Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
10M - 100M
ArXiv:
DOI:
License:
Kenneth Enevoldsen
commited on
## [v1.2.6] - 2025-07-21
Browse files### Added
- Added two table to get an overview of data by license and domain
### Changed
- Dataset overview table now appears in a drop down menu
- README.md +70 -122
- descriptive_stats.json +1 -1
- images/domain_distribution.png +2 -2
- images/tokens_over_time.html +1 -1
- images/tokens_over_time.svg +1 -1
- pyproject.toml +1 -1
- src/dynaword/datasheet.py +0 -14
- src/dynaword/tables.py +38 -2
- test_results.log +5 -1398
- uv.lock +0 -0
README.md
CHANGED
@@ -182,7 +182,7 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
|
|
182 |
<!-- START README TABLE -->
|
183 |
| | |
|
184 |
| ------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
185 |
-
| **Version** | 1.2.
|
186 |
| **Language** | dan, dansk, Danish |
|
187 |
| **License** | Openly Licensed, See the respective dataset |
|
188 |
| **Models** | For model trained used this data see [danish-foundation-models](https://huggingface.co/danish-foundation-models) |
|
@@ -200,6 +200,7 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
|
|
200 |
- [Loading the dataset](#loading-the-dataset)
|
201 |
- [Languages](#languages)
|
202 |
- [Domains](#domains)
|
|
|
203 |
- [Dataset Structure](#dataset-structure)
|
204 |
- [Data Instances](#data-instances)
|
205 |
- [Data Fields](#data-fields)
|
@@ -274,17 +275,15 @@ Language is denoted using [BCP-47](https://en.wikipedia.org/wiki/IETF_language_t
|
|
274 |
|
275 |
### Domains
|
276 |
|
277 |
-
|
278 |
|
279 |
-
|
280 |
-
- The License Table categorizes the data by license type, providing transparency into the usage rights associated with each source.
|
281 |
-
- The Main Table offers a detailed breakdown of each dataset, including a short description, its assigned domain, token count, and license.
|
282 |
|
283 |
-
|
284 |
|
285 |
|
286 |
<!-- START-DOMAIN TABLE -->
|
287 |
-
| Domain |
|
288 |
|:-------------|:---------------------------------------------------------------------------------------------------------|:------------|
|
289 |
| Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
|
290 |
| Books | [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 722.00M |
|
@@ -337,11 +336,73 @@ Each source is linked to a metadata card with additional information about origi
|
|
337 |
[domsdatabasen]: data/domsdatabasen/domsdatabasen.md
|
338 |
<!-- END-DOMAIN TABLE -->
|
339 |
|
|
|
|
|
|
|
340 |
|
341 |
<p align="center">
|
342 |
<img src="./images/domain_distribution.png" width="400" style="margin-right: 10px;" />
|
343 |
</p>
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
## Dataset Structure
|
346 |
|
347 |
The dataset contains text from different sources which are thoroughly defined in [Source Data](#source-data).
|
@@ -392,117 +453,8 @@ This data generally contains no annotation besides the metadata attached to each
|
|
392 |
|
393 |
### Source Data
|
394 |
|
395 |
-
To give a structured overview of the dataset composition, we include three summary tables:
|
396 |
-
|
397 |
-
- The Domain Table groups the datasets by domain (e.g., legal, books, social media) and shows the total token count for each domain.
|
398 |
-
- The License Table categorizes the data by license type, providing transparency into the usage rights associated with each source.
|
399 |
-
- The Main Table offers a detailed breakdown of each dataset, including a short description, its assigned domain, token count, and license.
|
400 |
-
|
401 |
-
Each source is linked to a metadata card with additional information about origin, preprocessing, and license verification.
|
402 |
-
|
403 |
-
**Domain Table**
|
404 |
-
<!-- START-DOMAIN TABLE -->
|
405 |
-
| Domain | Source with link | N. Tokens |
|
406 |
-
|:-------------|:---------------------------------------------------------------------------------------------------------|:------------|
|
407 |
-
| Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
|
408 |
-
| Books | [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 722.00M |
|
409 |
-
| Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M |
|
410 |
-
| Social Media | [hest] | 389.32M |
|
411 |
-
| Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M |
|
412 |
-
| Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M |
|
413 |
-
| Encyclopedic | [wikisource], [wiki] | 127.35M |
|
414 |
-
| News | [ncc_newspaper], [tv2r], [nordjyllandnews] | 60.63M |
|
415 |
-
| Medical | [health_hovedstaden] | 27.07M |
|
416 |
-
| Readaloud | [nota] | 7.30M |
|
417 |
-
| Dialect | [botxt] | 847.97K |
|
418 |
-
| **Total** | | 4.78B |
|
419 |
-
|
420 |
-
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
421 |
-
[cellar]: data/cellar/cellar.md
|
422 |
-
[danske-taler]: data/danske-taler/danske-taler.md
|
423 |
-
[ncc_books]: data/ncc_books/ncc_books.md
|
424 |
-
[ncc_newspaper]: data/ncc_newspaper/ncc_newspaper.md
|
425 |
-
[ncc_maalfrid]: data/ncc_maalfrid/ncc_maalfrid.md
|
426 |
-
[ncc_parliament]: data/ncc_parliament/ncc_parliament.md
|
427 |
-
[eur-lex-sum-da]: data/eur-lex-sum-da/eur-lex-sum-da.md
|
428 |
-
[miljoeportalen]: data/miljoeportalen/miljoeportalen.md
|
429 |
-
[fm-udgivelser]: data/fm-udgivelser/fm-udgivelser.md
|
430 |
-
[memo]: data/memo/memo.md
|
431 |
-
[opensubtitles]: data/opensubtitles/opensubtitles.md
|
432 |
-
[retsinformationdk]: data/retsinformationdk/retsinformationdk.md
|
433 |
-
[ep]: data/ep/ep.md
|
434 |
-
[ft]: data/ft/ft.md
|
435 |
-
[wikisource]: data/wikisource/wikisource.md
|
436 |
-
[spont]: data/spont/spont.md
|
437 |
-
[tv2r]: data/tv2r/tv2r.md
|
438 |
-
[adl]: data/adl/adl.md
|
439 |
-
[hest]: data/hest/hest.md
|
440 |
-
[skat]: data/skat/skat.md
|
441 |
-
[dannet]: data/dannet/dannet.md
|
442 |
-
[retspraksis]: data/retspraksis/retspraksis.md
|
443 |
-
[wikibooks]: data/wikibooks/wikibooks.md
|
444 |
-
[jvj]: data/jvj/jvj.md
|
445 |
-
[gutenberg]: data/gutenberg/gutenberg.md
|
446 |
-
[botxt]: data/botxt/botxt.md
|
447 |
-
[depbank]: data/depbank/depbank.md
|
448 |
-
[naat]: data/naat/naat.md
|
449 |
-
[synne]: data/synne/synne.md
|
450 |
-
[wiki]: data/wiki/wiki.md
|
451 |
-
[nordjyllandnews]: data/nordjyllandnews/nordjyllandnews.md
|
452 |
-
[relig]: data/relig/relig.md
|
453 |
-
[nota]: data/nota/nota.md
|
454 |
-
[health_hovedstaden]: data/health_hovedstaden/health_hovedstaden.md
|
455 |
-
[domsdatabasen]: data/domsdatabasen/domsdatabasen.md
|
456 |
-
<!-- END-DOMAIN TABLE -->
|
457 |
-
|
458 |
-
**License Table**
|
459 |
-
<!-- START-LICENSE TABLE -->
|
460 |
-
| License | Source with link | N. Tokens |
|
461 |
-
|:-------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
|
462 |
-
| cc0-1.0 | [danske-taler], [ncc_books], [ncc_newspaper], [miljoeportalen], [opensubtitles], [ep], [ft], [wikisource], [spont], [adl], [hest], [skat], [retspraksis], [wikibooks], [botxt], [naat], [synne], [wiki], [nordjyllandnews], [relig], [nota], [health_hovedstaden] | 1.99B |
|
463 |
-
| cc-by-sa-4.0 | [cellar], [eur-lex-sum-da], [fm-udgivelser], [memo], [tv2r], [jvj], [depbank] | 1.37B |
|
464 |
-
| other | [ncc_maalfrid], [ncc_parliament], [retsinformationdk], [dannet], [gutenberg], [domsdatabasen] | 1.28B |
|
465 |
-
| apache-2.0 | [ai-aktindsigt] | 139.23M |
|
466 |
-
| **Total** | | 4.78B |
|
467 |
-
|
468 |
-
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
469 |
-
[cellar]: data/cellar/cellar.md
|
470 |
-
[danske-taler]: data/danske-taler/danske-taler.md
|
471 |
-
[ncc_books]: data/ncc_books/ncc_books.md
|
472 |
-
[ncc_newspaper]: data/ncc_newspaper/ncc_newspaper.md
|
473 |
-
[ncc_maalfrid]: data/ncc_maalfrid/ncc_maalfrid.md
|
474 |
-
[ncc_parliament]: data/ncc_parliament/ncc_parliament.md
|
475 |
-
[eur-lex-sum-da]: data/eur-lex-sum-da/eur-lex-sum-da.md
|
476 |
-
[miljoeportalen]: data/miljoeportalen/miljoeportalen.md
|
477 |
-
[fm-udgivelser]: data/fm-udgivelser/fm-udgivelser.md
|
478 |
-
[memo]: data/memo/memo.md
|
479 |
-
[opensubtitles]: data/opensubtitles/opensubtitles.md
|
480 |
-
[retsinformationdk]: data/retsinformationdk/retsinformationdk.md
|
481 |
-
[ep]: data/ep/ep.md
|
482 |
-
[ft]: data/ft/ft.md
|
483 |
-
[wikisource]: data/wikisource/wikisource.md
|
484 |
-
[spont]: data/spont/spont.md
|
485 |
-
[tv2r]: data/tv2r/tv2r.md
|
486 |
-
[adl]: data/adl/adl.md
|
487 |
-
[hest]: data/hest/hest.md
|
488 |
-
[skat]: data/skat/skat.md
|
489 |
-
[dannet]: data/dannet/dannet.md
|
490 |
-
[retspraksis]: data/retspraksis/retspraksis.md
|
491 |
-
[wikibooks]: data/wikibooks/wikibooks.md
|
492 |
-
[jvj]: data/jvj/jvj.md
|
493 |
-
[gutenberg]: data/gutenberg/gutenberg.md
|
494 |
-
[botxt]: data/botxt/botxt.md
|
495 |
-
[depbank]: data/depbank/depbank.md
|
496 |
-
[naat]: data/naat/naat.md
|
497 |
-
[synne]: data/synne/synne.md
|
498 |
-
[wiki]: data/wiki/wiki.md
