Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
10M - 100M
ArXiv:
DOI:
License:
Kenneth Enevoldsen
commited on
test
Browse files- CHANGELOG.md +10 -0
- README.md +75 -3
- src/dynaword/tables.py +13 -15
- test_results.log +1400 -7
CHANGELOG.md
CHANGED
@@ -5,6 +5,16 @@ All notable changes to this project will be documented in this file.
|
|
5 |
|
6 |
The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
## [v1.2.5] - 2025-07-08
|
9 |
|
10 |
### Added
|
|
|
5 |
|
6 |
The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
7 |
|
8 |
+
## [v1.2.6] - 2025-07-21
|
9 |
+
|
10 |
+
### Added
|
11 |
+
|
12 |
+
- Added two table to get an overview of data by license and domain
|
13 |
+
|
14 |
+
### Changed
|
15 |
+
|
16 |
+
- Dataset overview table now appears in a drop down menu
|
17 |
+
|
18 |
## [v1.2.5] - 2025-07-08
|
19 |
|
20 |
### Added
|
README.md
CHANGED
@@ -198,7 +198,8 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
|
|
198 |
- [Dataset Description](#dataset-description)
|
199 |
- [Dataset Summary](#dataset-summary)
|
200 |
- [Loading the dataset](#loading-the-dataset)
|
201 |
-
- [Languages
|
|
|
202 |
- [Dataset Structure](#dataset-structure)
|
203 |
- [Data Instances](#data-instances)
|
204 |
- [Data Fields](#data-fields)
|
@@ -261,7 +262,7 @@ You can also load a single subset at a time:
|
|
261 |
ds = load_dataset(name, revision="{desired revision}")
|
262 |
```
|
263 |
|
264 |
-
### Languages
|
265 |
This dataset includes the following languages:
|
266 |
|
267 |
- dan-Latn
|
@@ -270,6 +271,77 @@ This dataset includes the following languages:
|
|
270 |
|
271 |
Language is denoted using [BCP-47](https://en.wikipedia.org/wiki/IETF_language_tag), using the langauge code ISO 639-3 and the script code ISO 15924. The last element denote the region variant.
|
272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
## Dataset Structure
|
274 |
|
275 |
The dataset contains text from different sources which are thoroughly defined in [Source Data](#source-data).
|
@@ -433,7 +505,7 @@ Each source is linked to a metadata card with additional information about origi
|
|
433 |
|
434 |
|
435 |
<details>
|
436 |
-
<summary><b>
|
437 |
|
438 |
You can learn more about each dataset by pressing the link in the first column.
|
439 |
|
|
|
198 |
- [Dataset Description](#dataset-description)
|
199 |
- [Dataset Summary](#dataset-summary)
|
200 |
- [Loading the dataset](#loading-the-dataset)
|
201 |
+
- [Languages](#languages)
|
202 |
+
- [Domains](#domains)
|
203 |
- [Dataset Structure](#dataset-structure)
|
204 |
- [Data Instances](#data-instances)
|
205 |
- [Data Fields](#data-fields)
|
|
|
262 |
ds = load_dataset(name, revision="{desired revision}")
|
263 |
```
|
264 |
|
265 |
+
### Languages
|
266 |
This dataset includes the following languages:
|
267 |
|
268 |
- dan-Latn
|
|
|
271 |
|
272 |
Language is denoted using [BCP-47](https://en.wikipedia.org/wiki/IETF_language_tag), using the langauge code ISO 639-3 and the script code ISO 15924. The last element denote the region variant.
|
273 |
|
274 |
+
|
275 |
+
### Domains
|
276 |
+
|
277 |
+
To give a structured overview of the dataset composition, we include three summary tables:
|
278 |
+
|
279 |
+
- The Domain Table groups the datasets by domain (e.g., legal, books, social media) and shows the total token count for each domain.
|
280 |
+
- The License Table categorizes the data by license type, providing transparency into the usage rights associated with each source.
|
281 |
+
- The Main Table offers a detailed breakdown of each dataset, including a short description, its assigned domain, token count, and license.
|
282 |
+
|
283 |
+
Each source is linked to a metadata card with additional information about origin, preprocessing, and license verification.
|
284 |
+
|
285 |
+
|
286 |
+
<!-- START-DOMAIN TABLE -->
|
287 |
+
| Domain | Source with link | N. Tokens |
|
288 |
+
|:-------------|:---------------------------------------------------------------------------------------------------------|:------------|
|
289 |
+
| Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
|
290 |
+
| Books | [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 722.00M |
|
291 |
+
| Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M |
|
292 |
+
| Social Media | [hest] | 389.32M |
|
293 |
+
| Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M |
|
294 |
+
| Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M |
|
295 |
+
| Encyclopedic | [wikisource], [wiki] | 127.35M |
|
296 |
+
| News | [ncc_newspaper], [tv2r], [nordjyllandnews] | 60.63M |
|
297 |
+
| Medical | [health_hovedstaden] | 27.07M |
|
298 |
+
| Readaloud | [nota] | 7.30M |
|
299 |
+
| Dialect | [botxt] | 847.97K |
|
300 |
+
| **Total** | | 4.78B |
|
301 |
+
|
302 |
+
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
303 |
+
[cellar]: data/cellar/cellar.md
|
304 |
+
[danske-taler]: data/danske-taler/danske-taler.md
|
305 |
+
[ncc_books]: data/ncc_books/ncc_books.md
|
306 |
+
[ncc_newspaper]: data/ncc_newspaper/ncc_newspaper.md
|
307 |
+
[ncc_maalfrid]: data/ncc_maalfrid/ncc_maalfrid.md
|
308 |
+
[ncc_parliament]: data/ncc_parliament/ncc_parliament.md
|
309 |
+
[eur-lex-sum-da]: data/eur-lex-sum-da/eur-lex-sum-da.md
|
310 |
+
[miljoeportalen]: data/miljoeportalen/miljoeportalen.md
|
311 |
+
[fm-udgivelser]: data/fm-udgivelser/fm-udgivelser.md
|
312 |
+
[memo]: data/memo/memo.md
|
313 |
+
[opensubtitles]: data/opensubtitles/opensubtitles.md
|
314 |
+
[retsinformationdk]: data/retsinformationdk/retsinformationdk.md
|
315 |
+
[ep]: data/ep/ep.md
|
316 |
+
[ft]: data/ft/ft.md
|
317 |
+
[wikisource]: data/wikisource/wikisource.md
|
318 |
+
[spont]: data/spont/spont.md
|
319 |
+
[tv2r]: data/tv2r/tv2r.md
|
320 |
+
[adl]: data/adl/adl.md
|
321 |
+
[hest]: data/hest/hest.md
|
322 |
+
[skat]: data/skat/skat.md
|
323 |
+
[dannet]: data/dannet/dannet.md
|
324 |
+
[retspraksis]: data/retspraksis/retspraksis.md
|
325 |
+
[wikibooks]: data/wikibooks/wikibooks.md
|
326 |
+
[jvj]: data/jvj/jvj.md
|
327 |
+
[gutenberg]: data/gutenberg/gutenberg.md
|
328 |
+
[botxt]: data/botxt/botxt.md
|
329 |
+
[depbank]: data/depbank/depbank.md
|
330 |
+
[naat]: data/naat/naat.md
|
331 |
+
[synne]: data/synne/synne.md
|
332 |
+
[wiki]: data/wiki/wiki.md
|
333 |
+
[nordjyllandnews]: data/nordjyllandnews/nordjyllandnews.md
|
334 |
+
[relig]: data/relig/relig.md
|
335 |
+
[nota]: data/nota/nota.md
|
336 |
+
[health_hovedstaden]: data/health_hovedstaden/health_hovedstaden.md
|
337 |
+
[domsdatabasen]: data/domsdatabasen/domsdatabasen.md
|
338 |
+
<!-- END-DOMAIN TABLE -->
|
339 |
+
|
340 |
+
|
341 |
+
<p align="center">
|
342 |
+
<img src="./images/domain_distribution.png" width="400" style="margin-right: 10px;" />
|
343 |
+
</p>
|
344 |
+
|
345 |
## Dataset Structure
|
346 |
|
347 |
The dataset contains text from different sources which are thoroughly defined in [Source Data](#source-data).
