")) { Plotly.newPlot( "c0935e4f-c069-48ca-a414-42556becd26f", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.37M\u003cbr\u003eSamples: 960,405\u003cbr\u003eCommit: 8870700b\u003cbr\u003eMessage: Adding domsdatabasen."],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4784836610],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
|
6 |
</body>
|
7 |
</html>
|
|
|
2 |
<head><meta charset="utf-8" /></head>
|
3 |
<body>
|
4 |
<div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
|
5 |
+
<script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="5b08e3f1-a9bd-44ac-afab-f0bde51525e6" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("5b08e3f1-a9bd-44ac-afab-f0bde51525e6")) { Plotly.newPlot( "5b08e3f1-a9bd-44ac-afab-f0bde51525e6", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)","Date: 2025-07-21\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: d06be7ce\u003cbr\u003eMessage: Updating readme and graphs after merging with main."],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000","2025-07-21T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570,4784823570],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
|
6 |
</body>
|
7 |
</html>
|
images/tokens_over_time.svg
CHANGED
|
|
pyproject.toml
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
[project]
|
2 |
name = "dynaword"
|
3 |
-
version = "1.2.
|
4 |
description = "project code for the danish dynaword project"
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.12,<3.13" # 3.13 have issues with spacy and pytorch
|
|
|
1 |
[project]
|
2 |
name = "dynaword"
|
3 |
+
version = "1.2.6"
|
4 |
description = "project code for the danish dynaword project"
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.12,<3.13" # 3.13 have issues with spacy and pytorch
|
src/dynaword/tables.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from pathlib import Path
|
|
|
2 |
|
3 |
import pandas as pd
|
4 |
|
@@ -53,7 +54,7 @@ def create_overview_table(
|
|
53 |
) -> pd.DataFrame:
|
54 |
table = {
|
55 |
"Source": [],
|
56 |
-
"
|
57 |
"Description": [],
|
58 |
"Domain": [],
|
59 |
"N. Tokens": [],
|
@@ -69,7 +70,7 @@ def create_overview_table(
|
|
69 |
main_domain = sheet.domains[0] if sheet.domains else ""
|
70 |
|
71 |
table["Source"] += [f"{dataset_path.name}"]
|
72 |
-
table["
|
73 |
table["License"] += [f"[{sheet.license_name}]"]
|
74 |
table["Domain"] += [main_domain]
|
75 |
table["Description"] += [sheet.short_description]
|
@@ -81,7 +82,7 @@ def create_overview_table(
|
|
81 |
if add_total_row:
|
82 |
total_row = {
|
83 |
"Source": "**Total**",
|
84 |
-
"
|
85 |
"Domain": "",
|
86 |
"License": "",
|
87 |
"Description": "",
|
@@ -95,12 +96,12 @@ def create_overview_table(
|
|
95 |
ignore_index=True,
|
96 |
)
|
97 |
if add_readme_references:
|
98 |
-
# replace Source with
|
99 |
-
df["Source"] = df["
|
100 |
-
df = df.drop(columns=["
|
101 |
else:
|
102 |
-
# remove
|
103 |
-
df = df.drop(columns=["
|
104 |
|
105 |
if add_readable_tokens:
|
106 |
df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
|
@@ -108,6 +109,100 @@ def create_overview_table(
|
|
108 |
return df
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
def create_overview_table_str(repo_path: Path = repo_path) -> str:
|
112 |
main_table = create_overview_table(repo_path)
|
113 |
readme_references = create_dataset_readme_references()
|
|
|
1 |
from pathlib import Path
|
2 |
+
from typing import Literal
|
3 |
|
4 |
import pandas as pd
|
5 |
|
|
|
54 |
) -> pd.DataFrame:
|
55 |
table = {
|
56 |
"Source": [],
|
57 |
+
"Sources": [],
|
58 |
"Description": [],
|
59 |
"Domain": [],
|
60 |
"N. Tokens": [],
|
|
|
70 |