|
499 |
-
[nordjyllandnews]: data/nordjyllandnews/nordjyllandnews.md
|
500 |
-
[relig]: data/relig/relig.md
|
501 |
-
[nota]: data/nota/nota.md
|
502 |
-
[health_hovedstaden]: data/health_hovedstaden/health_hovedstaden.md
|
503 |
-
[domsdatabasen]: data/domsdatabasen/domsdatabasen.md
|
504 |
-
<!-- END-LICENSE TABLE -->
|
505 |
|
|
|
506 |
|
507 |
<details>
|
508 |
<summary><b>Overview Table (click to unfold)</b></summary>
|
@@ -617,11 +569,7 @@ In addition to data specific processing we also run a series automated quality c
|
|
617 |
|
618 |
|
619 |
### Dataset Statistics
|
620 |
-
The following plot
|
621 |
-
|
622 |
-
<p align="center">
|
623 |
-
<img src="./images/domain_distribution.png" width="400" style="margin-right: 10px;" />
|
624 |
-
</p>
|
625 |
|
626 |
<details>
|
627 |
<summary>Per dataset histograms</summary>
|
|
|
182 |
<!-- START README TABLE -->
|
183 |
| | |
|
184 |
| ------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
185 |
+
| **Version** | 1.2.6 ([Changelog](/CHANGELOG.md)) |
|
186 |
| **Language** | dan, dansk, Danish |
|
187 |
| **License** | Openly Licensed, See the respective dataset |
|
188 |
| **Models** | For model trained used this data see [danish-foundation-models](https://huggingface.co/danish-foundation-models) |
|
|
|
200 |
- [Loading the dataset](#loading-the-dataset)
|
201 |
- [Languages](#languages)
|
202 |
- [Domains](#domains)
|
203 |
+
- [Licensing](#licensing)
|
204 |
- [Dataset Structure](#dataset-structure)
|
205 |
- [Data Instances](#data-instances)
|
206 |
- [Data Fields](#data-fields)
|
|
|
275 |
|
276 |
### Domains
|
277 |
|
278 |
+
This dynaword consist of data from various domains (e.g., legal, books, social media). The following table and figure give an overview of the relative distributions of these domains. To see a full overview of the source check out the [source data section](#source-data)
|
279 |
|
280 |
+
<div style="display: flex; gap: 20px; align-items: flex-start;">
|
|
|
|
|
281 |
|
282 |
+
<div style="flex: 1;">
|
283 |
|
284 |
|
285 |
<!-- START-DOMAIN TABLE -->
|
286 |
+
| Domain | Sources | N. Tokens |
|
287 |
|:-------------|:---------------------------------------------------------------------------------------------------------|:------------|
|
288 |
| Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
|
289 |
| Books | [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 722.00M |
|
|
|
336 |
[domsdatabasen]: data/domsdatabasen/domsdatabasen.md
|
337 |
<!-- END-DOMAIN TABLE -->
|
338 |
|
339 |
+
</div>
|
340 |
+
|
341 |
+
<div style="flex: 1;">
|
342 |
|
343 |
<p align="center">
|
344 |
<img src="./images/domain_distribution.png" width="400" style="margin-right: 10px;" />
|
345 |
</p>
|
346 |
|
347 |
+
</div>
|
348 |
+
|
349 |
+
</div>
|
350 |
+
|
351 |
+
|
352 |
+
### Licensing
|
353 |
+
|
354 |
+
The following gives an overview of the licensing in the Dynaword. To get the exact license of the individual datasets check out the [overview table](#source-data).
|
355 |
+
These license is applied to the constituent data, i.e., the text. The collection of datasets (metadata, quality control, etc.) is licensed under [CC-0](https://creativecommons.org/publicdomain/zero/1.0/legalcode.en).
|
356 |
+
|
357 |
+
<!-- START-LICENSE TABLE -->
|
358 |
+
| License | Sources | N. Tokens |
|
359 |
+
|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
|
360 |
+
| CC-0 | [danske-taler], [ncc_books], [ncc_newspaper], [miljoeportalen], [opensubtitles], [ep], [ft], [wikisource], [spont], [adl], [hest], [skat], [retspraksis], [wikibooks], [botxt], [naat], [synne], [wiki], [nordjyllandnews], [relig], [nota], [health_hovedstaden] | 1.99B |
|
361 |
+
| CC-BY-SA 4.0 | [cellar], [eur-lex-sum-da], [fm-udgivelser], [memo], [tv2r], [jvj], [depbank] | 1.37B |
|
362 |
+
| Other (No attribution required) | [retsinformationdk], [domsdatabasen] | 904.61M |
|
363 |
+
| Other (Attribution required) | [ai-aktindsigt], [ncc_maalfrid], [ncc_parliament], [dannet], [gutenberg] | 515.61M |
|
364 |
+
| **Total** | | 4.78B |
|
365 |
+
|
366 |
+
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
367 |
+
[cellar]: data/cellar/cellar.md
|
368 |
+
[danske-taler]: data/danske-taler/danske-taler.md
|
369 |
+
[ncc_books]: data/ncc_books/ncc_books.md
|
370 |
+
[ncc_newspaper]: data/ncc_newspaper/ncc_newspaper.md
|
371 |
+
[ncc_maalfrid]: data/ncc_maalfrid/ncc_maalfrid.md
|
372 |
+
[ncc_parliament]: data/ncc_parliament/ncc_parliament.md
|
373 |
+
[eur-lex-sum-da]: data/eur-lex-sum-da/eur-lex-sum-da.md
|
374 |
+
[miljoeportalen]: data/miljoeportalen/miljoeportalen.md
|
375 |
+
[fm-udgivelser]: data/fm-udgivelser/fm-udgivelser.md
|
376 |
+
[memo]: data/memo/memo.md
|
377 |
+
[opensubtitles]: data/opensubtitles/opensubtitles.md
|
378 |
+
[retsinformationdk]: data/retsinformationdk/retsinformationdk.md
|
379 |
+
[ep]: data/ep/ep.md
|
380 |
+
[ft]: data/ft/ft.md
|
381 |
+
[wikisource]: data/wikisource/wikisource.md
|
382 |
+
[spont]: data/spont/spont.md
|
383 |
+
[tv2r]: data/tv2r/tv2r.md
|
384 |
+
[adl]: data/adl/adl.md
|
385 |
+
[hest]: data/hest/hest.md
|
386 |
+
[skat]: data/skat/skat.md
|
387 |
+
[dannet]: data/dannet/dannet.md
|
388 |
+
[retspraksis]: data/retspraksis/retspraksis.md
|
389 |
+
[wikibooks]: data/wikibooks/wikibooks.md
|
390 |
+
[jvj]: data/jvj/jvj.md
|
391 |
+
[gutenberg]: data/gutenberg/gutenberg.md
|
392 |
+
[botxt]: data/botxt/botxt.md
|
393 |
+
[depbank]: data/depbank/depbank.md
|
394 |
+
[naat]: data/naat/naat.md
|
395 |
+
[synne]: data/synne/synne.md
|
396 |
+
[wiki]: data/wiki/wiki.md
|
397 |
+
[nordjyllandnews]: data/nordjyllandnews/nordjyllandnews.md
|
398 |
+
[relig]: data/relig/relig.md
|
399 |
+
[nota]: data/nota/nota.md
|
400 |
+
[health_hovedstaden]: data/health_hovedstaden/health_hovedstaden.md
|
401 |
+
[domsdatabasen]: data/domsdatabasen/domsdatabasen.md
|
402 |
+
<!-- END-LICENSE TABLE -->
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
## Dataset Structure
|
407 |
|
408 |
The dataset contains text from different sources which are thoroughly defined in [Source Data](#source-data).
|
|
|
453 |
|
454 |
### Source Data
|
455 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
456 |
|
457 |
+
Below follows a brief overview of the sources in the corpus along with their individual license. To get more information about the individual dataset click the hyperlink in the table.
|
458 |
|
459 |
<details>
|
460 |
<summary><b>Overview Table (click to unfold)</b></summary>
|
|
|
569 |
|
570 |
|
571 |
### Dataset Statistics
|
572 |
+
The following plot pr. dataset histograms displaying document lengths.
|
|
|
|
|
|
|
|
|
573 |
|
574 |
<details>
|
575 |
<summary>Per dataset histograms</summary>
|
descriptive_stats.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"number_of_samples": 960357,
|
3 |
"average_document_length": 15301.724414983179,
|
4 |
"number_of_tokens": 4784823570,
|
5 |
-
"revision": "
|
6 |
}
|
|
|
2 |
"number_of_samples": 960357,
|
3 |
"average_document_length": 15301.724414983179,
|
4 |
"number_of_tokens": 4784823570,
|
5 |
+
"revision": "3d87e24d35c186fbb994478238e7ccba03a4d8a2"
|
6 |
}
|
images/domain_distribution.png
CHANGED
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
images/tokens_over_time.html
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
<head><meta charset="utf-8" /></head>
|
3 |
<body>
|
4 |
<div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
|
5 |
-
<script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="7f623fa0-e1e2-4a75-a331-279a360958ad" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("7f623fa0-e1e2-4a75-a331-279a360958ad")) { Plotly.newPlot( "7f623fa0-e1e2-4a75-a331-279a360958ad", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)"],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
|
6 |
</body>
|
7 |
</html>
|
|
|
2 |
<head><meta charset="utf-8" /></head>
|
3 |
<body>
|
4 |
<div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
|
5 |
+
<script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="5b08e3f1-a9bd-44ac-afab-f0bde51525e6" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("5b08e3f1-a9bd-44ac-afab-f0bde51525e6")) { Plotly.newPlot( "5b08e3f1-a9bd-44ac-afab-f0bde51525e6", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)","Date: 2025-07-21\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: d06be7ce\u003cbr\u003eMessage: Updating readme and graphs after merging with main."],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000","2025-07-21T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570,4784823570],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
|
6 |
</body>
|
7 |
</html>
|
images/tokens_over_time.svg
CHANGED
|
|
pyproject.toml
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
[project]
|
2 |
name = "dynaword"
|
3 |
-
version = "1.2.
