Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
Danish
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
CHANGELOG.md CHANGED
@@ -5,6 +5,16 @@ All notable changes to this project will be documented in this file.
5
 
6
  The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
7
 
 
 
 
 
 
 
 
 
 
 
8
  ## [v1.2.5] - 2025-07-08
9
 
10
  ### Added
 
5
 
6
  The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
7
 
8
+ ## [v1.2.6] - 2025-07-21
9
+
10
+ ### Added
11
+
12
+ - Added two table to get an overview of data by license and domain
13
+
14
+ ### Changed
15
+
16
+ - Dataset overview table now appears in a drop down menu
17
+
18
  ## [v1.2.5] - 2025-07-08
19
 
20
  ### Added
README.md CHANGED
@@ -182,7 +182,7 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
182
  <!-- START README TABLE -->
183
  | | |
184
  | ------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
185
- | **Version** | 1.2.5 ([Changelog](/CHANGELOG.md)) |
186
  | **Language** | dan, dansk, Danish |
187
  | **License** | Openly Licensed, See the respective dataset |
188
  | **Models** | For model trained used this data see [danish-foundation-models](https://huggingface.co/danish-foundation-models) |
@@ -198,7 +198,9 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
198
  - [Dataset Description](#dataset-description)
199
  - [Dataset Summary](#dataset-summary)
200
  - [Loading the dataset](#loading-the-dataset)
201
- - [Languages:](#languages)
 
 
202
  - [Dataset Structure](#dataset-structure)
203
  - [Data Instances](#data-instances)
204
  - [Data Fields](#data-fields)
@@ -261,7 +263,7 @@ You can also load a single subset at a time:
261
  ds = load_dataset(name, revision="{desired revision}")
262
  ```
263
 
264
- ### Languages:
265
  This dataset includes the following languages:
266
 
267
  - dan-Latn
@@ -270,6 +272,137 @@ This dataset includes the following languages:
270
 
271
  Language is denoted using [BCP-47](https://en.wikipedia.org/wiki/IETF_language_tag), using the langauge code ISO 639-3 and the script code ISO 15924. The last element denote the region variant.
272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273
  ## Dataset Structure
274
 
275
  The dataset contains text from different sources which are thoroughly defined in [Source Data](#source-data).
@@ -320,7 +453,13 @@ This data generally contains no annotation besides the metadata attached to each
320
 
321
  ### Source Data
322
 
323
- Below follows a brief overview of the sources in the corpus along with their individual license.
 
 
 
 
 
 
324
 
325
  <!-- START-MAIN TABLE -->
326
  | Source | Description | Domain | N. Tokens | License |
@@ -412,8 +551,7 @@ Below follows a brief overview of the sources in the corpus along with their ind
412
  [Danish Copyright Law]: ./data/domsdatabasen/domsdatabasen.md#license-information
413
  <!-- END-MAIN TABLE -->
414
 
415
-
416
- You can learn more about each dataset by pressing the link in the first column.
417
 
418
 
419
  ### Data Collection and Processing
@@ -431,11 +569,7 @@ In addition to data specific processing we also run a series automated quality c
431
 
432
 
433
  ### Dataset Statistics
434
- The following plot show the domains distribution of the following within the dynaword:
435
-
436
- <p align="center">
437
- <img src="./images/domain_distribution.png" width="400" style="margin-right: 10px;" />
438
- </p>
439
 
440
  <details>
441
  <summary>Per dataset histograms</summary>
@@ -456,7 +590,7 @@ We welcome contributions to the dataset such as new sources, better data filteri
456
 
457
  ## Citation Information
458
 
459
- We are currently working on a paper on Danish Dynaword, however if you do you Danish Dynaword we recommend citiing the following:
460
  > Enevoldsen, K., Jensen, K. N., Kostkan, J., Szabó, B., Vahlstrup, P., Dalum, P. M., Elliot, D., & Nielbo, K. (2023). Dynaword: From One-shot to Continuously Developed Datasets. Hugging Face. https://huggingface.co/datasets/danish-foundation-models/danish-dynaword
461
 
462
 
 
182
  <!-- START README TABLE -->
183
  | | |
184
  | ------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
185
+ | **Version** | 1.2.6 ([Changelog](/CHANGELOG.md)) |
186
  | **Language** | dan, dansk, Danish |
187
  | **License** | Openly Licensed, See the respective dataset |
188
  | **Models** | For model trained used this data see [danish-foundation-models](https://huggingface.co/danish-foundation-models) |
 
198
  - [Dataset Description](#dataset-description)
199
  - [Dataset Summary](#dataset-summary)
200
  - [Loading the dataset](#loading-the-dataset)
201
+ - [Languages](#languages)
202
+ - [Domains](#domains)
203
+ - [Licensing](#licensing)
204
  - [Dataset Structure](#dataset-structure)
205
  - [Data Instances](#data-instances)
206
  - [Data Fields](#data-fields)
 
263
  ds = load_dataset(name, revision="{desired revision}")
264
  ```
265
 