|
|
|
505 |
|
506 |
|
507 |
<details>
|
508 |
+
<summary><b>Overview Table (click to unfold)</b></summary>
|
509 |
|
510 |
You can learn more about each dataset by pressing the link in the first column.
|
511 |
|
src/dynaword/tables.py
CHANGED
@@ -54,7 +54,7 @@ def create_overview_table(
|
|
54 |
) -> pd.DataFrame:
|
55 |
table = {
|
56 |
"Source": [],
|
57 |
-
"
|
58 |
"Description": [],
|
59 |
"Domain": [],
|
60 |
"N. Tokens": [],
|
@@ -70,7 +70,7 @@ def create_overview_table(
|
|
70 |
main_domain = sheet.domains[0] if sheet.domains else ""
|
71 |
|
72 |
table["Source"] += [f"{dataset_path.name}"]
|
73 |
-
table["
|
74 |
table["License"] += [f"[{sheet.license_name}]"]
|
75 |
table["Domain"] += [main_domain]
|
76 |
table["Description"] += [sheet.short_description]
|
@@ -82,7 +82,7 @@ def create_overview_table(
|
|
82 |
if add_total_row:
|
83 |
total_row = {
|
84 |
"Source": "**Total**",
|
85 |
-
"
|
86 |
"Domain": "",
|
87 |
"License": "",
|
88 |
"Description": "",
|
@@ -96,12 +96,12 @@ def create_overview_table(
|
|
96 |
ignore_index=True,
|
97 |
)
|
98 |
if add_readme_references:
|
99 |
-
# replace Source with
|
100 |
-
df["Source"] = df["
|
101 |
-
df = df.drop(columns=["
|
102 |
else:
|
103 |
-
# remove
|
104 |
-
df = df.drop(columns=["
|
105 |
|
106 |
if add_readable_tokens:
|
107 |
df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
|
@@ -116,7 +116,7 @@ def create_grouped_table(
|
|
116 |
add_total_row: bool = True,
|
117 |
) -> pd.DataFrame:
|
118 |
table = {
|
119 |
-
"
|
120 |
group: [],
|
121 |
"N. Tokens": [],
|
122 |
}
|
@@ -129,20 +129,18 @@ def create_grouped_table(
|
|
129 |
desc_stats = sheet.get_descritive_stats()
|
130 |
feature = sheet.get_feature_by_string(group)
|
131 |
|
132 |
-
table["
|
133 |
table[group] += [feature]
|
134 |
table["N. Tokens"] += [desc_stats.number_of_tokens]
|
135 |
|
136 |
if add_total_row:
|
137 |
-
table["
|
138 |
table[group] += ["**Total**"]
|
139 |
table["N. Tokens"] += [sum(table["N. Tokens"])]
|
140 |
|
141 |
df = pd.DataFrame.from_dict(table)
|
142 |
|
143 |
-
df = df.groupby(group).agg(
|
144 |
-
{"Source with link": lambda x: ", ".join(x), "N. Tokens": "sum"}
|
145 |
-
)
|
146 |
|
147 |
df = df.sort_values("N. Tokens", ascending=False)
|
148 |
|
@@ -165,7 +163,7 @@ def create_grouped_table_str(
|
|
165 |
) -> str:
|
166 |
table = create_grouped_table(group=group, repo_path=repo_path)
|
167 |
readme_references = create_dataset_readme_references()
|
168 |
-
package = f"{table.to_markdown(index=False)}\n\n{readme_references}\n\n"
|
169 |
return package
|
170 |
|
171 |
|
|
|
54 |
) -> pd.DataFrame:
|
55 |
table = {
|
56 |
"Source": [],
|
57 |
+
"Sources": [],
|
58 |
"Description": [],
|
59 |
"Domain": [],
|
60 |
"N. Tokens": [],
|
|
|
70 |
main_domain = sheet.domains[0] if sheet.domains else ""
|
71 |
|
72 |
table["Source"] += [f"{dataset_path.name}"]
|
73 |
+
table["Sources"] += [f"[{dataset_path.name}]"]
|
74 |
table["License"] += [f"[{sheet.license_name}]"]
|
75 |
table["Domain"] += [main_domain]
|
76 |
table["Description"] += [sheet.short_description]
|
|
|
82 |
if add_total_row:
|
83 |
total_row = {
|
84 |
"Source": "**Total**",
|
85 |
+
"Sources": "**Total**",
|
86 |
"Domain": "",
|
87 |
"License": "",
|
88 |
"Description": "",
|
|
|
96 |
ignore_index=True,
|
97 |
)
|
98 |
if add_readme_references:
|
99 |
+
# replace Source with Sources
|
100 |
+
df["Source"] = df["Sources"]
|
101 |
+
df = df.drop(columns=["Sources"])
|
102 |
else:
|
103 |
+
# remove Sources
|
104 |
+
df = df.drop(columns=["Sources"])
|
105 |
|
106 |
if add_readable_tokens:
|
107 |
df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
|
|
|
116 |
add_total_row: bool = True,
|
117 |
) -> pd.DataFrame:
|
118 |
table = {
|
119 |
+
"Sources": [],
|
120 |
group: [],
|
121 |
"N. Tokens": [],
|
122 |
}
|
|
|
129 |
desc_stats = sheet.get_descritive_stats()
|
130 |
feature = sheet.get_feature_by_string(group)
|
131 |
|
132 |
+
table["Sources"] += [f"[{dataset_path.name}]"]
|
133 |
table[group] += [feature]
|
134 |
table["N. Tokens"] += [desc_stats.number_of_tokens]
|
135 |
|
136 |
if add_total_row:
|
137 |
+
table["Sources"] += [""]
|
138 |
table[group] += ["**Total**"]
|
139 |
table["N. Tokens"] += [sum(table["N. Tokens"])]
|
140 |
|
141 |
df = pd.DataFrame.from_dict(table)
|
142 |
|
143 |
+
df = df.groupby(group).agg({"Sources": lambda x: ", ".join(x), "N. Tokens": "sum"})
|
|
|
|
|
144 |
|
145 |
df = df.sort_values("N. Tokens", ascending=False)
|
146 |
|
|
|
163 |
) -> str:
|
164 |
table = create_grouped_table(group=group, repo_path=repo_path)