main_domain = sheet.domains[0] if sheet.domains else ""
|
71 |
|
72 |
table["Source"] += [f"{dataset_path.name}"]
|
73 |
+
table["Sources"] += [f"[{dataset_path.name}]"]
|
74 |
table["License"] += [f"[{sheet.license_name}]"]
|
75 |
table["Domain"] += [main_domain]
|
76 |
table["Description"] += [sheet.short_description]
|
|
|
82 |
if add_total_row:
|
83 |
total_row = {
|
84 |
"Source": "**Total**",
|
85 |
+
"Sources": "**Total**",
|
86 |
"Domain": "",
|
87 |
"License": "",
|
88 |
"Description": "",
|
|
|
96 |
ignore_index=True,
|
97 |
)
|
98 |
if add_readme_references:
|
99 |
+
# replace Source with Sources
|
100 |
+
df["Source"] = df["Sources"]
|
101 |
+
df = df.drop(columns=["Sources"])
|
102 |
else:
|
103 |
+
# remove Sources
|
104 |
+
df = df.drop(columns=["Sources"])
|
105 |
|
106 |
if add_readable_tokens:
|
107 |
df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
|
|
|
109 |
return df
|
110 |
|
111 |
|
112 |
+
def _get_normalized_license(ds: DataSheet) -> str:
|
113 |
+
non_standard_license_names = {
|
114 |
+
"Apache 2.0": "Other (Attribution required)",
|
115 |
+
"NLOD 2.0": "Other (Attribution required)",
|
116 |
+
"DanNet 1.0": "Other (Attribution required)",
|
117 |
+
"Gutenberg": "Other (Attribution required)",
|
118 |
+
"Danish Copyright Law": "Other (No attribution required)",
|
119 |
+
}
|
120 |
+
if (
|
121 |
+
ds.license_name not in non_standard_license_names
|
122 |
+
and ds.license_name is not None
|
123 |
+
):
|
124 |
+
return ds.license_name
|
125 |
+
if ds.license_name is None:
|
126 |
+
raise ValueError(
|
127 |
+
f"Datasheet {ds.pretty_name} has no license name specified in the frontmatter."
|
128 |
+
)
|
129 |
+
return non_standard_license_names[ds.license_name]
|
130 |
+
|
131 |
+
|
132 |
+
def _get_feature_by_string(
|
133 |
+
datasheet: DataSheet, feature_name: Literal["Domain", "Language", "License"]
|
134 |
+
) -> str:
|
135 |
+
"""Get a specific feature from the frontmatter."""
|
136 |
+
|
137 |
+
match feature_name:
|
138 |
+
case "Domain":
|
139 |
+
return datasheet.domains[0] if datasheet.domains else "N/A"
|
140 |
+
case "Language":
|
141 |
+
return ", ".join(datasheet.language)
|
142 |
+
case "License":
|
143 |
+
return _get_normalized_license(datasheet)
|
144 |
+
case _:
|
145 |
+
raise ValueError(f"Unknown feature: {feature_name}")
|
146 |
+
|
147 |
+
|
148 |
+
def create_grouped_table(
|
149 |
+
group: Literal["Domain", "Language", "License"] = "Domain",
|
150 |
+
repo_path: Path = repo_path,
|
151 |
+
add_readable_tokens: bool = True,
|
152 |
+
add_total_row: bool = True,
|
153 |
+
) -> pd.DataFrame:
|
154 |
+
table = {
|
155 |
+
"Sources": [],
|
156 |
+
group: [],
|
157 |
+
"N. Tokens": [],
|
158 |
+
}
|
159 |
+
|
160 |
+
for dataset in _datasets:
|
161 |
+
dataset_path = repo_path / "data" / dataset
|
162 |
+
readme_path = dataset_path / f"{dataset_path.name}.md"
|
163 |
+
|
164 |
+
sheet = DataSheet.load_from_path(readme_path)
|
165 |
+
desc_stats = sheet.get_descritive_stats()
|
166 |
+
feature = _get_feature_by_string(sheet, group)
|
167 |
+
|
168 |
+
table["Sources"] += [f"[{dataset_path.name}]"]
|
169 |
+
table[group] += [feature]
|
170 |
+
table["N. Tokens"] += [desc_stats.number_of_tokens]
|
171 |
+
|
172 |
+
if add_total_row:
|
173 |
+
table["Sources"] += [""]
|
174 |
+
table[group] += ["**Total**"]
|
175 |
+
table["N. Tokens"] += [sum(table["N. Tokens"])]
|
176 |
+
|
177 |
+
df = pd.DataFrame.from_dict(table)
|
178 |
+
|
179 |
+
df = df.groupby(group).agg({"Sources": lambda x: ", ".join(x), "N. Tokens": "sum"})
|
180 |
+
|
181 |
+
df = df.sort_values("N. Tokens", ascending=False)
|
182 |
+
|
183 |
+
df.index.name = group
|
184 |
+
df = df.reset_index()