266
+ ### Languages
267
  This dataset includes the following languages:
268
 
269
  - dan-Latn
 
272
 
273
  Language is denoted using [BCP-47](https://en.wikipedia.org/wiki/IETF_language_tag), using the langauge code ISO 639-3 and the script code ISO 15924. The last element denote the region variant.
274
 
275
+
276
+ ### Domains
277
+
278
+ This dynaword consist of data from various domains (e.g., legal, books, social media). The following table and figure give an overview of the relative distributions of these domains. To see a full overview of the source check out the [source data section](#source-data)
279
+
280
+ <div style="display: flex; gap: 20px; align-items: flex-start;">
281
+
282
+ <div style="flex: 1;">
283
+
284
+
285
+ <!-- START-DOMAIN TABLE -->
286
+ | Domain | Sources | N. Tokens |
287
+ |:-------------|:---------------------------------------------------------------------------------------------------------|:------------|
288
+ | Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
289
+ | Books | [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 722.00M |
290
+ | Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M |
291
+ | Social Media | [hest] | 389.32M |
292
+ | Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M |
293
+ | Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M |
294
+ | Encyclopedic | [wikisource], [wiki] | 127.35M |
295
+ | News | [ncc_newspaper], [tv2r], [nordjyllandnews] | 60.63M |
296
+ | Medical | [health_hovedstaden] | 27.07M |
297
+ | Readaloud | [nota] | 7.30M |
298
+ | Dialect | [botxt] | 847.97K |
299
+ | **Total** | | 4.78B |
300
+
301
+ [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
302
+ [cellar]: data/cellar/cellar.md
303
+ [danske-taler]: data/danske-taler/danske-taler.md
304
+ [ncc_books]: data/ncc_books/ncc_books.md
305
+ [ncc_newspaper]: data/ncc_newspaper/ncc_newspaper.md
306
+ [ncc_maalfrid]: data/ncc_maalfrid/ncc_maalfrid.md
307
+ [ncc_parliament]: data/ncc_parliament/ncc_parliament.md
308
+ [eur-lex-sum-da]: data/eur-lex-sum-da/eur-lex-sum-da.md
309
+ [miljoeportalen]: data/miljoeportalen/miljoeportalen.md
310
+ [fm-udgivelser]: data/fm-udgivelser/fm-udgivelser.md
311
+ [memo]: data/memo/memo.md
312
+ [opensubtitles]: data/opensubtitles/opensubtitles.md
313
+ [retsinformationdk]: data/retsinformationdk/retsinformationdk.md
314
+ [ep]: data/ep/ep.md
315
+ [ft]: data/ft/ft.md
316
+ [wikisource]: data/wikisource/wikisource.md
317
+ [spont]: data/spont/spont.md
318
+ [tv2r]: data/tv2r/tv2r.md
319
+ [adl]: data/adl/adl.md
320
+ [hest]: data/hest/hest.md
321
+ [skat]: data/skat/skat.md
322
+ [dannet]: data/dannet/dannet.md
323
+ [retspraksis]: data/retspraksis/retspraksis.md
324
+ [wikibooks]: data/wikibooks/wikibooks.md
325
+ [jvj]: data/jvj/jvj.md
326
+ [gutenberg]: data/gutenberg/gutenberg.md
327
+ [botxt]: data/botxt/botxt.md
328
+ [depbank]: data/depbank/depbank.md
329
+ [naat]: data/naat/naat.md
330
+ [synne]: data/synne/synne.md
331
+ [wiki]: data/wiki/wiki.md
332
+ [nordjyllandnews]: data/nordjyllandnews/nordjyllandnews.md
333
+ [relig]: data/relig/relig.md
334
+ [nota]: data/nota/nota.md
335
+ [health_hovedstaden]: data/health_hovedstaden/health_hovedstaden.md
336