|
165 |
readme_references = create_dataset_readme_references()
|
166 |
+
package = f"{table.to_markdown(index=False, maxcolwidths=[None, 20, None])}\n\n{readme_references}\n\n"
|
167 |
return package
|
168 |
|
169 |
|
test_results.log
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
============================= test session starts ==============================
|
2 |
platform darwin -- Python 3.12.0, pytest-8.3.4, pluggy-1.5.0
|
3 |
-
rootdir: /Users/
|
4 |
configfile: pyproject.toml
|
5 |
plugins: anyio-4.9.0
|
6 |
collected 328 items
|
@@ -11,15 +11,1408 @@ src/tests/test_datasheets.py ........................................... [ 35%]
|
|
11 |
........................................................................ [ 57%]
|
12 |
................................................................. [ 76%]
|
13 |
src/tests/test_load.py .. [ 77%]
|
14 |
-
src/tests/test_quality/test_duplicates.py
|
15 |
......s [ 88%]
|
16 |
-
src/tests/test_quality/test_short_texts.py
|
17 |
....... [ 99%]
|
18 |
-
src/tests/test_unique_ids.py
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
=============================== warnings summary ===============================
|
21 |
-
src/tests/test_quality/test_short_texts.py:
|
22 |
-
/Users/
|
23 |
|
24 |
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
============================= test session starts ==============================
|
2 |
platform darwin -- Python 3.12.0, pytest-8.3.4, pluggy-1.5.0
|
3 |
+
rootdir: /Users/au561649/Github/danish-dynaword
|
4 |
configfile: pyproject.toml
|
5 |
plugins: anyio-4.9.0
|
6 |
collected 328 items
|
|
|
11 |
........................................................................ [ 57%]
|
12 |
................................................................. [ 76%]
|
13 |
src/tests/test_load.py .. [ 77%]
|
14 |
+
src/tests/test_quality/test_duplicates.py .............FF..F.F.......... [ 86%]
|
15 |
......s [ 88%]
|
16 |
+
src/tests/test_quality/test_short_texts.py .............FF....F......... [ 97%]
|
17 |
....... [ 99%]
|
18 |
+
src/tests/test_unique_ids.py F [100%]
|
19 |
|
20 |
+
=================================== FAILURES ===================================
|
21 |
+
______________________ test_no_within_data_duplicates[ep] ______________________
|
22 |
+
|
23 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x118b3e240>
|
24 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ep/ep.parquet))}
|
25 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ep/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
26 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
27 |
+
|
28 |
+
def _prepare_split_single(
|
29 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
30 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
31 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
32 |
+
generator = self._generate_tables(**gen_kwargs)
|
33 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
34 |
+
embed_local_files = file_format == "parquet"
|
35 |
+
shard_lengths = []
|
36 |
+
total_num_examples, total_num_bytes = 0, 0
|
37 |
+
|
38 |
+
shard_id = 0
|
39 |
+
num_examples_progress_update = 0
|
40 |
+
try:
|
41 |
+
writer = writer_class(
|
42 |
+
features=self.info.features,
|
43 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
44 |
+
writer_batch_size=self._writer_batch_size,
|
45 |
+
storage_options=self._fs.storage_options,
|
46 |
+
embed_local_files=embed_local_files,
|
47 |
+
)
|
48 |
+
try:
|
49 |
+
_time = time.time()
|
50 |
+
for _, table in generator:
|
51 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
52 |
+
num_examples, num_bytes = writer.finalize()
|
53 |
+
writer.close()
|
54 |
+
shard_lengths.append(num_examples)
|
55 |
+
total_num_examples += num_examples
|
56 |
+
total_num_bytes += num_bytes
|
57 |
+
shard_id += 1
|
58 |
+
writer = writer_class(
|
59 |
+
features=writer._features,
|
60 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
61 |
+
writer_batch_size=self._writer_batch_size,
|
62 |
+
storage_options=self._fs.storage_options,
|
63 |
+
embed_local_files=embed_local_files,
|
64 |
+
)
|
65 |
+
try:
|
66 |
+
> writer.write_table(table)
|
67 |
+
|
68 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
69 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
70 |
+
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
71 |
+
self.pa_writer.write_table(pa_table, writer_batch_size)
|
72 |
+
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
73 |
+
???
|
74 |
+
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
75 |
+
???