|
4 |
description = "project code for the danish dynaword project"
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.12,<3.13" # 3.13 have issues with spacy and pytorch
|
|
|
1 |
[project]
|
2 |
name = "dynaword"
|
3 |
+
version = "1.2.6"
|
4 |
description = "project code for the danish dynaword project"
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.12,<3.13" # 3.13 have issues with spacy and pytorch
|
src/dynaword/datasheet.py
CHANGED
@@ -117,20 +117,6 @@ class DataSheet(BaseModel):
|
|
117 |
def to_str(self) -> str:
|
118 |
return f"---\n{self.frontmatter_as_str.strip()}\n---\n\n{self.body.strip()}\n"
|
119 |
|
120 |
-
def get_feature_by_string(
|
121 |
-
self, feature_name: Literal["Domain", "Language", "License"]
|
122 |
-
) -> str:
|
123 |
-
"""Get a specific feature from the frontmatter."""
|
124 |
-
match feature_name:
|
125 |
-
case "Domain":
|
126 |
-
return self.domains[0] if self.domains else "N/A"
|
127 |
-
case "Language":
|
128 |
-
return ", ".join(self.language)
|
129 |
-
case "License":
|
130 |
-
return self.license
|
131 |
-
case _:
|
132 |
-
raise ValueError(f"Unknown feature: {feature_name}")
|
133 |
-
|
134 |
def get_dataset(self, **kwargs) -> Dataset:
|
135 |
ds_path = self.path.parent
|
136 |
ds = load_dataset(ds_path.as_posix(), split="train", **kwargs)
|
|
|
117 |
def to_str(self) -> str:
|
118 |
return f"---\n{self.frontmatter_as_str.strip()}\n---\n\n{self.body.strip()}\n"
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
def get_dataset(self, **kwargs) -> Dataset:
|
121 |
ds_path = self.path.parent
|
122 |
ds = load_dataset(ds_path.as_posix(), split="train", **kwargs)
|
src/dynaword/tables.py
CHANGED
@@ -109,6 +109,42 @@ def create_overview_table(
|
|
109 |
return df
|
110 |
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def create_grouped_table(
|
113 |
group: Literal["Domain", "Language", "License"] = "Domain",
|
114 |
repo_path: Path = repo_path,
|
@@ -127,7 +163,7 @@ def create_grouped_table(
|
|
127 |
|
128 |
sheet = DataSheet.load_from_path(readme_path)
|
129 |
desc_stats = sheet.get_descritive_stats()
|
130 |
-
feature = sheet
|
131 |
|
132 |
table["Sources"] += [f"[{dataset_path.name}]"]
|
133 |
table[group] += [feature]
|
@@ -163,7 +199,7 @@ def create_grouped_table_str(
|
|
163 |
) -> str:
|
164 |
table = create_grouped_table(group=group, repo_path=repo_path)
|
165 |
readme_references = create_dataset_readme_references()
|
166 |
-
package = f"{table.to_markdown(index=False, maxcolwidths=[None,
|
167 |
return package
|
168 |
|
169 |
|
|
|
109 |
return df
|
110 |
|
111 |
|
112 |
+
def _get_normalized_license(ds: DataSheet) -> str:
|
113 |
+
non_standard_license_names = {
|
114 |
+
"Apache 2.0": "Other (Attribution required)",
|
115 |
+
"NLOD 2.0": "Other (Attribution required)",
|
116 |
+
"DanNet 1.0": "Other (Attribution required)",
|
117 |
+
"Gutenberg": "Other (Attribution required)",
|
118 |
+
"Danish Copyright Law": "Other (No attribution required)",
|
119 |
+
}
|
120 |
+
if (
|
121 |
+
ds.license_name not in non_standard_license_names
|
122 |
+
and ds.license_name is not None
|
123 |
+
):
|
124 |
+
return ds.license_name
|
125 |
+
if ds.license_name is None:
|
126 |
+
raise ValueError(
|
127 |
+
f"Datasheet {ds.pretty_name} has no license name specified in the frontmatter."
|
128 |
+
)
|
129 |
+
return non_standard_license_names[ds.license_name]
|
130 |
+
|
131 |
+
|
132 |
+
def _get_feature_by_string(
|
133 |
+
datasheet: DataSheet, feature_name: Literal["Domain", "Language", "License"]
|
134 |
+
) -> str:
|
135 |
+
"""Get a specific feature from the frontmatter."""
|
136 |
+
|
137 |
+
match feature_name:
|
138 |
+
case "Domain":
|
139 |
+
return datasheet.domains[0] if datasheet.domains else "N/A"
|
140 |
+
case "Language":
|
141 |
+
return ", ".join(datasheet.language)
|
142 |
+
case "License":
|
143 |
+
return _get_normalized_license(datasheet)
|
144 |
+
case _:
|
145 |
+
raise ValueError(f"Unknown feature: {feature_name}")
|
146 |
+
|
147 |
+
|
148 |
def create_grouped_table(
|
149 |
group: Literal["Domain", "Language", "License"] = "Domain",
|
150 |
repo_path: Path = repo_path,
|
|
|
163 |
|
164 |
sheet = DataSheet.load_from_path(readme_path)
|
165 |
desc_stats = sheet.get_descritive_stats()
|
166 |
+
feature = _get_feature_by_string(sheet, group)
|
167 |
|
168 |
table["Sources"] += [f"[{dataset_path.name}]"]
|
169 |
table[group] += [feature]
|
|
|
199 |
) -> str:
|
200 |
table = create_grouped_table(group=group, repo_path=repo_path)
|
201 |
readme_references = create_dataset_readme_references()
|
202 |
+
package = f"{table.to_markdown(index=False, maxcolwidths=[None, None, None])}\n\n{readme_references}\n\n"
|
203 |
return package
|
204 |
|
205 |
|
test_results.log
CHANGED
@@ -11,1408 +11,15 @@ src/tests/test_datasheets.py ........................................... [ 35%]
|
|
11 |
........................................................................ [ 57%]
|
12 |
................................................................. [ 76%]
|
13 |
src/tests/test_load.py .. [ 77%]
|
14 |
-
src/tests/test_quality/test_duplicates.py
|
15 |
......s [ 88%]
|
16 |
-
src/tests/test_quality/test_short_texts.py
|
17 |
....... [ 99%]
|
18 |
-
src/tests/test_unique_ids.py
|
19 |
|
20 |
-
=================================== FAILURES ===================================
|
21 |
-
______________________ test_no_within_data_duplicates[ep] ______________________
|
22 |
-
|
23 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x118b3e240>
|
24 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ep/ep.parquet))}
|
25 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ep/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
26 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
27 |
-
|
28 |
-
def _prepare_split_single(
|
29 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
30 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
31 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
32 |
-
generator = self._generate_tables(**gen_kwargs)
|
33 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
34 |
-
embed_local_files = file_format == "parquet"
|
35 |
-
shard_lengths = []
|
36 |
-
total_num_examples, total_num_bytes = 0, 0
|
37 |
-
|
38 |
-
shard_id = 0
|
39 |
-
num_examples_progress_update = 0
|
40 |
-
try:
|
41 |
-
writer = writer_class(
|
42 |
-
features=self.info.features,
|
43 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
44 |
-
writer_batch_size=self._writer_batch_size,
|
45 |
-
storage_options=self._fs.storage_options,
|
46 |
-
embed_local_files=embed_local_files,
|
47 |
-
)
|
48 |
-
try:
|
49 |
-
_time = time.time()
|
50 |
-
for _, table in generator:
|
51 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
52 |
-
num_examples, num_bytes = writer.finalize()
|
53 |
-
writer.close()
|
54 |
-
shard_lengths.append(num_examples)
|
55 |
-
total_num_examples += num_examples
|
56 |
-
total_num_bytes += num_bytes
|
57 |
-
shard_id += 1
|
58 |
-
writer = writer_class(
|
59 |
-
features=writer._features,
|
60 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
61 |
-
writer_batch_size=self._writer_batch_size,
|
62 |
-
storage_options=self._fs.storage_options,
|
63 |
-
embed_local_files=embed_local_files,
|
64 |
-
)
|
65 |
-
try:
|
66 |
-
> writer.write_table(table)
|
67 |
-
|
68 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
69 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
70 |
-
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
71 |
-
self.pa_writer.write_table(pa_table, writer_batch_size)
|
72 |
-
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
73 |
-
???
|
74 |
-
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
75 |
-
???