+ [domsdatabasen]: data/domsdatabasen/domsdatabasen.md
337
+ <!-- END-DOMAIN TABLE -->
338
+
339
+ </div>
340
+
341
+ <div style="flex: 1;">
342
+
343
+ <p align="center">
344
+ <img src="./images/domain_distribution.png" width="400" style="margin-right: 10px;" />
345
+ </p>
346
+
347
+ </div>
348
+
349
+ </div>
350
+
351
+
352
+ ### Licensing
353
+
354
+ The following gives an overview of the licensing in the Dynaword. To get the exact license of the individual datasets check out the [overview table](#source-data).
355
+ These license is applied to the constituent data, i.e., the text. The collection of datasets (metadata, quality control, etc.) is licensed under [CC-0](https://creativecommons.org/publicdomain/zero/1.0/legalcode.en).
356
+
357
+ <!-- START-LICENSE TABLE -->
358
+ | License | Sources | N. Tokens |
359
+ |:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
360
+ | CC-0 | [danske-taler], [ncc_books], [ncc_newspaper], [miljoeportalen], [opensubtitles], [ep], [ft], [wikisource], [spont], [adl], [hest], [skat], [retspraksis], [wikibooks], [botxt], [naat], [synne], [wiki], [nordjyllandnews], [relig], [nota], [health_hovedstaden] | 1.99B |
361
+ | CC-BY-SA 4.0 | [cellar], [eur-lex-sum-da], [fm-udgivelser], [memo], [tv2r], [jvj], [depbank] | 1.37B |
362
+ | Other (No attribution required) | [retsinformationdk], [domsdatabasen] | 904.61M |
363
+ | Other (Attribution required) | [ai-aktindsigt], [ncc_maalfrid], [ncc_parliament], [dannet], [gutenberg] | 515.61M |
364
+ | **Total** | | 4.78B |
365
+
366
+ [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
367
+ [cellar]: data/cellar/cellar.md
368
+ [danske-taler]: data/danske-taler/danske-taler.md
369
+ [ncc_books]: data/ncc_books/ncc_books.md
370
+ [ncc_newspaper]: data/ncc_newspaper/ncc_newspaper.md
371
+ [ncc_maalfrid]: data/ncc_maalfrid/ncc_maalfrid.md
372
+ [ncc_parliament]: data/ncc_parliament/ncc_parliament.md
373
+ [eur-lex-sum-da]: data/eur-lex-sum-da/eur-lex-sum-da.md
374
+ [miljoeportalen]: data/miljoeportalen/miljoeportalen.md
375
+ [fm-udgivelser]: data/fm-udgivelser/fm-udgivelser.md
376
+ [memo]: data/memo/memo.md
377
+ [opensubtitles]: data/opensubtitles/opensubtitles.md
378
+ [retsinformationdk]: data/retsinformationdk/retsinformationdk.md
379
+ [ep]: data/ep/ep.md
380
+ [ft]: data/ft/ft.md
381
+ [wikisource]: data/wikisource/wikisource.md
382
+ [spont]: data/spont/spont.md
383
+ [tv2r]: data/tv2r/tv2r.md
384
+ [adl]: data/adl/adl.md
385
+ [hest]: data/hest/hest.md
386
+ [skat]: data/skat/skat.md
387
+ [dannet]: data/dannet/dannet.md
388
+ [retspraksis]: data/retspraksis/retspraksis.md
389
+ [wikibooks]: data/wikibooks/wikibooks.md
390
+ [jvj]: data/jvj/jvj.md
391
+ [gutenberg]: data/gutenberg/gutenberg.md
392
+ [botxt]: data/botxt/botxt.md
393
+ [depbank]: data/depbank/depbank.md
394
+ [naat]: data/naat/naat.md
395
+ [synne]: data/synne/synne.md
396
+ [wiki]: data/wiki/wiki.md
397
+ [nordjyllandnews]: data/nordjyllandnews/nordjyllandnews.md
398
+ [relig]: data/relig/relig.md
399
+ [nota]: data/nota/nota.md
400
+ [health_hovedstaden]: data/health_hovedstaden/health_hovedstaden.md
401
+ [domsdatabasen]: data/domsdatabasen/domsdatabasen.md
402
+ <!-- END-LICENSE TABLE -->
403
+
404
+
405
+
406
  ## Dataset Structure
407
 