|
76 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
77 |
+
|
78 |
+
self = <fsspec.implementations.local.LocalFileOpener object at 0x114a4bfa0>
|
79 |
+
args = (<pyarrow.Buffer address=0x5ddec020000 size=75246719 is_cpu=True is_mutable=True>,)
|
80 |
+
kwargs = {}
|
81 |
+
|
82 |
+
def write(self, *args, **kwargs):
|
83 |
+
> return self.f.write(*args, **kwargs)
|
84 |
+
E OSError: [Errno 28] No space left on device
|
85 |
+
|
86 |
+
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
87 |
+
|
88 |
+
The above exception was the direct cause of the following exception:
|
89 |
+
|
90 |
+
dataset_name = 'ep'
|
91 |
+
|
92 |
+
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
93 |
+
def test_no_within_data_duplicates(dataset_name: str):
|
94 |
+
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
95 |
+
|
96 |
+
src/tests/test_quality/test_duplicates.py:12:
|
97 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
98 |
+
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
99 |
+
builder_instance.download_and_prepare(
|
100 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
101 |
+
self._download_and_prepare(
|
102 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
103 |
+
self._prepare_split(split_generator, **prepare_split_kwargs)
|
104 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
105 |
+
for job_id, done, content in self._prepare_split_single(
|
106 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
107 |
+
|
108 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x118b3e240>
|
109 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ep/ep.parquet))}
|
110 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ep/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
111 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
112 |
+
|
113 |
+
def _prepare_split_single(
|
114 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
115 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
116 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
117 |
+
generator = self._generate_tables(**gen_kwargs)
|
118 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
119 |
+
embed_local_files = file_format == "parquet"
|
120 |
+
shard_lengths = []
|
121 |
+
total_num_examples, total_num_bytes = 0, 0
|
122 |
+
|
123 |
+
shard_id = 0
|
124 |
+
num_examples_progress_update = 0
|
125 |
+
try:
|
126 |
+
writer = writer_class(
|
127 |
+
features=self.info.features,
|
128 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
129 |
+
writer_batch_size=self._writer_batch_size,
|
130 |
+
storage_options=self._fs.storage_options,
|
131 |
+
embed_local_files=embed_local_files,
|
132 |
+
)
|
133 |
+
try:
|
134 |
+
_time = time.time()
|
135 |
+
for _, table in generator:
|
136 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
137 |
+
num_examples, num_bytes = writer.finalize()
|
138 |
+
writer.close()
|
139 |
+
shard_lengths.append(num_examples)
|
140 |
+
total_num_examples += num_examples
|
141 |
+
total_num_bytes += num_bytes
|
142 |
+
shard_id += 1
|
143 |
+
writer = writer_class(
|
144 |
+
features=writer._features,
|
145 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
146 |
+
writer_batch_size=self._writer_batch_size,
|
147 |
+
storage_options=self._fs.storage_options,
|
148 |
+
embed_local_files=embed_local_files,
|
149 |
+
)
|
150 |
+
try:
|
151 |
+
writer.write_table(table)
|
152 |
+
except CastError as cast_error:
|
153 |
+
raise DatasetGenerationCastError.from_cast_error(
|
154 |
+
cast_error=cast_error,
|
155 |
+
builder_name=self.info.builder_name,
|
156 |
+
gen_kwargs=gen_kwargs,
|
157 |
+
token=self.token,
|
158 |
+
)
|
159 |
+
num_examples_progress_update += len(table)
|
160 |
+
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
161 |
+
_time = time.time()
|
162 |
+
yield job_id, False, num_examples_progress_update
|
163 |
+
num_examples_progress_update = 0
|
164 |
+
finally:
|
165 |
+
yield job_id, False, num_examples_progress_update
|
166 |
+
num_shards = shard_id + 1
|
167 |
+
num_examples, num_bytes = writer.finalize()
|
168 |
+
writer.close()
|
169 |
+
shard_lengths.append(num_examples)
|
170 |
+
total_num_examples += num_examples
|
171 |
+
total_num_bytes += num_bytes
|
172 |
+
except Exception as e:
|
173 |
+
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
174 |
+
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
175 |
+
e = e.__context__
|
176 |
+
if isinstance(e, DatasetGenerationError):
|
177 |
+
raise
|
178 |
+
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
179 |
+
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
180 |
+
|
181 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
182 |
+
----------------------------- Captured stderr call -----------------------------
|
183 |
+
|
184 |
+
______________________ test_no_within_data_duplicates[ft] ______________________
|
185 |
+
|
186 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x11137ed80>
|
187 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ft/ft.parquet))}
|
188 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ft/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
189 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
190 |
+
|
191 |
+
def _prepare_split_single(
|
192 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
193 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
194 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
195 |
+
generator = self._generate_tables(**gen_kwargs)
|
196 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
197 |
+
embed_local_files = file_format == "parquet"
|
198 |
+
shard_lengths = []
|
199 |
+
total_num_examples, total_num_bytes = 0, 0
|
200 |
+
|
201 |
+
shard_id = 0
|
202 |
+
num_examples_progress_update = 0
|
203 |
+
try:
|
204 |
+
writer = writer_class(
|
205 |
+
features=self.info.features,
|
206 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
207 |
+
writer_batch_size=self._writer_batch_size,
|
208 |
+
storage_options=self._fs.storage_options,
|
209 |
+
embed_local_files=embed_local_files,
|
210 |
+
)
|
211 |
+
try:
|
212 |
+
_time = time.time()
|
213 |
+
for _, table in generator:
|
214 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
215 |
+
num_examples, num_bytes = writer.finalize()
|
216 |
+
writer.close()
|
217 |
+
shard_lengths.append(num_examples)
|
218 |
+
total_num_examples += num_examples
|
219 |
+
total_num_bytes += num_bytes
|
220 |
+
shard_id += 1
|
221 |
+
writer = writer_class(
|
222 |
+
features=writer._features,
|
223 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
224 |
+
writer_batch_size=self._writer_batch_size,
|
225 |
+
storage_options=self._fs.storage_options,
|
226 |
+
embed_local_files=embed_local_files,
|
227 |
+
)
|
228 |
+
try:
|
229 |
+
> writer.write_table(table)
|
230 |
+
|
231 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
232 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
233 |
+
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
234 |
+
self.pa_writer.write_table(pa_table, writer_batch_size)
|
235 |
+
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
236 |
+
???
|
237 |
+
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
238 |
+
???