|
76 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
77 |
-
|
78 |
-
self = <fsspec.implementations.local.LocalFileOpener object at 0x114a4bfa0>
|
79 |
-
args = (<pyarrow.Buffer address=0x5ddec020000 size=75246719 is_cpu=True is_mutable=True>,)
|
80 |
-
kwargs = {}
|
81 |
-
|
82 |
-
def write(self, *args, **kwargs):
|
83 |
-
> return self.f.write(*args, **kwargs)
|
84 |
-
E OSError: [Errno 28] No space left on device
|
85 |
-
|
86 |
-
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
87 |
-
|
88 |
-
The above exception was the direct cause of the following exception:
|
89 |
-
|
90 |
-
dataset_name = 'ep'
|
91 |
-
|
92 |
-
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
93 |
-
def test_no_within_data_duplicates(dataset_name: str):
|
94 |
-
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
95 |
-
|
96 |
-
src/tests/test_quality/test_duplicates.py:12:
|
97 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
98 |
-
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
99 |
-
builder_instance.download_and_prepare(
|
100 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
101 |
-
self._download_and_prepare(
|
102 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
103 |
-
self._prepare_split(split_generator, **prepare_split_kwargs)
|
104 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
105 |
-
for job_id, done, content in self._prepare_split_single(
|
106 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
107 |
-
|
108 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x118b3e240>
|
109 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ep/ep.parquet))}
|
110 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ep/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
111 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
112 |
-
|
113 |
-
def _prepare_split_single(
|
114 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
115 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
116 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
117 |
-
generator = self._generate_tables(**gen_kwargs)
|
118 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
119 |
-
embed_local_files = file_format == "parquet"
|
120 |
-
shard_lengths = []
|
121 |
-
total_num_examples, total_num_bytes = 0, 0
|
122 |
-
|
123 |
-
shard_id = 0
|
124 |
-
num_examples_progress_update = 0
|
125 |
-
try:
|
126 |
-
writer = writer_class(
|
127 |
-
features=self.info.features,
|
128 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
129 |
-
writer_batch_size=self._writer_batch_size,
|
130 |
-
storage_options=self._fs.storage_options,
|
131 |
-
embed_local_files=embed_local_files,
|
132 |
-
)
|
133 |
-
try:
|
134 |
-
_time = time.time()
|
135 |
-
for _, table in generator:
|
136 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
137 |
-
num_examples, num_bytes = writer.finalize()
|
138 |
-
writer.close()
|
139 |
-
shard_lengths.append(num_examples)
|
140 |
-
total_num_examples += num_examples
|
141 |
-
total_num_bytes += num_bytes
|
142 |
-
shard_id += 1
|
143 |
-
writer = writer_class(
|
144 |
-
features=writer._features,
|
145 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
146 |
-
writer_batch_size=self._writer_batch_size,
|
147 |
-
storage_options=self._fs.storage_options,
|
148 |
-
embed_local_files=embed_local_files,
|
149 |
-
)
|
150 |
-
try:
|
151 |
-
writer.write_table(table)
|
152 |
-
except CastError as cast_error:
|
153 |
-
raise DatasetGenerationCastError.from_cast_error(
|
154 |
-
cast_error=cast_error,
|
155 |
-
builder_name=self.info.builder_name,
|
156 |
-
gen_kwargs=gen_kwargs,
|
157 |
-
token=self.token,
|
158 |
-
)
|
159 |
-
num_examples_progress_update += len(table)
|
160 |
-
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
161 |
-
_time = time.time()
|
162 |
-
yield job_id, False, num_examples_progress_update
|
163 |
-
num_examples_progress_update = 0
|
164 |
-
finally:
|
165 |
-
yield job_id, False, num_examples_progress_update
|
166 |
-
num_shards = shard_id + 1
|
167 |
-
num_examples, num_bytes = writer.finalize()
|
168 |
-
writer.close()
|
169 |
-
shard_lengths.append(num_examples)
|
170 |
-
total_num_examples += num_examples
|
171 |
-
total_num_bytes += num_bytes
|
172 |
-
except Exception as e:
|
173 |
-
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
174 |
-
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
175 |
-
e = e.__context__
|
176 |
-
if isinstance(e, DatasetGenerationError):
|
177 |
-
raise
|
178 |
-
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
179 |
-
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
180 |
-
|
181 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
182 |
-
----------------------------- Captured stderr call -----------------------------
|
183 |
-
|
184 |
-
______________________ test_no_within_data_duplicates[ft] ______________________
|
185 |
-
|
186 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x11137ed80>
|
187 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ft/ft.parquet))}
|
188 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ft/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
189 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
190 |
-
|
191 |
-
def _prepare_split_single(
|
192 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
193 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
194 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
195 |
-
generator = self._generate_tables(**gen_kwargs)
|
196 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
197 |
-
embed_local_files = file_format == "parquet"
|
198 |
-
shard_lengths = []
|
199 |
-
total_num_examples, total_num_bytes = 0, 0
|
200 |
-
|
201 |
-
shard_id = 0
|
202 |
-
num_examples_progress_update = 0
|
203 |
-
try:
|
204 |
-
writer = writer_class(
|
205 |
-
features=self.info.features,
|
206 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
207 |
-
writer_batch_size=self._writer_batch_size,
|
208 |
-
storage_options=self._fs.storage_options,
|
209 |
-
embed_local_files=embed_local_files,
|
210 |
-
)
|
211 |
-
try:
|
212 |
-
_time = time.time()
|
213 |
-
for _, table in generator:
|
214 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
215 |
-
num_examples, num_bytes = writer.finalize()
|
216 |
-
writer.close()
|
217 |
-
shard_lengths.append(num_examples)
|
218 |
-
total_num_examples += num_examples
|
219 |
-
total_num_bytes += num_bytes
|
220 |
-
shard_id += 1
|
221 |
-
writer = writer_class(
|
222 |
-
features=writer._features,
|
223 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
224 |
-
writer_batch_size=self._writer_batch_size,
|
225 |
-
storage_options=self._fs.storage_options,
|
226 |
-
embed_local_files=embed_local_files,
|
227 |
-
)
|
228 |
-
try:
|
229 |
-
> writer.write_table(table)
|
230 |
-
|
231 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
232 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
233 |
-
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
234 |
-
self.pa_writer.write_table(pa_table, writer_batch_size)
|
235 |
-
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
236 |
-
???
|
237 |
-
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
238 |
-
???
|
239 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
240 |
-
|
241 |
-
self = <fsspec.implementations.local.LocalFileOpener object at 0x1137dd150>
|
242 |
-
args = (<pyarrow.Buffer address=0x5de9c020000 size=274397630 is_cpu=True is_mutable=True>,)
|
243 |
-
kwargs = {}
|
244 |
-
|
245 |
-
def write(self, *args, **kwargs):
|
246 |
-
> return self.f.write(*args, **kwargs)
|
247 |
-
E OSError: [Errno 28] No space left on device
|
248 |
-
|
249 |
-
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
250 |
-
|
251 |
-
The above exception was the direct cause of the following exception:
|
252 |
-
|
253 |
-
dataset_name = 'ft'
|
254 |
-
|
255 |
-
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
256 |
-
def test_no_within_data_duplicates(dataset_name: str):
|
257 |
-
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
258 |
-
|
259 |
-
src/tests/test_quality/test_duplicates.py:12:
|
260 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
261 |
-
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
262 |
-
builder_instance.download_and_prepare(
|
263 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
264 |
-
self._download_and_prepare(
|
265 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
266 |
-
self._prepare_split(split_generator, **prepare_split_kwargs)
|
267 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
268 |
-
for job_id, done, content in self._prepare_split_single(
|
269 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
270 |
-
|
271 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x11137ed80>
|
272 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ft/ft.parquet))}
|
273 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ft/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
274 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
275 |
-
|
276 |
-
def _prepare_split_single(
|
277 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
278 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
279 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
280 |
-
generator = self._generate_tables(**gen_kwargs)
|
281 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
282 |
-
embed_local_files = file_format == "parquet"
|
283 |
-
shard_lengths = []
|
284 |
-
total_num_examples, total_num_bytes = 0, 0
|
285 |
-
|
286 |
-
shard_id = 0
|
287 |
-
num_examples_progress_update = 0
|
288 |
-
try:
|
289 |
-
writer = writer_class(
|
290 |
-
features=self.info.features,
|
291 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
292 |
-
writer_batch_size=self._writer_batch_size,
|
293 |
-
storage_options=self._fs.storage_options,
|
294 |
-
embed_local_files=embed_local_files,
|
295 |
-
)
|
296 |
-
try:
|
297 |
-
_time = time.time()
|
298 |
-
for _, table in generator:
|
299 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
300 |
-
num_examples, num_bytes = writer.finalize()
|
301 |
-
writer.close()
|
302 |
-
shard_lengths.append(num_examples)
|
303 |
-
total_num_examples += num_examples
|
304 |
-
total_num_bytes += num_bytes
|
305 |
-
shard_id += 1
|
306 |
-
writer = writer_class(
|
307 |
-
features=writer._features,
|
308 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
309 |
-
writer_batch_size=self._writer_batch_size,
|
310 |
-
storage_options=self._fs.storage_options,
|
311 |
-
embed_local_files=embed_local_files,
|
312 |
-
)
|
313 |
-
try:
|
314 |
-
writer.write_table(table)
|
315 |
-
except CastError as cast_error:
|
316 |
-
raise DatasetGenerationCastError.from_cast_error(
|
317 |
-
cast_error=cast_error,
|
318 |
-
builder_name=self.info.builder_name,
|
319 |
-
gen_kwargs=gen_kwargs,
|
320 |
-
token=self.token,
|
321 |
-
)
|
322 |
-
num_examples_progress_update += len(table)
|
323 |
-
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
324 |
-
_time = time.time()
|
325 |
-
yield job_id, False, num_examples_progress_update
|
326 |
-
num_examples_progress_update = 0
|
327 |
-
finally:
|
328 |
-
yield job_id, False, num_examples_progress_update
|
329 |
-
num_shards = shard_id + 1
|
330 |
-
num_examples, num_bytes = writer.finalize()
|
331 |
-
writer.close()
|
332 |
-
shard_lengths.append(num_examples)
|
333 |
-
total_num_examples += num_examples
|
334 |
-
total_num_bytes += num_bytes
|
335 |
-
except Exception as e:
|
336 |
-
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
337 |
-
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
338 |
-
e = e.__context__
|
339 |
-
if isinstance(e, DatasetGenerationError):
|
340 |
-
raise
|
341 |
-
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
342 |
-
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
343 |
-
|
344 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
345 |
-
----------------------------- Captured stderr call -----------------------------
|
346 |
-
|
347 |
-
_____________________ test_no_within_data_duplicates[tv2r] _____________________
|
348 |
-
|
349 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c07bc0>
|
350 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/tv2r/tv2r.parquet))}
|
351 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/tv2r/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
352 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
353 |
-
|
354 |
-
def _prepare_split_single(
|
355 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
356 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
357 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
358 |
-
generator = self._generate_tables(**gen_kwargs)
|
359 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
360 |
-
embed_local_files = file_format == "parquet"
|
361 |
-
shard_lengths = []
|
362 |
-
total_num_examples, total_num_bytes = 0, 0
|
363 |
-
|
364 |
-
shard_id = 0
|
365 |
-
num_examples_progress_update = 0
|
366 |
-
try:
|
367 |
-
writer = writer_class(
|
368 |
-
features=self.info.features,
|
369 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
370 |
-
writer_batch_size=self._writer_batch_size,
|
371 |
-
storage_options=self._fs.storage_options,
|
372 |
-
embed_local_files=embed_local_files,
|
373 |
-
)
|
374 |
-
try:
|
375 |
-
_time = time.time()
|
376 |
-
for _, table in generator:
|
377 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
378 |
-
num_examples, num_bytes = writer.finalize()
|
379 |
-
writer.close()
|
380 |
-
shard_lengths.append(num_examples)
|
381 |
-
total_num_examples += num_examples
|
382 |
-
total_num_bytes += num_bytes
|
383 |
-
shard_id += 1
|
384 |
-
writer = writer_class(
|
385 |
-
features=writer._features,
|
386 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
387 |
-
writer_batch_size=self._writer_batch_size,
|
388 |
-
storage_options=self._fs.storage_options,
|
389 |
-
embed_local_files=embed_local_files,
|
390 |
-
)
|
391 |
-
try:
|
392 |
-
> writer.write_table(table)
|
393 |
-
|
394 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
395 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
396 |
-
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
397 |
-
self.pa_writer.write_table(pa_table, writer_batch_size)
|
398 |
-
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
399 |
-
???
|
400 |
-
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
401 |
-
???