408
  The dataset contains text from different sources which are thoroughly defined in [Source Data](#source-data).
 
453
 
454
  ### Source Data
455
 
456
+
457
+ Below follows a brief overview of the sources in the corpus along with their individual license. To get more information about the individual dataset click the hyperlink in the table.
458
+
459
+ <details>
460
+ <summary><b>Overview Table (click to unfold)</b></summary>
461
+
462
+ You can learn more about each dataset by pressing the link in the first column.
463
 
464
  <!-- START-MAIN TABLE -->
465
  | Source | Description | Domain | N. Tokens | License |
 
551
  [Danish Copyright Law]: ./data/domsdatabasen/domsdatabasen.md#license-information
552
  <!-- END-MAIN TABLE -->
553
 
554
+ </details>
 
555
 
556
 
557
  ### Data Collection and Processing
 
569
 
570
 
571
  ### Dataset Statistics
572
+ The following plot pr. dataset histograms displaying document lengths.
 
 
 
 
573
 
574
  <details>
575
  <summary>Per dataset histograms</summary>
 
590
 
591
  ## Citation Information
592
 
593
+ We are currently working on a paper on Danish Dynaword, however if you do use Danish Dynaword we recommend citing the following:
594
  > Enevoldsen, K., Jensen, K. N., Kostkan, J., Szabó, B., Vahlstrup, P., Dalum, P. M., Elliot, D., & Nielbo, K. (2023). Dynaword: From One-shot to Continuously Developed Datasets. Hugging Face. https://huggingface.co/datasets/danish-foundation-models/danish-dynaword
595
 
596
 
descriptive_stats.json CHANGED
@@ -2,5 +2,5 @@
2
  "number_of_samples": 960357,
3
  "average_document_length": 15301.724414983179,
4
  "number_of_tokens": 4784823570,
5
- "revision": "02c4bb425478c6b3a421a5d30286ab0e4235a696"
6
  }
 
2
  "number_of_samples": 960357,
3
  "average_document_length": 15301.724414983179,
4
  "number_of_tokens": 4784823570,
5
+ "revision": "3d87e24d35c186fbb994478238e7ccba03a4d8a2"
6
  }
images/domain_distribution.png CHANGED

Git LFS Details

  • SHA256: 890c8e11f2aa66a2e945ba675a9fcd17bf79366aebeab2e3dd9040f915a8760d
  • Pointer size: 131 Bytes
  • Size of remote file: 344 kB

Git LFS Details

  • SHA256: 6596b9ce03800525cc99af5accfd0e84e8c4e14259e20e74039a237b7ab4eec9
  • Pointer size: 131 Bytes
  • Size of remote file: 338 kB
images/tokens_over_time.html CHANGED
@@ -2,6 +2,6 @@
2
  <head><meta charset="utf-8" /></head>
3
  <body>
4
  <div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
5
- <script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="c0935e4f-c069-48ca-a414-42556becd26f" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("c0935e4f-c069-48ca-a414-42556becd26f")) { Plotly.newPlot( "c0935e4f-c069-48ca-a414-42556becd26f", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.37M\u003cbr\u003eSamples: 960,405\u003cbr\u003eCommit: 8870700b\u003cbr\u003eMessage: Adding domsdatabasen."],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4784836610],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
6
  </body>
7
  </html>
 