|
239 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
240 |
+
|
241 |
+
self = <fsspec.implementations.local.LocalFileOpener object at 0x1137dd150>
|
242 |
+
args = (<pyarrow.Buffer address=0x5de9c020000 size=274397630 is_cpu=True is_mutable=True>,)
|
243 |
+
kwargs = {}
|
244 |
+
|
245 |
+
def write(self, *args, **kwargs):
|
246 |
+
> return self.f.write(*args, **kwargs)
|
247 |
+
E OSError: [Errno 28] No space left on device
|
248 |
+
|
249 |
+
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
250 |
+
|
251 |
+
The above exception was the direct cause of the following exception:
|
252 |
+
|
253 |
+
dataset_name = 'ft'
|
254 |
+
|
255 |
+
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
256 |
+
def test_no_within_data_duplicates(dataset_name: str):
|
257 |
+
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
258 |
+
|
259 |
+
src/tests/test_quality/test_duplicates.py:12:
|
260 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
261 |
+
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
262 |
+
builder_instance.download_and_prepare(
|
263 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
264 |
+
self._download_and_prepare(
|
265 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
266 |
+
self._prepare_split(split_generator, **prepare_split_kwargs)
|
267 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
268 |
+
for job_id, done, content in self._prepare_split_single(
|
269 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
270 |
+
|
271 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x11137ed80>
|
272 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ft/ft.parquet))}
|
273 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ft/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
274 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
275 |
+
|
276 |
+
def _prepare_split_single(
|
277 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
278 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
279 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
280 |
+
generator = self._generate_tables(**gen_kwargs)
|
281 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
282 |
+
embed_local_files = file_format == "parquet"
|
283 |
+
shard_lengths = []
|
284 |
+
total_num_examples, total_num_bytes = 0, 0
|
285 |
+
|
286 |
+
shard_id = 0
|
287 |
+
num_examples_progress_update = 0
|
288 |
+
try:
|
289 |
+
writer = writer_class(
|
290 |
+
features=self.info.features,
|
291 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
292 |
+
writer_batch_size=self._writer_batch_size,
|
293 |
+
storage_options=self._fs.storage_options,
|
294 |
+
embed_local_files=embed_local_files,
|
295 |
+
)
|
296 |
+
try:
|
297 |
+
_time = time.time()
|
298 |
+
for _, table in generator:
|
299 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
300 |
+
num_examples, num_bytes = writer.finalize()
|
301 |
+
writer.close()
|
302 |
+
shard_lengths.append(num_examples)
|
303 |
+
total_num_examples += num_examples
|
304 |
+
total_num_bytes += num_bytes
|
305 |
+
shard_id += 1
|
306 |
+
writer = writer_class(
|
307 |
+
features=writer._features,
|
308 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
309 |
+
writer_batch_size=self._writer_batch_size,
|
310 |
+
storage_options=self._fs.storage_options,
|
311 |
+
embed_local_files=embed_local_files,
|
312 |
+
)
|
313 |
+
try:
|
314 |
+
writer.write_table(table)
|
315 |
+
except CastError as cast_error:
|
316 |
+
raise DatasetGenerationCastError.from_cast_error(
|
317 |
+
cast_error=cast_error,
|
318 |
+
builder_name=self.info.builder_name,
|
319 |
+
gen_kwargs=gen_kwargs,
|
320 |
+
token=self.token,
|
321 |
+
)
|
322 |
+
num_examples_progress_update += len(table)
|
323 |
+
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
324 |
+
_time = time.time()
|
325 |
+
yield job_id, False, num_examples_progress_update
|
326 |
+
num_examples_progress_update = 0
|
327 |
+
finally:
|
328 |
+
yield job_id, False, num_examples_progress_update
|
329 |
+
num_shards = shard_id + 1
|
330 |
+
num_examples, num_bytes = writer.finalize()
|
331 |
+
writer.close()
|
332 |
+
shard_lengths.append(num_examples)
|
333 |
+
total_num_examples += num_examples
|
334 |
+
total_num_bytes += num_bytes
|
335 |
+
except Exception as e:
|
336 |
+
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
337 |
+
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
338 |
+
e = e.__context__
|
339 |
+
if isinstance(e, DatasetGenerationError):
|
340 |
+
raise
|
341 |
+
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
342 |
+
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
343 |
+
|
344 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
345 |
+
----------------------------- Captured stderr call -----------------------------
|
346 |
+
|
347 |
+
_____________________ test_no_within_data_duplicates[tv2r] _____________________
|
348 |
+
|
349 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c07bc0>
|
350 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/tv2r/tv2r.parquet))}
|
351 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/tv2r/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
352 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
353 |
+
|
354 |
+
def _prepare_split_single(
|
355 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
356 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
357 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
358 |
+
generator = self._generate_tables(**gen_kwargs)
|
359 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
360 |
+
embed_local_files = file_format == "parquet"
|
361 |
+
shard_lengths = []
|
362 |
+
total_num_examples, total_num_bytes = 0, 0
|
363 |
+
|
364 |
+
shard_id = 0
|
365 |
+
num_examples_progress_update = 0
|
366 |
+
try:
|
367 |
+
writer = writer_class(
|
368 |
+
features=self.info.features,
|
369 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
370 |
+
writer_batch_size=self._writer_batch_size,
|
371 |
+
storage_options=self._fs.storage_options,
|
372 |
+
embed_local_files=embed_local_files,
|
373 |
+
)
|
374 |
+
try:
|
375 |
+
_time = time.time()
|
376 |
+
for _, table in generator:
|
377 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
378 |
+
num_examples, num_bytes = writer.finalize()
|
379 |
+
writer.close()
|
380 |
+
shard_lengths.append(num_examples)
|
381 |
+
total_num_examples += num_examples
|
382 |
+
total_num_bytes += num_bytes
|
383 |
+
shard_id += 1
|
384 |
+
writer = writer_class(
|
385 |
+
features=writer._features,
|
386 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
387 |
+
writer_batch_size=self._writer_batch_size,
|
388 |
+
storage_options=self._fs.storage_options,
|
389 |
+
embed_local_files=embed_local_files,
|
390 |
+
)
|
391 |
+
try:
|
392 |
+
> writer.write_table(table)
|
393 |
+
|
394 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
395 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
396 |
+
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
397 |
+
self.pa_writer.write_table(pa_table, writer_batch_size)
|
398 |
+
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
399 |
+
???
|
400 |
+
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
401 |
+
???