|
402 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
403 |
-
|
404 |
-
self = <fsspec.implementations.local.LocalFileOpener object at 0x11379d9f0>
|
405 |
-
args = (<pyarrow.Buffer address=0x5cf2c0d0000 size=4000 is_cpu=True is_mutable=True>,)
|
406 |
-
kwargs = {}
|
407 |
-
|
408 |
-
def write(self, *args, **kwargs):
|
409 |
-
> return self.f.write(*args, **kwargs)
|
410 |
-
E OSError: [Errno 28] No space left on device
|
411 |
-
|
412 |
-
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
413 |
-
|
414 |
-
During handling of the above exception, another exception occurred:
|
415 |
-
|
416 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c07bc0>
|
417 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/tv2r/tv2r.parquet))}
|
418 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/tv2r/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
419 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
420 |
-
|
421 |
-
def _prepare_split_single(
|
422 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
423 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
424 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
425 |
-
generator = self._generate_tables(**gen_kwargs)
|
426 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
427 |
-
embed_local_files = file_format == "parquet"
|
428 |
-
shard_lengths = []
|
429 |
-
total_num_examples, total_num_bytes = 0, 0
|
430 |
-
|
431 |
-
shard_id = 0
|
432 |
-
num_examples_progress_update = 0
|
433 |
-
try:
|
434 |
-
writer = writer_class(
|
435 |
-
features=self.info.features,
|
436 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
437 |
-
writer_batch_size=self._writer_batch_size,
|
438 |
-
storage_options=self._fs.storage_options,
|
439 |
-
embed_local_files=embed_local_files,
|
440 |
-
)
|
441 |
-
try:
|
442 |
-
_time = time.time()
|
443 |
-
for _, table in generator:
|
444 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
445 |
-
num_examples, num_bytes = writer.finalize()
|
446 |
-
writer.close()
|
447 |
-
shard_lengths.append(num_examples)
|
448 |
-
total_num_examples += num_examples
|
449 |
-
total_num_bytes += num_bytes
|
450 |
-
shard_id += 1
|
451 |
-
writer = writer_class(
|
452 |
-
features=writer._features,
|
453 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
454 |
-
writer_batch_size=self._writer_batch_size,
|
455 |
-
storage_options=self._fs.storage_options,
|
456 |
-
embed_local_files=embed_local_files,
|
457 |
-
)
|
458 |
-
try:
|
459 |
-
writer.write_table(table)
|
460 |
-
except CastError as cast_error:
|
461 |
-
raise DatasetGenerationCastError.from_cast_error(
|
462 |
-
cast_error=cast_error,
|
463 |
-
builder_name=self.info.builder_name,
|
464 |
-
gen_kwargs=gen_kwargs,
|
465 |
-
token=self.token,
|
466 |
-
)
|
467 |
-
num_examples_progress_update += len(table)
|
468 |
-
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
469 |
-
_time = time.time()
|
470 |
-
yield job_id, False, num_examples_progress_update
|
471 |
-
num_examples_progress_update = 0
|
472 |
-
finally:
|
473 |
-
yield job_id, False, num_examples_progress_update
|
474 |
-
num_shards = shard_id + 1
|
475 |
-
> num_examples, num_bytes = writer.finalize()
|
476 |
-
|
477 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1886:
|
478 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
479 |
-
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:644: in finalize
|
480 |
-
self.stream.close()
|
481 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
482 |
-
|
483 |
-
self = <fsspec.implementations.local.LocalFileOpener object at 0x11379d9f0>
|
484 |
-
|
485 |
-
def close(self):
|
486 |
-
> return self.f.close()
|
487 |
-
E OSError: [Errno 28] No space left on device
|
488 |
-
|
489 |
-
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:444: OSError
|
490 |
-
|
491 |
-
The above exception was the direct cause of the following exception:
|
492 |
-
|
493 |
-
dataset_name = 'tv2r'
|
494 |
-
|
495 |
-
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
496 |
-
def test_no_within_data_duplicates(dataset_name: str):
|
497 |
-
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
498 |
-
|
499 |
-
src/tests/test_quality/test_duplicates.py:12:
|
500 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
501 |
-
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
502 |
-
builder_instance.download_and_prepare(
|
503 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
504 |
-
self._download_and_prepare(
|
505 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
506 |
-
self._prepare_split(split_generator, **prepare_split_kwargs)
|
507 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
508 |
-
for job_id, done, content in self._prepare_split_single(
|
509 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
510 |
-
|
511 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c07bc0>
|
512 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/tv2r/tv2r.parquet))}
|
513 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/tv2r/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
514 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
515 |
-
|
516 |
-
def _prepare_split_single(
|
517 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
518 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
519 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
520 |
-
generator = self._generate_tables(**gen_kwargs)
|
521 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
522 |
-
embed_local_files = file_format == "parquet"
|
523 |
-
shard_lengths = []
|
524 |
-
total_num_examples, total_num_bytes = 0, 0
|
525 |
-
|
526 |
-
shard_id = 0
|
527 |
-
num_examples_progress_update = 0
|
528 |
-
try:
|
529 |
-
writer = writer_class(
|
530 |
-
features=self.info.features,
|
531 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
532 |
-
writer_batch_size=self._writer_batch_size,
|
533 |
-
storage_options=self._fs.storage_options,
|
534 |
-
embed_local_files=embed_local_files,
|
535 |
-
)
|
536 |
-
try:
|
537 |
-
_time = time.time()
|
538 |
-
for _, table in generator:
|
539 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
540 |
-
num_examples, num_bytes = writer.finalize()
|
541 |
-
writer.close()
|
542 |
-
shard_lengths.append(num_examples)
|
543 |
-
total_num_examples += num_examples
|
544 |
-
total_num_bytes += num_bytes
|
545 |
-
shard_id += 1
|
546 |
-
writer = writer_class(
|
547 |
-
features=writer._features,
|
548 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
549 |
-
writer_batch_size=self._writer_batch_size,
|
550 |
-
storage_options=self._fs.storage_options,
|
551 |
-
embed_local_files=embed_local_files,
|
552 |
-
)
|
553 |
-
try:
|
554 |
-
writer.write_table(table)
|
555 |
-
except CastError as cast_error:
|
556 |
-
raise DatasetGenerationCastError.from_cast_error(
|
557 |
-
cast_error=cast_error,
|
558 |
-
builder_name=self.info.builder_name,
|
559 |
-
gen_kwargs=gen_kwargs,
|
560 |
-
token=self.token,
|
561 |
-
)
|
562 |
-
num_examples_progress_update += len(table)
|
563 |
-
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
564 |
-
_time = time.time()
|
565 |
-
yield job_id, False, num_examples_progress_update
|
566 |
-
num_examples_progress_update = 0
|
567 |
-
finally:
|
568 |
-
yield job_id, False, num_examples_progress_update
|
569 |
-
num_shards = shard_id + 1
|
570 |
-
num_examples, num_bytes = writer.finalize()
|
571 |
-
writer.close()
|
572 |
-
shard_lengths.append(num_examples)
|
573 |
-
total_num_examples += num_examples
|
574 |
-
total_num_bytes += num_bytes
|
575 |
-
except Exception as e:
|
576 |
-
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
577 |
-
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
578 |
-
e = e.__context__
|
579 |
-
if isinstance(e, DatasetGenerationError):
|
580 |
-
raise
|
581 |
-
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
582 |
-
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
583 |
-
|
584 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
585 |
-
----------------------------- Captured stderr call -----------------------------
|
586 |
-
|
587 |
-
_____________________ test_no_within_data_duplicates[hest] _____________________
|
588 |
-
|
589 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x1137b2360>
|
590 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/hest/hest.parquet))}
|
591 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/hest/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
592 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
593 |
-
|
594 |
-
def _prepare_split_single(
|
595 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
596 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
597 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
598 |
-
generator = self._generate_tables(**gen_kwargs)
|
599 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
600 |
-
embed_local_files = file_format == "parquet"
|
601 |
-
shard_lengths = []
|
602 |
-
total_num_examples, total_num_bytes = 0, 0
|
603 |
-
|
604 |
-
shard_id = 0
|
605 |
-
num_examples_progress_update = 0
|
606 |
-
try:
|
607 |
-
writer = writer_class(
|
608 |
-
features=self.info.features,
|
609 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
610 |
-
writer_batch_size=self._writer_batch_size,
|
611 |
-
storage_options=self._fs.storage_options,
|
612 |
-
embed_local_files=embed_local_files,
|
613 |
-
)
|
614 |
-
try:
|
615 |
-
_time = time.time()
|
616 |
-
for _, table in generator:
|
617 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
618 |
-
num_examples, num_bytes = writer.finalize()
|
619 |
-
writer.close()
|
620 |
-
shard_lengths.append(num_examples)
|
621 |
-
total_num_examples += num_examples
|
622 |
-
total_num_bytes += num_bytes
|
623 |
-
shard_id += 1
|
624 |
-
writer = writer_class(
|
625 |
-
features=writer._features,
|
626 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
627 |
-
writer_batch_size=self._writer_batch_size,
|
628 |
-
storage_options=self._fs.storage_options,
|
629 |
-
embed_local_files=embed_local_files,
|
630 |
-
)
|
631 |
-
try:
|
632 |
-
> writer.write_table(table)
|
633 |
-
|
634 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
635 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
636 |
-
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
637 |
-
self.pa_writer.write_table(pa_table, writer_batch_size)
|
638 |
-
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
639 |
-
???
|
640 |
-
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
641 |
-
???