2
  <head><meta charset="utf-8" /></head>
3
  <body>
4
  <div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
5
+ <script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="5b08e3f1-a9bd-44ac-afab-f0bde51525e6" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("5b08e3f1-a9bd-44ac-afab-f0bde51525e6")) { Plotly.newPlot( "5b08e3f1-a9bd-44ac-afab-f0bde51525e6", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)","Date: 2025-07-21\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: d06be7ce\u003cbr\u003eMessage: Updating readme and graphs after merging with main."],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000","2025-07-21T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570,4784823570],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
6
  </body>
7
  </html>
images/tokens_over_time.svg CHANGED
pyproject.toml CHANGED
@@ -1,6 +1,6 @@
1
  [project]
2
  name = "dynaword"
3
- version = "1.2.5"
4
  description = "project code for the danish dynaword project"
5
  readme = "README.md"
6
  requires-python = ">=3.12,<3.13" # 3.13 have issues with spacy and pytorch
 
1
  [project]
2
  name = "dynaword"
3
+ version = "1.2.6"
4
  description = "project code for the danish dynaword project"
5
  readme = "README.md"
6
  requires-python = ">=3.12,<3.13" # 3.13 have issues with spacy and pytorch
src/dynaword/tables.py CHANGED
@@ -1,4 +1,5 @@
1
  from pathlib import Path
 
2
 
3
  import pandas as pd
4
 
@@ -53,7 +54,7 @@ def create_overview_table(
53
  ) -> pd.DataFrame:
54
  table = {
55
  "Source": [],
56
- "Source with link": [],
57
  "Description": [],
58
  "Domain": [],
59
  "N. Tokens": [],
@@ -69,7 +70,7 @@ def create_overview_table(
69
  main_domain = sheet.domains[0] if sheet.domains else ""
70
 
71
  table["Source"] += [f"{dataset_path.name}"]
72
- table["Source with link"] += [f"[{dataset_path.name}]"]
73
  table["License"] += [f"[{sheet.license_name}]"]
74
  table["Domain"] += [main_domain]
75
  table["Description"] += [sheet.short_description]
@@ -81,7 +82,7 @@ def create_overview_table(
81
  if add_total_row:
82
  total_row = {
83
  "Source": "**Total**",
84
- "Source with link": "**Total**",
85
  "Domain": "",
86
  "License": "",
87
  "Description": "",
@@ -95,12 +96,12 @@ def create_overview_table(
95
  ignore_index=True,
96
  )
97
  if add_readme_references:
98
- # replace Source with Source with link
99
- df["Source"] = df["Source with link"]
100
- df = df.drop(columns=["Source with link"])
101
  else:
102
- # remove Source with link
103
- df = df.drop(columns=["Source with link"])
104
 
105
  if add_readable_tokens:
106
  df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
@@ -108,6 +109,100 @@ def create_overview_table(
108
  return df
109
 
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  def create_overview_table_str(repo_path: Path = repo_path) -> str:
112
  main_table = create_overview_table(repo_path)
113
  readme_references = create_dataset_readme_references()
 
1
  from pathlib import Path
2
+ from typing import Literal
3
 
4
  import pandas as pd
5
 
 
54
  ) -> pd.DataFrame:
55
  table = {
56
  "Source": [],
57
+ "Sources": [],
58
  "Description": [],
59
  "Domain": [],
60
  "N. Tokens": [],
 
70
  main_domain = sheet.domains[0] if sheet.domains else ""
71
 
72
  table["Source"] += [f"{dataset_path.name}"]
73
+ table["Sources"] += [f"[{dataset_path.name}]"]
74
  table["License"] += [f"[{sheet.license_name}]"]
75
  table["Domain"] += [main_domain]
76
  table["Description"] += [sheet.short_description]
 