|
402 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
403 |
+
|
404 |
+
self = <fsspec.implementations.local.LocalFileOpener object at 0x11379d9f0>
|
405 |
+
args = (<pyarrow.Buffer address=0x5cf2c0d0000 size=4000 is_cpu=True is_mutable=True>,)
|
406 |
+
kwargs = {}
|
407 |
+
|
408 |
+
def write(self, *args, **kwargs):
|
409 |
+
> return self.f.write(*args, **kwargs)
|
410 |
+
E OSError: [Errno 28] No space left on device
|
411 |
+
|
412 |
+
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
413 |
+
|
414 |
+
During handling of the above exception, another exception occurred:
|
415 |
+
|
416 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c07bc0>
|
417 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/tv2r/tv2r.parquet))}
|
418 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/tv2r/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
419 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
420 |
+
|
421 |
+
def _prepare_split_single(
|
422 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
423 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
424 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
425 |
+
generator = self._generate_tables(**gen_kwargs)
|
426 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
427 |
+
embed_local_files = file_format == "parquet"
|
428 |
+
shard_lengths = []
|
429 |
+
total_num_examples, total_num_bytes = 0, 0
|
430 |
+
|
431 |
+
shard_id = 0
|
432 |
+
num_examples_progress_update = 0
|
433 |
+
try:
|
434 |
+
writer = writer_class(
|
435 |
+
features=self.info.features,
|
436 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
437 |
+
writer_batch_size=self._writer_batch_size,
|
438 |
+
storage_options=self._fs.storage_options,
|
439 |
+
embed_local_files=embed_local_files,
|
440 |
+
)
|
441 |
+
try:
|
442 |
+
_time = time.time()
|
443 |
+
for _, table in generator:
|
444 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
445 |
+
num_examples, num_bytes = writer.finalize()
|
446 |
+
writer.close()
|
447 |
+
shard_lengths.append(num_examples)
|
448 |
+
total_num_examples += num_examples
|
449 |
+
total_num_bytes += num_bytes
|
450 |
+
shard_id += 1
|
451 |
+
writer = writer_class(
|
452 |
+
features=writer._features,
|
453 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
454 |
+
writer_batch_size=self._writer_batch_size,
|
455 |
+
storage_options=self._fs.storage_options,
|
456 |
+
embed_local_files=embed_local_files,
|
457 |
+
)
|
458 |
+
try:
|
459 |
+
writer.write_table(table)
|
460 |
+
except CastError as cast_error:
|
461 |
+
raise DatasetGenerationCastError.from_cast_error(
|
462 |
+
cast_error=cast_error,
|
463 |
+
builder_name=self.info.builder_name,
|
464 |
+
gen_kwargs=gen_kwargs,
|
465 |
+
token=self.token,
|
466 |
+
)
|
467 |
+
num_examples_progress_update += len(table)
|
468 |
+
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
469 |
+
_time = time.time()
|
470 |
+
yield job_id, False, num_examples_progress_update
|
471 |
+
num_examples_progress_update = 0
|
472 |
+
finally:
|
473 |
+
yield job_id, False, num_examples_progress_update
|
474 |
+
num_shards = shard_id + 1
|
475 |
+
> num_examples, num_bytes = writer.finalize()
|
476 |
+
|
477 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1886:
|
478 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
479 |
+
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:644: in finalize
|
480 |
+
self.stream.close()
|
481 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
482 |
+
|
483 |
+
self = <fsspec.implementations.local.LocalFileOpener object at 0x11379d9f0>
|
484 |
+
|
485 |
+
def close(self):
|
486 |
+
> return self.f.close()
|
487 |
+
E OSError: [Errno 28] No space left on device
|
488 |
+
|
489 |
+
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:444: OSError
|
490 |
+
|
491 |
+
The above exception was the direct cause of the following exception:
|
492 |
+
|
493 |
+
dataset_name = 'tv2r'
|
494 |
+
|
495 |
+
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
496 |
+
def test_no_within_data_duplicates(dataset_name: str):
|
497 |
+
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
498 |
+
|
499 |
+
src/tests/test_quality/test_duplicates.py:12:
|
500 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
501 |
+
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
502 |
+
builder_instance.download_and_prepare(
|
503 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
504 |
+
self._download_and_prepare(
|
505 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
506 |
+
self._prepare_split(split_generator, **prepare_split_kwargs)
|
507 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
508 |
+
for job_id, done, content in self._prepare_split_single(
|
509 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
510 |
+
|
511 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c07bc0>
|
512 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/tv2r/tv2r.parquet))}
|
513 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/tv2r/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
514 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
515 |
+
|
516 |
+
def _prepare_split_single(
|
517 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
518 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
519 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
520 |
+
generator = self._generate_tables(**gen_kwargs)
|
521 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
522 |
+
embed_local_files = file_format == "parquet"
|
523 |
+
shard_lengths = []
|
524 |
+
total_num_examples, total_num_bytes = 0, 0
|
525 |
+
|
526 |
+
shard_id = 0
|
527 |
+
num_examples_progress_update = 0
|
528 |
+
try:
|
529 |
+
writer = writer_class(
|
530 |
+
features=self.info.features,
|
531 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
532 |
+
writer_batch_size=self._writer_batch_size,
|
533 |
+
storage_options=self._fs.storage_options,
|
534 |
+
embed_local_files=embed_local_files,
|
535 |
+
)
|
536 |
+
try:
|
537 |
+
_time = time.time()
|
538 |
+
for _, table in generator:
|
539 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
540 |
+
num_examples, num_bytes = writer.finalize()
|
541 |
+
writer.close()
|
542 |
+
shard_lengths.append(num_examples)
|
543 |
+
total_num_examples += num_examples
|
544 |
+
total_num_bytes += num_bytes
|
545 |
+
shard_id += 1
|
546 |
+
writer = writer_class(
|
547 |
+
features=writer._features,
|
548 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
549 |
+
writer_batch_size=self._writer_batch_size,
|
550 |
+
storage_options=self._fs.storage_options,
|
551 |
+
embed_local_files=embed_local_files,
|
552 |
+
)
|
553 |
+
try:
|
554 |
+
writer.write_table(table)
|
555 |
+
except CastError as cast_error:
|
556 |
+
raise DatasetGenerationCastError.from_cast_error(
|
557 |
+
cast_error=cast_error,
|
558 |
+
builder_name=self.info.builder_name,
|
559 |
+
gen_kwargs=gen_kwargs,
|
560 |
+
token=self.token,
|
561 |
+
)
|
562 |
+
num_examples_progress_update += len(table)
|
563 |
+
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
564 |
+
_time = time.time()
|
565 |
+
yield job_id, False, num_examples_progress_update
|
566 |
+
num_examples_progress_update = 0
|
567 |
+
finally:
|
568 |
+
yield job_id, False, num_examples_progress_update
|
569 |
+
num_shards = shard_id + 1
|
570 |
+
num_examples, num_bytes = writer.finalize()
|
571 |
+
writer.close()
|
572 |
+
shard_lengths.append(num_examples)
|
573 |
+
total_num_examples += num_examples
|
574 |
+