|
642 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
643 |
-
|
644 |
-
self = <fsspec.implementations.local.LocalFileOpener object at 0x114af1390>
|
645 |
-
args = (<pyarrow.Buffer address=0x5e004020000 size=147880457 is_cpu=True is_mutable=True>,)
|
646 |
-
kwargs = {}
|
647 |
-
|
648 |
-
def write(self, *args, **kwargs):
|
649 |
-
> return self.f.write(*args, **kwargs)
|
650 |
-
E OSError: [Errno 28] No space left on device
|
651 |
-
|
652 |
-
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
653 |
-
|
654 |
-
The above exception was the direct cause of the following exception:
|
655 |
-
|
656 |
-
dataset_name = 'hest'
|
657 |
-
|
658 |
-
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
659 |
-
def test_no_within_data_duplicates(dataset_name: str):
|
660 |
-
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
661 |
-
|
662 |
-
src/tests/test_quality/test_duplicates.py:12:
|
663 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
664 |
-
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
665 |
-
builder_instance.download_and_prepare(
|
666 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
667 |
-
self._download_and_prepare(
|
668 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
669 |
-
self._prepare_split(split_generator, **prepare_split_kwargs)
|
670 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
671 |
-
for job_id, done, content in self._prepare_split_single(
|
672 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
673 |
-
|
674 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x1137b2360>
|
675 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/hest/hest.parquet))}
|
676 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/hest/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
677 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
678 |
-
|
679 |
-
def _prepare_split_single(
|
680 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
681 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
682 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
683 |
-
generator = self._generate_tables(**gen_kwargs)
|
684 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
685 |
-
embed_local_files = file_format == "parquet"
|
686 |
-
shard_lengths = []
|
687 |
-
total_num_examples, total_num_bytes = 0, 0
|
688 |
-
|
689 |
-
shard_id = 0
|
690 |
-
num_examples_progress_update = 0
|
691 |
-
try:
|
692 |
-
writer = writer_class(
|
693 |
-
features=self.info.features,
|
694 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
695 |
-
writer_batch_size=self._writer_batch_size,
|
696 |
-
storage_options=self._fs.storage_options,
|
697 |
-
embed_local_files=embed_local_files,
|
698 |
-
)
|
699 |
-
try:
|
700 |
-
_time = time.time()
|
701 |
-
for _, table in generator:
|
702 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
703 |
-
num_examples, num_bytes = writer.finalize()
|
704 |
-
writer.close()
|
705 |
-
shard_lengths.append(num_examples)
|
706 |
-
total_num_examples += num_examples
|
707 |
-
total_num_bytes += num_bytes
|
708 |
-
shard_id += 1
|
709 |
-
writer = writer_class(
|
710 |
-
features=writer._features,
|
711 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
712 |
-
writer_batch_size=self._writer_batch_size,
|
713 |
-
storage_options=self._fs.storage_options,
|
714 |
-
embed_local_files=embed_local_files,
|
715 |
-
)
|
716 |
-
try:
|
717 |
-
writer.write_table(table)
|
718 |
-
except CastError as cast_error:
|
719 |
-
raise DatasetGenerationCastError.from_cast_error(
|
720 |
-
cast_error=cast_error,
|
721 |
-
builder_name=self.info.builder_name,
|
722 |
-
gen_kwargs=gen_kwargs,
|
723 |
-
token=self.token,
|
724 |
-
)
|
725 |
-
num_examples_progress_update += len(table)
|
726 |
-
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
727 |
-
_time = time.time()
|
728 |
-
yield job_id, False, num_examples_progress_update
|
729 |
-
num_examples_progress_update = 0
|
730 |
-
finally:
|
731 |
-
yield job_id, False, num_examples_progress_update
|
732 |
-
num_shards = shard_id + 1
|
733 |
-
num_examples, num_bytes = writer.finalize()
|
734 |
-
writer.close()
|
735 |
-
shard_lengths.append(num_examples)
|
736 |
-
total_num_examples += num_examples
|
737 |
-
total_num_bytes += num_bytes
|
738 |
-
except Exception as e:
|
739 |
-
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
740 |
-
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
741 |
-
e = e.__context__
|
742 |
-
if isinstance(e, DatasetGenerationError):
|
743 |
-
raise
|
744 |
-
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
745 |
-
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
746 |
-
|
747 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
748 |
-
----------------------------- Captured stderr call -----------------------------
|
749 |
-
|
750 |
-
________________________ test_no_one_word_documents[ep] ________________________
|
751 |
-
|
752 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c1bb90>
|
753 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ep/ep.parquet))}
|
754 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ep/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
755 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
756 |
-
|
757 |
-
def _prepare_split_single(
|
758 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
759 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
760 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
761 |
-
generator = self._generate_tables(**gen_kwargs)
|
762 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
763 |
-
embed_local_files = file_format == "parquet"
|
764 |
-
shard_lengths = []
|
765 |
-
total_num_examples, total_num_bytes = 0, 0
|
766 |
-
|
767 |
-
shard_id = 0
|
768 |
-
num_examples_progress_update = 0
|
769 |
-
try:
|
770 |
-
writer = writer_class(
|
771 |
-
features=self.info.features,
|
772 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
773 |
-
writer_batch_size=self._writer_batch_size,
|
774 |
-
storage_options=self._fs.storage_options,
|
775 |
-
embed_local_files=embed_local_files,
|
776 |
-
)
|
777 |
-
try:
|
778 |
-
_time = time.time()
|
779 |
-
for _, table in generator:
|
780 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
781 |
-
num_examples, num_bytes = writer.finalize()
|
782 |
-
writer.close()
|
783 |
-
shard_lengths.append(num_examples)
|
784 |
-
total_num_examples += num_examples
|
785 |
-
total_num_bytes += num_bytes
|
786 |
-
shard_id += 1
|
787 |
-
writer = writer_class(
|
788 |
-
features=writer._features,
|
789 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
790 |
-
writer_batch_size=self._writer_batch_size,
|
791 |
-
storage_options=self._fs.storage_options,
|
792 |
-
embed_local_files=embed_local_files,
|
793 |
-
)
|
794 |
-
try:
|
795 |
-
> writer.write_table(table)
|
796 |
-
|
797 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
798 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
799 |
-
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
800 |
-
self.pa_writer.write_table(pa_table, writer_batch_size)
|
801 |
-
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
802 |
-
???
|
803 |
-
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
804 |
-
???
|
805 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
806 |
-
|
807 |
-
self = <fsspec.implementations.local.LocalFileOpener object at 0x113e86290>
|
808 |
-
args = (<pyarrow.Buffer address=0x5e1f0020000 size=76944794 is_cpu=True is_mutable=True>,)
|
809 |
-
kwargs = {}
|
810 |
-
|
811 |
-
def write(self, *args, **kwargs):
|
812 |
-
> return self.f.write(*args, **kwargs)
|
813 |
-
E OSError: [Errno 28] No space left on device
|
814 |
-
|
815 |
-
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
816 |
-
|
817 |
-
The above exception was the direct cause of the following exception:
|
818 |
-
|
819 |
-
dataset_name = 'ep'
|
820 |
-
|
821 |
-
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
822 |
-
# @pytest.mark.skip("This tests currently fails")
|
823 |
-
def test_no_one_word_documents(dataset_name: str):
|
824 |
-
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
825 |
-
|
826 |
-
src/tests/test_quality/test_short_texts.py:14:
|
827 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
828 |
-
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
829 |
-
builder_instance.download_and_prepare(
|
830 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
831 |
-
self._download_and_prepare(
|
832 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
833 |
-
self._prepare_split(split_generator, **prepare_split_kwargs)
|
834 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
835 |
-
for job_id, done, content in self._prepare_split_single(
|
836 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
837 |
-
|
838 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c1bb90>
|
839 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ep/ep.parquet))}
|
840 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ep/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
841 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
842 |
-
|
843 |
-
def _prepare_split_single(
|
844 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
845 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
846 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
847 |
-
generator = self._generate_tables(**gen_kwargs)
|
848 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
849 |
-
embed_local_files = file_format == "parquet"
|
850 |
-
shard_lengths = []
|
851 |
-
total_num_examples, total_num_bytes = 0, 0
|
852 |
-
|
853 |
-
shard_id = 0
|
854 |
-
num_examples_progress_update = 0
|
855 |
-
try:
|
856 |
-
writer = writer_class(
|
857 |
-
features=self.info.features,
|
858 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
859 |
-
writer_batch_size=self._writer_batch_size,
|
860 |
-
storage_options=self._fs.storage_options,
|
861 |
-
embed_local_files=embed_local_files,
|
862 |
-
)
|
863 |
-
try:
|
864 |
-
_time = time.time()
|
865 |
-
for _, table in generator:
|
866 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
867 |
-
num_examples, num_bytes = writer.finalize()
|
868 |
-
writer.close()
|
869 |
-
shard_lengths.append(num_examples)
|
870 |
-
total_num_examples += num_examples
|
871 |
-
total_num_bytes += num_bytes
|
872 |
-
shard_id += 1
|
873 |
-
writer = writer_class(
|
874 |
-
features=writer._features,
|
875 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
876 |
-
writer_batch_size=self._writer_batch_size,
|
877 |
-
storage_options=self._fs.storage_options,
|
878 |
-
embed_local_files=embed_local_files,
|
879 |
-
)
|
880 |
-
try:
|
881 |
-
writer.write_table(table)
|
882 |
-
except CastError as cast_error:
|
883 |
-
raise DatasetGenerationCastError.from_cast_error(
|
884 |
-
cast_error=cast_error,
|
885 |
-
builder_name=self.info.builder_name,
|
886 |
-
gen_kwargs=gen_kwargs,
|
887 |
-
token=self.token,
|
888 |
-
)
|
889 |
-
num_examples_progress_update += len(table)
|
890 |
-
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
891 |
-
_time = time.time()
|
892 |
-
yield job_id, False, num_examples_progress_update
|
893 |
-
num_examples_progress_update = 0
|
894 |
-
finally:
|
895 |
-
yield job_id, False, num_examples_progress_update
|
896 |
-
num_shards = shard_id + 1
|
897 |
-
num_examples, num_bytes = writer.finalize()
|
898 |
-
writer.close()
|
899 |
-
shard_lengths.append(num_examples)
|
900 |
-
total_num_examples += num_examples
|
901 |
-
total_num_bytes += num_bytes
|
902 |
-
except Exception as e:
|
903 |
-
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
904 |
-
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
905 |
-
e = e.__context__
|
906 |
-
if isinstance(e, DatasetGenerationError):
|
907 |
-
raise
|
908 |
-
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
909 |
-
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
910 |
-
|
911 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
912 |
-
----------------------------- Captured stderr call -----------------------------
|
913 |
-
|
914 |
-
________________________ test_no_one_word_documents[ft] ________________________
|
915 |
-
|
916 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x12e558620>
|
917 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ft/ft.parquet))}
|
918 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ft/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
919 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
920 |
-
|
921 |
-
def _prepare_split_single(
|
922 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
923 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
924 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
925 |
-
generator = self._generate_tables(**gen_kwargs)
|
926 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
927 |
-
embed_local_files = file_format == "parquet"
|
928 |
-
shard_lengths = []
|
929 |
-
total_num_examples, total_num_bytes = 0, 0
|
930 |
-
|
931 |
-
shard_id = 0
|
932 |
-
num_examples_progress_update = 0
|
933 |
-
try:
|
934 |
-
writer = writer_class(
|
935 |
-
features=self.info.features,
|
936 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
937 |
-
writer_batch_size=self._writer_batch_size,
|
938 |
-
storage_options=self._fs.storage_options,
|
939 |
-
embed_local_files=embed_local_files,
|
940 |
-
)
|
941 |
-
try:
|
942 |
-
_time = time.time()
|
943 |
-
for _, table in generator:
|
944 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
945 |
-
num_examples, num_bytes = writer.finalize()
|
946 |
-
writer.close()
|
947 |
-
shard_lengths.append(num_examples)
|
948 |
-
total_num_examples += num_examples
|
949 |
-
total_num_bytes += num_bytes
|
950 |
-
shard_id += 1
|
951 |
-
writer = writer_class(
|
952 |
-
features=writer._features,
|
953 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
954 |
-
writer_batch_size=self._writer_batch_size,
|
955 |
-
storage_options=self._fs.storage_options,
|
956 |
-
embed_local_files=embed_local_files,
|
957 |
-
)
|
958 |
-
try:
|
959 |
-
> writer.write_table(table)
|
960 |
-
|
961 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
962 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
963 |
-
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
964 |
-
self.pa_writer.write_table(pa_table, writer_batch_size)
|
965 |
-
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
966 |
-
???