82
  if add_total_row:
83
  total_row = {
84
  "Source": "**Total**",
85
+ "Sources": "**Total**",
86
  "Domain": "",
87
  "License": "",
88
  "Description": "",
 
96
  ignore_index=True,
97
  )
98
  if add_readme_references:
99
+ # replace Source with Sources
100
+ df["Source"] = df["Sources"]
101
+ df = df.drop(columns=["Sources"])
102
  else:
103
+ # remove Sources
104
+ df = df.drop(columns=["Sources"])
105
 
106
  if add_readable_tokens:
107
  df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
 
109
  return df
110
 
111
 
112
+ def _get_normalized_license(ds: DataSheet) -> str:
113
+ non_standard_license_names = {
114
+ "Apache 2.0": "Other (Attribution required)",
115
+ "NLOD 2.0": "Other (Attribution required)",
116
+ "DanNet 1.0": "Other (Attribution required)",
117
+ "Gutenberg": "Other (Attribution required)",
118
+ "Danish Copyright Law": "Other (No attribution required)",
119
+ }
120
+ if (
121
+ ds.license_name not in non_standard_license_names
122
+ and ds.license_name is not None
123
+ ):
124
+ return ds.license_name
125
+ if ds.license_name is None:
126
+ raise ValueError(
127
+ f"Datasheet {ds.pretty_name} has no license name specified in the frontmatter."
128
+ )
129
+ return non_standard_license_names[ds.license_name]
130
+
131
+
132
+ def _get_feature_by_string(
133
+ datasheet: DataSheet, feature_name: Literal["Domain", "Language", "License"]
134
+ ) -> str:
135
+ """Get a specific feature from the frontmatter."""
136
+
137
+ match feature_name:
138
+ case "Domain":
139
+ return datasheet.domains[0] if datasheet.domains else "N/A"
140
+ case "Language":
141
+ return ", ".join(datasheet.language)
142
+ case "License":
143
+ return _get_normalized_license(datasheet)
144
+ case _:
145
+ raise ValueError(f"Unknown feature: {feature_name}")
146
+
147
+
148
+ def create_grouped_table(
149
+ group: Literal["Domain", "Language", "License"] = "Domain",
150
+ repo_path: Path = repo_path,
151
+ add_readable_tokens: bool = True,
152
+ add_total_row: bool = True,
153
+ ) -> pd.DataFrame:
154
+ table = {
155
+ "Sources": [],
156
+ group: [],
157
+ "N. Tokens": [],
158
+ }
159
+
160
+ for dataset in _datasets:
161
+ dataset_path = repo_path / "data" / dataset
162
+ readme_path = dataset_path / f"{dataset_path.name}.md"
163
+
164
+ sheet = DataSheet.load_from_path(readme_path)
165
+ desc_stats = sheet.get_descritive_stats()
166
+ feature = _get_feature_by_string(sheet, group)
167
+
168
+ table["Sources"] += [f"[{dataset_path.name}]"]
169
+ table[group] += [feature]
170
+ table["N. Tokens"] += [desc_stats.number_of_tokens]
171
+
172
+ if add_total_row:
173
+ table["Sources"] += [""]
174
+ table[group] += ["**Total**"]
175
+ table["N. Tokens"] += [sum(table["N. Tokens"])]
176
+
177
+ df = pd.DataFrame.from_dict(table)
178
+
179
+ df = df.groupby(group).agg({"Sources": lambda x: ", ".join(x), "N. Tokens": "sum"})
180
+
181
+ df = df.sort_values("N. Tokens", ascending=False)
182
+
183
+ df.index.name = group
184
+ df = df.reset_index()
185
+
186
+ # Trick the Total row to be at the bottom.
187
+ new_index = list(df.index.drop(0)) + [0]
188
+ df = df.reindex(new_index)
189
+
190
+ if add_readable_tokens:
191
+ df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
192
+
193
+ return df
194
+
195
+
196
+ def create_grouped_table_str(
197
+ repo_path: Path = repo_path,
198
+ group: Literal["Domain", "Language", "License"] = "Domain",
199
+ ) -> str:
200
+ table = create_grouped_table(group=group, repo_path=repo_path)
201
+ readme_references = create_dataset_readme_references()
202
+ package = f"{table.to_markdown(index=False, maxcolwidths=[None, None, None])}\n\n{readme_references}\n\n"
203
+ return package
204
+
205
+
206
  def create_overview_table_str(repo_path: Path = repo_path) -> str:
207
  main_table = create_overview_table(repo_path)
208
  readme_references = create_dataset_readme_references()
src/dynaword/update_descriptive_statistics.py CHANGED
@@ -24,7 +24,11 @@ from dynaword.git_utilities import (
24
  )
25
  from dynaword.paths import repo_path
26
  from dynaword.plot_tokens_over_time import create_tokens_over_time_plot
27
- from dynaword.tables import create_overview_table, create_overview_table_str
 