total_num_bytes += num_bytes
|
575 |
+
except Exception as e:
|
576 |
+
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
577 |
+
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
578 |
+
e = e.__context__
|
579 |
+
if isinstance(e, DatasetGenerationError):
|
580 |
+
raise
|
581 |
+
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
582 |
+
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
583 |
+
|
584 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
585 |
+
----------------------------- Captured stderr call -----------------------------
|
586 |
+
|
587 |
+
_____________________ test_no_within_data_duplicates[hest] _____________________
|
588 |
+
|
589 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x1137b2360>
|
590 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/hest/hest.parquet))}
|
591 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/hest/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
592 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
593 |
+
|
594 |
+
def _prepare_split_single(
|
595 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
596 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
597 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
598 |
+
generator = self._generate_tables(**gen_kwargs)
|
599 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
600 |
+
embed_local_files = file_format == "parquet"
|
601 |
+
shard_lengths = []
|
602 |
+
total_num_examples, total_num_bytes = 0, 0
|
603 |
+
|
604 |
+
shard_id = 0
|
605 |
+
num_examples_progress_update = 0
|
606 |
+
try:
|
607 |
+
writer = writer_class(
|
608 |
+
features=self.info.features,
|
609 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
610 |
+
writer_batch_size=self._writer_batch_size,
|
611 |
+
storage_options=self._fs.storage_options,
|
612 |
+
embed_local_files=embed_local_files,
|
613 |
+
)
|
614 |
+
try:
|
615 |
+
_time = time.time()
|
616 |
+
for _, table in generator:
|
617 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
618 |
+
num_examples, num_bytes = writer.finalize()
|
619 |
+
writer.close()
|
620 |
+
shard_lengths.append(num_examples)
|
621 |
+
total_num_examples += num_examples
|
622 |
+
total_num_bytes += num_bytes
|
623 |
+
shard_id += 1
|
624 |
+
writer = writer_class(
|
625 |
+
features=writer._features,
|
626 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
627 |
+
writer_batch_size=self._writer_batch_size,
|
628 |
+
storage_options=self._fs.storage_options,
|
629 |
+
embed_local_files=embed_local_files,
|
630 |
+
)
|
631 |
+
try:
|
632 |
+
> writer.write_table(table)
|
633 |
+
|
634 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
635 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
636 |
+
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
637 |
+
self.pa_writer.write_table(pa_table, writer_batch_size)
|
638 |
+
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
639 |
+
???
|
640 |
+
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
641 |
+
???
|
642 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
643 |
+
|
644 |
+
self = <fsspec.implementations.local.LocalFileOpener object at 0x114af1390>
|
645 |
+
args = (<pyarrow.Buffer address=0x5e004020000 size=147880457 is_cpu=True is_mutable=True>,)
|
646 |
+
kwargs = {}
|
647 |
+
|
648 |
+
def write(self, *args, **kwargs):
|
649 |
+
> return self.f.write(*args, **kwargs)
|
650 |
+
E OSError: [Errno 28] No space left on device
|
651 |
+
|
652 |
+
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
653 |
+
|
654 |
+
The above exception was the direct cause of the following exception:
|
655 |
+
|
656 |
+
dataset_name = 'hest'
|
657 |
+
|
658 |
+
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
659 |
+
def test_no_within_data_duplicates(dataset_name: str):
|
660 |
+
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
661 |
+
|
662 |
+
src/tests/test_quality/test_duplicates.py:12:
|
663 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
664 |
+
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
665 |
+
builder_instance.download_and_prepare(
|
666 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
667 |
+
self._download_and_prepare(
|
668 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
669 |
+
self._prepare_split(split_generator, **prepare_split_kwargs)
|
670 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
671 |
+
for job_id, done, content in self._prepare_split_single(
|
672 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
673 |
+
|
674 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x1137b2360>
|
675 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/hest/hest.parquet))}
|
676 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/hest/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
677 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
678 |
+
|
679 |
+
def _prepare_split_single(
|
680 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
681 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
682 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
683 |
+
generator = self._generate_tables(**gen_kwargs)
|
684 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
685 |
+
embed_local_files = file_format == "parquet"
|
686 |
+
shard_lengths = []
|
687 |
+
total_num_examples, total_num_bytes = 0, 0
|
688 |
+
|
689 |
+
shard_id = 0
|
690 |
+
num_examples_progress_update = 0
|
691 |
+
try:
|
692 |
+
writer = writer_class(
|
693 |
+
features=self.info.features,
|
694 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
695 |
+
writer_batch_size=self._writer_batch_size,
|
696 |
+
storage_options=self._fs.storage_options,
|
697 |
+
embed_local_files=embed_local_files,
|
698 |
+
)
|
699 |
+
try:
|
700 |
+
_time = time.time()
|
701 |
+
for _, table in generator:
|
702 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
703 |
+
num_examples, num_bytes = writer.finalize()
|
704 |
+
writer.close()
|
705 |
+
shard_lengths.append(num_examples)
|
706 |
+
total_num_examples += num_examples
|
707 |
+
total_num_bytes += num_bytes
|
708 |
+
shard_id += 1
|
709 |
+
writer = writer_class(
|
710 |
+
features=writer._features,
|
711 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
712 |
+
writer_batch_size=self._writer_batch_size,
|
713 |
+
storage_options=self._fs.storage_options,
|
714 |
+
embed_local_files=embed_local_files,
|
715 |
+
)
|
716 |
+
try:
|
717 |
+
writer.write_table(table)
|
718 |
+
except CastError as cast_error:
|
719 |
+
raise DatasetGenerationCastError.from_cast_error(
|
720 |
+
cast_error=cast_error,
|
721 |
+
builder_name=self.info.builder_name,
|
722 |
+
gen_kwargs=gen_kwargs,
|
723 |
+
token=self.token,
|
724 |
+
)
|
725 |
+
num_examples_progress_update += len(table)
|
726 |
+
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
727 |
+
_time = time.time()
|
728 |
+
yield job_id, False, num_examples_progress_update
|
729 |
+
num_examples_progress_update = 0
|
730 |
+
finally:
|
731 |
+
yield job_id, False, num_examples_progress_update
|
732 |
+
num_shards = shard_id + 1
|
733 |
+
num_examples, num_bytes = writer.finalize()
|
734 |
+
writer.close()
|
735 |
+
shard_lengths.append(num_examples)
|
736 |
+
total_num_examples += num_examples
|
737 |
+
total_num_bytes += num_bytes
|
738 |
+
except Exception as e:
|
739 |
+
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
740 |
+
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
741 |
+
e = e.__context__
|
742 |
+
if isinstance(e, DatasetGenerationError):
|
743 |
+
raise
|
744 |
+