|
967 |
-
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
968 |
-
???
|
969 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
970 |
-
|
971 |
-
self = <fsspec.implementations.local.LocalFileOpener object at 0x113eb1d50>
|
972 |
-
args = (<pyarrow.Buffer address=0x5e238020000 size=274397630 is_cpu=True is_mutable=True>,)
|
973 |
-
kwargs = {}
|
974 |
-
|
975 |
-
def write(self, *args, **kwargs):
|
976 |
-
> return self.f.write(*args, **kwargs)
|
977 |
-
E OSError: [Errno 28] No space left on device
|
978 |
-
|
979 |
-
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
980 |
-
|
981 |
-
The above exception was the direct cause of the following exception:
|
982 |
-
|
983 |
-
dataset_name = 'ft'
|
984 |
-
|
985 |
-
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
986 |
-
# @pytest.mark.skip("This tests currently fails")
|
987 |
-
def test_no_one_word_documents(dataset_name: str):
|
988 |
-
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
989 |
-
|
990 |
-
src/tests/test_quality/test_short_texts.py:14:
|
991 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
992 |
-
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
993 |
-
builder_instance.download_and_prepare(
|
994 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
995 |
-
self._download_and_prepare(
|
996 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
997 |
-
self._prepare_split(split_generator, **prepare_split_kwargs)
|
998 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
999 |
-
for job_id, done, content in self._prepare_split_single(
|
1000 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1001 |
-
|
1002 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x12e558620>
|
1003 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ft/ft.parquet))}
|
1004 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ft/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1005 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1006 |
-
|
1007 |
-
def _prepare_split_single(
|
1008 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1009 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1010 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1011 |
-
generator = self._generate_tables(**gen_kwargs)
|
1012 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1013 |
-
embed_local_files = file_format == "parquet"
|
1014 |
-
shard_lengths = []
|
1015 |
-
total_num_examples, total_num_bytes = 0, 0
|
1016 |
-
|
1017 |
-
shard_id = 0
|
1018 |
-
num_examples_progress_update = 0
|
1019 |
-
try:
|
1020 |
-
writer = writer_class(
|
1021 |
-
features=self.info.features,
|
1022 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1023 |
-
writer_batch_size=self._writer_batch_size,
|
1024 |
-
storage_options=self._fs.storage_options,
|
1025 |
-
embed_local_files=embed_local_files,
|
1026 |
-
)
|
1027 |
-
try:
|
1028 |
-
_time = time.time()
|
1029 |
-
for _, table in generator:
|
1030 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1031 |
-
num_examples, num_bytes = writer.finalize()
|
1032 |
-
writer.close()
|
1033 |
-
shard_lengths.append(num_examples)
|
1034 |
-
total_num_examples += num_examples
|
1035 |
-
total_num_bytes += num_bytes
|
1036 |
-
shard_id += 1
|
1037 |
-
writer = writer_class(
|
1038 |
-
features=writer._features,
|
1039 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1040 |
-
writer_batch_size=self._writer_batch_size,
|
1041 |
-
storage_options=self._fs.storage_options,
|
1042 |
-
embed_local_files=embed_local_files,
|
1043 |
-
)
|
1044 |
-
try:
|
1045 |
-
writer.write_table(table)
|
1046 |
-
except CastError as cast_error:
|
1047 |
-
raise DatasetGenerationCastError.from_cast_error(
|
1048 |
-
cast_error=cast_error,
|
1049 |
-
builder_name=self.info.builder_name,
|
1050 |
-
gen_kwargs=gen_kwargs,
|
1051 |
-
token=self.token,
|
1052 |
-
)
|
1053 |
-
num_examples_progress_update += len(table)
|
1054 |
-
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
1055 |
-
_time = time.time()
|
1056 |
-
yield job_id, False, num_examples_progress_update
|
1057 |
-
num_examples_progress_update = 0
|
1058 |
-
finally:
|
1059 |
-
yield job_id, False, num_examples_progress_update
|
1060 |
-
num_shards = shard_id + 1
|
1061 |
-
num_examples, num_bytes = writer.finalize()
|
1062 |
-
writer.close()
|
1063 |
-
shard_lengths.append(num_examples)
|
1064 |
-
total_num_examples += num_examples
|
1065 |
-
total_num_bytes += num_bytes
|
1066 |
-
except Exception as e:
|
1067 |
-
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
1068 |
-
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
1069 |
-
e = e.__context__
|
1070 |
-
if isinstance(e, DatasetGenerationError):
|
1071 |
-
raise
|
1072 |
-
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
1073 |
-
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
1074 |
-
|
1075 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
1076 |
-
----------------------------- Captured stderr call -----------------------------
|
1077 |
-
|
1078 |
-
_______________________ test_no_one_word_documents[hest] _______________________
|
1079 |
-
|
1080 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x118b3f1a0>
|
1081 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/hest/hest.parquet))}
|
1082 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/hest/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1083 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1084 |
-
|
1085 |
-
def _prepare_split_single(
|
1086 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1087 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1088 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1089 |
-
generator = self._generate_tables(**gen_kwargs)
|
1090 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1091 |
-
embed_local_files = file_format == "parquet"
|
1092 |
-
shard_lengths = []
|
1093 |
-
total_num_examples, total_num_bytes = 0, 0
|
1094 |
-
|
1095 |
-
shard_id = 0
|
1096 |
-
num_examples_progress_update = 0
|
1097 |
-
try:
|
1098 |
-
writer = writer_class(
|
1099 |
-
features=self.info.features,
|
1100 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1101 |
-
writer_batch_size=self._writer_batch_size,
|
1102 |
-
storage_options=self._fs.storage_options,
|
1103 |
-
embed_local_files=embed_local_files,
|
1104 |
-
)
|
1105 |
-
try:
|
1106 |
-
_time = time.time()
|
1107 |
-
for _, table in generator:
|
1108 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1109 |
-
num_examples, num_bytes = writer.finalize()
|
1110 |
-
writer.close()
|
1111 |
-
shard_lengths.append(num_examples)
|
1112 |
-
total_num_examples += num_examples
|
1113 |
-
total_num_bytes += num_bytes
|
1114 |
-
shard_id += 1
|
1115 |
-
writer = writer_class(
|
1116 |
-
features=writer._features,
|
1117 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1118 |
-
writer_batch_size=self._writer_batch_size,
|
1119 |
-
storage_options=self._fs.storage_options,
|
1120 |
-
embed_local_files=embed_local_files,
|
1121 |
-
)
|
1122 |
-
try:
|
1123 |
-
> writer.write_table(table)
|
1124 |
-
|
1125 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
1126 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1127 |
-
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
1128 |
-
self.pa_writer.write_table(pa_table, writer_batch_size)
|
1129 |
-
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
1130 |
-
???
|
1131 |
-
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
1132 |
-
???