|
185 |
+
|
186 |
+
# Trick the Total row to be at the bottom.
|
187 |
+
new_index = list(df.index.drop(0)) + [0]
|
188 |
+
df = df.reindex(new_index)
|
189 |
+
|
190 |
+
if add_readable_tokens:
|
191 |
+
df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
|
192 |
+
|
193 |
+
return df
|
194 |
+
|
195 |
+
|
196 |
+
def create_grouped_table_str(
|
197 |
+
repo_path: Path = repo_path,
|
198 |
+
group: Literal["Domain", "Language", "License"] = "Domain",
|
199 |
+
) -> str:
|
200 |
+
table = create_grouped_table(group=group, repo_path=repo_path)
|
201 |
+
readme_references = create_dataset_readme_references()
|
202 |
+
package = f"{table.to_markdown(index=False, maxcolwidths=[None, None, None])}\n\n{readme_references}\n\n"
|
203 |
+
return package
|
204 |
+
|
205 |
+
|
206 |
def create_overview_table_str(repo_path: Path = repo_path) -> str:
|
207 |
main_table = create_overview_table(repo_path)
|
208 |
readme_references = create_dataset_readme_references()
|
src/dynaword/update_descriptive_statistics.py
CHANGED
@@ -24,7 +24,11 @@ from dynaword.git_utilities import (
|
|
24 |
)
|
25 |
from dynaword.paths import repo_path
|
26 |
from dynaword.plot_tokens_over_time import create_tokens_over_time_plot
|
27 |
-
from dynaword.tables import
|
|
|
|
|
|
|
|
|
28 |
|
29 |
logger = logging.getLogger(__name__)
|
30 |
|
@@ -104,8 +108,14 @@ def update_dataset(
|
|
104 |
|
105 |
if dataset_name == "default":
|
106 |
logger.info("Updating Overview table")
|
107 |
-
|
108 |
-
sheet.body = sheet.replace_tag(package=
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
create_domain_distribution_plot()
|
110 |
create_tokens_over_time_plot()
|
111 |
|
|
|
24 |
)
|
25 |
from dynaword.paths import repo_path
|
26 |
from dynaword.plot_tokens_over_time import create_tokens_over_time_plot
|
27 |
+
from dynaword.tables import (
|
28 |
+
create_grouped_table_str,
|
29 |
+
create_overview_table,
|
30 |
+
create_overview_table_str,
|
31 |
+
)
|
32 |
|
33 |
logger = logging.getLogger(__name__)
|
34 |
|
|
|
108 |
|
109 |
if dataset_name == "default":
|
110 |
logger.info("Updating Overview table")
|
111 |
+
overview_table = create_overview_table_str()
|
112 |
+
sheet.body = sheet.replace_tag(package=overview_table, tag="MAIN TABLE")
|
113 |
+
logger.info("Updating domain table")
|
114 |
+
domain_table = create_grouped_table_str(group="Domain")
|
115 |
+
sheet.body = sheet.replace_tag(package=domain_table, tag="DOMAIN TABLE")
|
116 |
+
logger.info("Updating license table")
|
117 |
+
domain_table = create_grouped_table_str(group="License")
|
118 |
+
sheet.body = sheet.replace_tag(package=domain_table, tag="LICENSE TABLE")
|
119 |
create_domain_distribution_plot()
|
120 |
create_tokens_over_time_plot()
|
121 |
|
test_results.log
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
============================= test session starts ==============================
|
2 |
platform darwin -- Python 3.12.0, pytest-8.3.4, pluggy-1.5.0
|
3 |
-
rootdir: /Users/
|
4 |
configfile: pyproject.toml
|
5 |
plugins: anyio-4.9.0
|
6 |
collected 328 items
|
@@ -19,7 +19,7 @@ src/tests/test_unique_ids.py . [100%]
|
|
19 |
|
20 |
=============================== warnings summary ===============================
|
21 |
src/tests/test_quality/test_short_texts.py: 36 warnings
|
22 |
-
/Users/
|
23 |
|
24 |
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
|
25 |
-
================= 327 passed, 1 skipped, 36 warnings in
|
|
|
1 |
============================= test session starts ==============================
|
2 |
platform darwin -- Python 3.12.0, pytest-8.3.4, pluggy-1.5.0
|
3 |
+
rootdir: /Users/au561649/Github/danish-dynaword
|
4 |
configfile: pyproject.toml
|
5 |
plugins: anyio-4.9.0
|
6 |
collected 328 items
|
|
|
19 |
|
20 |
=============================== warnings summary ===============================
|
21 |
src/tests/test_quality/test_short_texts.py: 36 warnings
|
22 |
+
/Users/au561649/Github/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
|
23 |
|
24 |
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
|
25 |
+
================= 327 passed, 1 skipped, 36 warnings in 53.74s =================
|
uv.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|