 
 
 
28
 
29
  logger = logging.getLogger(__name__)
30
 
@@ -104,8 +108,14 @@ def update_dataset(
104
 
105
  if dataset_name == "default":
106
  logger.info("Updating Overview table")
107
- package = create_overview_table_str()
108
- sheet.body = sheet.replace_tag(package=package, tag="MAIN TABLE")
 
 
 
 
 
 
109
  create_domain_distribution_plot()
110
  create_tokens_over_time_plot()
111
 
 
24
  )
25
  from dynaword.paths import repo_path
26
  from dynaword.plot_tokens_over_time import create_tokens_over_time_plot
27
+ from dynaword.tables import (
28
+ create_grouped_table_str,
29
+ create_overview_table,
30
+ create_overview_table_str,
31
+ )
32
 
33
  logger = logging.getLogger(__name__)
34
 
 
108
 
109
  if dataset_name == "default":
110
  logger.info("Updating Overview table")
111
+ overview_table = create_overview_table_str()
112
+ sheet.body = sheet.replace_tag(package=overview_table, tag="MAIN TABLE")
113
+ logger.info("Updating domain table")
114
+ domain_table = create_grouped_table_str(group="Domain")
115
+ sheet.body = sheet.replace_tag(package=domain_table, tag="DOMAIN TABLE")
116
+ logger.info("Updating license table")
117
+ domain_table = create_grouped_table_str(group="License")
118
+ sheet.body = sheet.replace_tag(package=domain_table, tag="LICENSE TABLE")
119
  create_domain_distribution_plot()
120
  create_tokens_over_time_plot()
121
 
test_results.log CHANGED
@@ -1,6 +1,6 @@
1
  ============================= test session starts ==============================
2
  platform darwin -- Python 3.12.0, pytest-8.3.4, pluggy-1.5.0
3
- rootdir: /Users/kristianjensen/Documents/danish-dynaword
4
  configfile: pyproject.toml
5
  plugins: anyio-4.9.0
6
  collected 328 items
@@ -19,7 +19,7 @@ src/tests/test_unique_ids.py . [100%]
19
 
20
  =============================== warnings summary ===============================
21
  src/tests/test_quality/test_short_texts.py: 36 warnings
22
- /Users/kristianjensen/Documents/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
23
 
24
  -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
25
- ================= 327 passed, 1 skipped, 36 warnings in 52.74s =================
 
1
  ============================= test session starts ==============================
2
  platform darwin -- Python 3.12.0, pytest-8.3.4, pluggy-1.5.0
3
+ rootdir: /Users/au561649/Github/danish-dynaword
4
  configfile: pyproject.toml
5
  plugins: anyio-4.9.0
6
  collected 328 items
 
19
 
20
  =============================== warnings summary ===============================
21
  src/tests/test_quality/test_short_texts.py: 36 warnings
22
+ /Users/au561649/Github/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
23
 
24
  -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
25
+ ================= 327 passed, 1 skipped, 36 warnings in 53.74s =================
uv.lock CHANGED
The diff for this file is too large to render. See raw diff