|
1133 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1134 |
-
|
1135 |
-
self = <fsspec.implementations.local.LocalFileOpener object at 0x113e85810>
|
1136 |
-
args = (<pyarrow.Buffer address=0x5e3c8020000 size=95688808 is_cpu=True is_mutable=True>,)
|
1137 |
-
kwargs = {}
|
1138 |
-
|
1139 |
-
def write(self, *args, **kwargs):
|
1140 |
-
> return self.f.write(*args, **kwargs)
|
1141 |
-
E OSError: [Errno 28] No space left on device
|
1142 |
-
|
1143 |
-
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
1144 |
-
|
1145 |
-
The above exception was the direct cause of the following exception:
|
1146 |
-
|
1147 |
-
dataset_name = 'hest'
|
1148 |
-
|
1149 |
-
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
1150 |
-
# @pytest.mark.skip("This tests currently fails")
|
1151 |
-
def test_no_one_word_documents(dataset_name: str):
|
1152 |
-
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
1153 |
-
|
1154 |
-
src/tests/test_quality/test_short_texts.py:14:
|
1155 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1156 |
-
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
1157 |
-
builder_instance.download_and_prepare(
|
1158 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
1159 |
-
self._download_and_prepare(
|
1160 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
1161 |
-
self._prepare_split(split_generator, **prepare_split_kwargs)
|
1162 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
1163 |
-
for job_id, done, content in self._prepare_split_single(
|
1164 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1165 |
-
|
1166 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x118b3f1a0>
|
1167 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/hest/hest.parquet))}
|
1168 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/hest/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1169 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1170 |
-
|
1171 |
-
def _prepare_split_single(
|
1172 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1173 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1174 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1175 |
-
generator = self._generate_tables(**gen_kwargs)
|
1176 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1177 |
-
embed_local_files = file_format == "parquet"
|
1178 |
-
shard_lengths = []
|
1179 |
-
total_num_examples, total_num_bytes = 0, 0
|
1180 |
-
|
1181 |
-
shard_id = 0
|
1182 |
-
num_examples_progress_update = 0
|
1183 |
-
try:
|
1184 |
-
writer = writer_class(
|
1185 |
-
features=self.info.features,
|
1186 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1187 |
-
writer_batch_size=self._writer_batch_size,
|
1188 |
-
storage_options=self._fs.storage_options,
|
1189 |
-
embed_local_files=embed_local_files,
|
1190 |
-
)
|
1191 |
-
try:
|
1192 |
-
_time = time.time()
|
1193 |
-
for _, table in generator:
|
1194 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1195 |
-
num_examples, num_bytes = writer.finalize()
|
1196 |
-
writer.close()
|
1197 |
-
shard_lengths.append(num_examples)
|
1198 |
-
total_num_examples += num_examples
|
1199 |
-
total_num_bytes += num_bytes
|
1200 |
-
shard_id += 1
|
1201 |
-
writer = writer_class(
|
1202 |
-
features=writer._features,
|
1203 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1204 |
-
writer_batch_size=self._writer_batch_size,
|
1205 |
-
storage_options=self._fs.storage_options,
|
1206 |
-
embed_local_files=embed_local_files,
|
1207 |
-
)
|
1208 |
-
try:
|
1209 |
-
writer.write_table(table)
|
1210 |
-
except CastError as cast_error:
|
1211 |
-
raise DatasetGenerationCastError.from_cast_error(
|
1212 |
-
cast_error=cast_error,
|
1213 |
-
builder_name=self.info.builder_name,
|
1214 |
-
gen_kwargs=gen_kwargs,
|
1215 |
-
token=self.token,
|
1216 |
-
)
|
1217 |
-
num_examples_progress_update += len(table)
|
1218 |
-
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
1219 |
-
_time = time.time()
|
1220 |
-
yield job_id, False, num_examples_progress_update
|
1221 |
-
num_examples_progress_update = 0
|
1222 |
-
finally:
|
1223 |
-
yield job_id, False, num_examples_progress_update
|
1224 |
-
num_shards = shard_id + 1
|
1225 |
-
num_examples, num_bytes = writer.finalize()
|
1226 |
-
writer.close()
|
1227 |
-
shard_lengths.append(num_examples)
|
1228 |
-
total_num_examples += num_examples
|
1229 |
-
total_num_bytes += num_bytes
|
1230 |
-
except Exception as e:
|
1231 |
-
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
1232 |
-
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
1233 |
-
e = e.__context__
|
1234 |
-
if isinstance(e, DatasetGenerationError):
|
1235 |
-
raise
|
1236 |
-
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
1237 |
-
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
1238 |
-
|
1239 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
1240 |
-
----------------------------- Captured stderr call -----------------------------
|
1241 |
-
|
1242 |
-
__________________________ test_ensure_ids_are_unique __________________________
|
1243 |
-
|
1244 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x113ec1970>
|
1245 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/cellar/cellar.parquet))}
|
1246 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/default/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1247 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1248 |
-
|
1249 |
-
def _prepare_split_single(
|
1250 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1251 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1252 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1253 |
-
generator = self._generate_tables(**gen_kwargs)
|
1254 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1255 |
-
embed_local_files = file_format == "parquet"
|
1256 |
-
shard_lengths = []
|
1257 |
-
total_num_examples, total_num_bytes = 0, 0
|
1258 |
-
|
1259 |
-
shard_id = 0
|
1260 |
-
num_examples_progress_update = 0
|
1261 |
-
try:
|
1262 |
-
writer = writer_class(
|
1263 |
-
features=self.info.features,
|
1264 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1265 |
-
writer_batch_size=self._writer_batch_size,
|
1266 |
-
storage_options=self._fs.storage_options,
|
1267 |
-
embed_local_files=embed_local_files,
|
1268 |
-
)
|
1269 |
-
try:
|
1270 |
-
_time = time.time()
|
1271 |
-
for _, table in generator:
|
1272 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1273 |
-
num_examples, num_bytes = writer.finalize()
|
1274 |
-
writer.close()
|
1275 |
-
shard_lengths.append(num_examples)
|
1276 |
-
total_num_examples += num_examples
|
1277 |
-
total_num_bytes += num_bytes
|
1278 |
-
shard_id += 1
|
1279 |
-
writer = writer_class(
|
1280 |
-
features=writer._features,
|
1281 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1282 |
-
writer_batch_size=self._writer_batch_size,
|
1283 |
-
storage_options=self._fs.storage_options,
|
1284 |
-
embed_local_files=embed_local_files,
|
1285 |
-
)
|
1286 |
-
try:
|
1287 |
-
> writer.write_table(table)
|
1288 |
-
|
1289 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
1290 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1291 |
-
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
1292 |
-
self.pa_writer.write_table(pa_table, writer_batch_size)
|
1293 |
-
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
1294 |
-
???
|
1295 |
-
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
1296 |
-
???
|
1297 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1298 |
-
|
1299 |
-
self = <fsspec.implementations.local.LocalFileOpener object at 0x113aaffd0>
|
1300 |
-
args = (<pyarrow.Buffer address=0x5e500020000 size=81139164 is_cpu=True is_mutable=True>,)
|
1301 |
-
kwargs = {}
|
1302 |
-
|
1303 |
-
def write(self, *args, **kwargs):
|
1304 |
-
> return self.f.write(*args, **kwargs)
|
1305 |
-
E OSError: [Errno 28] No space left on device
|
1306 |
-
|
1307 |
-
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
1308 |
-
|
1309 |
-
The above exception was the direct cause of the following exception:
|
1310 |
-
|
1311 |
-
def test_ensure_ids_are_unique():
|
1312 |
-
name = str(repo_path.resolve())
|
1313 |
-
> ds = load_dataset(name, split="train")
|
1314 |
-
|
1315 |
-
src/tests/test_unique_ids.py:11:
|
1316 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1317 |
-
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
1318 |
-
builder_instance.download_and_prepare(
|
1319 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
1320 |
-
self._download_and_prepare(
|
1321 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
1322 |
-
self._prepare_split(split_generator, **prepare_split_kwargs)
|
1323 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
1324 |
-
for job_id, done, content in self._prepare_split_single(
|
1325 |
-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1326 |
-
|
1327 |
-
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x113ec1970>
|
1328 |
-
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/cellar/cellar.parquet))}
|
1329 |
-
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/default/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1330 |
-
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1331 |
-
|
1332 |
-
def _prepare_split_single(
|
1333 |
-
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1334 |
-
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1335 |
-
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1336 |
-
generator = self._generate_tables(**gen_kwargs)
|
1337 |
-
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1338 |
-
embed_local_files = file_format == "parquet"
|
1339 |
-
shard_lengths = []
|
1340 |
-
total_num_examples, total_num_bytes = 0, 0
|
1341 |
-
|
1342 |
-
shard_id = 0
|
1343 |
-
num_examples_progress_update = 0
|
1344 |
-
try:
|
1345 |
-
writer = writer_class(
|
1346 |
-
features=self.info.features,
|
1347 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1348 |
-
writer_batch_size=self._writer_batch_size,
|
1349 |
-
storage_options=self._fs.storage_options,
|
1350 |
-
embed_local_files=embed_local_files,
|
1351 |
-
)
|
1352 |
-
try:
|
1353 |
-
_time = time.time()
|
1354 |
-
for _, table in generator:
|
1355 |
-
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1356 |
-
num_examples, num_bytes = writer.finalize()
|
1357 |
-
writer.close()
|
1358 |
-
shard_lengths.append(num_examples)
|
1359 |
-
total_num_examples += num_examples
|
1360 |
-
total_num_bytes += num_bytes
|
1361 |
-
shard_id += 1
|
1362 |
-
writer = writer_class(
|
1363 |
-
features=writer._features,
|
1364 |
-
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1365 |
-
writer_batch_size=self._writer_batch_size,
|
1366 |
-
storage_options=self._fs.storage_options,
|
1367 |
-
embed_local_files=embed_local_files,
|
1368 |
-
)
|
1369 |
-
try:
|
1370 |
-
writer.write_table(table)
|
1371 |
-
except CastError as cast_error:
|
1372 |
-
raise DatasetGenerationCastError.from_cast_error(
|
1373 |
-
cast_error=cast_error,
|
1374 |
-
builder_name=self.info.builder_name,
|
1375 |
-
gen_kwargs=gen_kwargs,
|
1376 |
-
token=self.token,
|
1377 |
-
)
|
1378 |
-
num_examples_progress_update += len(table)
|
1379 |
-
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
1380 |
-
_time = time.time()
|
1381 |
-
yield job_id, False, num_examples_progress_update
|
1382 |
-
num_examples_progress_update = 0
|
1383 |
-
finally:
|
1384 |
-
yield job_id, False, num_examples_progress_update
|
1385 |
-
num_shards = shard_id + 1
|
1386 |
-
num_examples, num_bytes = writer.finalize()
|
1387 |
-
writer.close()
|
1388 |
-
shard_lengths.append(num_examples)
|
1389 |
-
total_num_examples += num_examples
|
1390 |
-
total_num_bytes += num_bytes
|
1391 |
-
except Exception as e:
|
1392 |
-
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
1393 |
-
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
1394 |
-
e = e.__context__
|
1395 |
-
if isinstance(e, DatasetGenerationError):
|
1396 |
-
raise
|
1397 |
-
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
1398 |
-
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
1399 |
-
|
1400 |
-
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
1401 |
-
----------------------------- Captured stderr call -----------------------------
|
1402 |
-
|
1403 |
-
|
1404 |
=============================== warnings summary ===============================
|
1405 |
-
src/tests/test_quality/test_short_texts.py:
|
1406 |
/Users/au561649/Github/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
|
1407 |
|
1408 |
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
|
1409 |
-
|
1410 |
-
FAILED src/tests/test_quality/test_duplicates.py::test_no_within_data_duplicates[ep]
|
1411 |
-
FAILED src/tests/test_quality/test_duplicates.py::test_no_within_data_duplicates[ft]
|
1412 |
-
FAILED src/tests/test_quality/test_duplicates.py::test_no_within_data_duplicates[tv2r]
|
1413 |
-
FAILED src/tests/test_quality/test_duplicates.py::test_no_within_data_duplicates[hest]
|
1414 |
-
FAILED src/tests/test_quality/test_short_texts.py::test_no_one_word_documents[ep]
|
1415 |
-
FAILED src/tests/test_quality/test_short_texts.py::test_no_one_word_documents[ft]
|
1416 |
-
FAILED src/tests/test_quality/test_short_texts.py::test_no_one_word_documents[hest]
|
1417 |
-
FAILED src/tests/test_unique_ids.py::test_ensure_ids_are_unique - datasets.ex...
|
1418 |
-
====== 8 failed, 319 passed, 1 skipped, 33 warnings in 365.20s (0:06:05) =======
|
|
|
11 |
........................................................................ [ 57%]
|
12 |
................................................................. [ 76%]
|
13 |
src/tests/test_load.py .. [ 77%]
|
14 |
+
src/tests/test_quality/test_duplicates.py .............................. [ 86%]
|
15 |
......s [ 88%]
|
16 |
+
src/tests/test_quality/test_short_texts.py ............................. [ 97%]
|
17 |
....... [ 99%]
|
18 |
+
src/tests/test_unique_ids.py . [100%]
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
=============================== warnings summary ===============================
|
21 |
+
src/tests/test_quality/test_short_texts.py: 36 warnings
|
22 |
/Users/au561649/Github/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
|
23 |
|
24 |
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
|
25 |
+
================= 327 passed, 1 skipped, 36 warnings in 53.74s =================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uv.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|