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
745 |
+
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
746 |
+
|
747 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
748 |
+
----------------------------- Captured stderr call -----------------------------
|
749 |
+
|
750 |
+
________________________ test_no_one_word_documents[ep] ________________________
|
751 |
+
|
752 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c1bb90>
|
753 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ep/ep.parquet))}
|
754 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ep/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
755 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
756 |
+
|
757 |
+
def _prepare_split_single(
|
758 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
759 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
760 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
761 |
+
generator = self._generate_tables(**gen_kwargs)
|
762 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
763 |
+
embed_local_files = file_format == "parquet"
|
764 |
+
shard_lengths = []
|
765 |
+
total_num_examples, total_num_bytes = 0, 0
|
766 |
+
|
767 |
+
shard_id = 0
|
768 |
+
num_examples_progress_update = 0
|
769 |
+
try:
|
770 |
+
writer = writer_class(
|
771 |
+
features=self.info.features,
|
772 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
773 |
+
writer_batch_size=self._writer_batch_size,
|
774 |
+
storage_options=self._fs.storage_options,
|
775 |
+
embed_local_files=embed_local_files,
|
776 |
+
)
|
777 |
+
try:
|
778 |
+
_time = time.time()
|
779 |
+
for _, table in generator:
|
780 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
781 |
+
num_examples, num_bytes = writer.finalize()
|
782 |
+
writer.close()
|
783 |
+
shard_lengths.append(num_examples)
|
784 |
+
total_num_examples += num_examples
|
785 |
+
total_num_bytes += num_bytes
|
786 |
+
shard_id += 1
|
787 |
+
writer = writer_class(
|
788 |
+
features=writer._features,
|
789 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
790 |
+
writer_batch_size=self._writer_batch_size,
|
791 |
+
storage_options=self._fs.storage_options,
|
792 |
+
embed_local_files=embed_local_files,
|
793 |
+
)
|
794 |
+
try:
|
795 |
+
> writer.write_table(table)
|
796 |
+
|
797 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
798 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
799 |
+
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
800 |
+
self.pa_writer.write_table(pa_table, writer_batch_size)
|
801 |
+
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
802 |
+
???
|
803 |
+
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
804 |
+
???
|
805 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
806 |
+
|
807 |
+
self = <fsspec.implementations.local.LocalFileOpener object at 0x113e86290>
|
808 |
+
args = (<pyarrow.Buffer address=0x5e1f0020000 size=76944794 is_cpu=True is_mutable=True>,)
|
809 |
+
kwargs = {}
|
810 |
+
|
811 |
+
def write(self, *args, **kwargs):
|
812 |
+
> return self.f.write(*args, **kwargs)
|
813 |
+
E OSError: [Errno 28] No space left on device
|
814 |
+
|
815 |
+
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
816 |
+
|
817 |
+
The above exception was the direct cause of the following exception:
|
818 |
+
|
819 |
+
dataset_name = 'ep'
|
820 |
+
|
821 |
+
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
822 |
+
# @pytest.mark.skip("This tests currently fails")
|
823 |
+
def test_no_one_word_documents(dataset_name: str):
|
824 |
+
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
825 |
+
|
826 |
+
src/tests/test_quality/test_short_texts.py:14:
|
827 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
828 |
+
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
829 |
+
builder_instance.download_and_prepare(
|
830 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
831 |
+
self._download_and_prepare(
|
832 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
833 |
+
self._prepare_split(split_generator, **prepare_split_kwargs)
|
834 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
835 |
+
for job_id, done, content in self._prepare_split_single(
|
836 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
837 |
+
|
838 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x114c1bb90>
|
839 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ep/ep.parquet))}
|
840 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ep/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
841 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
842 |
+
|
843 |
+
def _prepare_split_single(
|
844 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
845 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
846 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
847 |
+
generator = self._generate_tables(**gen_kwargs)
|
848 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
849 |
+
embed_local_files = file_format == "parquet"
|
850 |
+
shard_lengths = []
|
851 |
+
total_num_examples, total_num_bytes = 0, 0
|
852 |
+
|
853 |
+
shard_id = 0
|
854 |
+
num_examples_progress_update = 0
|
855 |
+
try:
|
856 |
+
writer = writer_class(
|
857 |
+
features=self.info.features,
|
858 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
859 |
+
writer_batch_size=self._writer_batch_size,
|
860 |
+
storage_options=self._fs.storage_options,
|
861 |
+
embed_local_files=embed_local_files,
|
862 |
+
)
|
863 |
+
try:
|
864 |
+
_time = time.time()
|
865 |
+
for _, table in generator:
|
866 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
867 |
+
num_examples, num_bytes = writer.finalize()
|
868 |
+
writer.close()
|
869 |
+
shard_lengths.append(num_examples)
|
870 |
+
total_num_examples += num_examples
|
871 |
+
total_num_bytes += num_bytes
|
872 |
+
shard_id += 1
|
873 |
+
writer = writer_class(
|
874 |
+
features=writer._features,
|
875 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
876 |
+
writer_batch_size=self._writer_batch_size,
|
877 |
+
storage_options=self._fs.storage_options,
|
878 |
+
embed_local_files=embed_local_files,
|
879 |
+
)
|
880 |
+
try:
|
881 |
+
writer.write_table(table)
|
882 |
+
except CastError as cast_error:
|
883 |
+
raise DatasetGenerationCastError.from_cast_error(
|
884 |
+
cast_error=cast_error,
|
885 |
+
builder_name=self.info.builder_name,
|
886 |
+
gen_kwargs=gen_kwargs,
|
887 |
+
token=self.token,
|
888 |
+
)
|
889 |
+
num_examples_progress_update += len(table)
|
890 |
+
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
891 |
+
_time = time.time()
|
892 |
+
yield job_id, False, num_examples_progress_update
|
893 |
+
num_examples_progress_update = 0
|
894 |
+
finally:
|
895 |
+
yield job_id, False, num_examples_progress_update
|
896 |
+
num_shards = shard_id + 1
|
897 |
+
num_examples, num_bytes = writer.finalize()
|
898 |
+
writer.close()
|
899 |
+
shard_lengths.append(num_examples)
|
900 |
+
total_num_examples += num_examples
|
901 |
+
total_num_bytes += num_bytes
|
902 |
+
except Exception as e:
|
903 |
+
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
904 |
+
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
905 |
+
e = e.__context__
|
906 |
+
if isinstance(e, DatasetGenerationError):
|
907 |
+
raise
|
908 |
+
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
909 |
+
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
910 |
+
|
911 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
912 |
+
----------------------------- Captured stderr call -----------------------------
|
913 |
+
|
914 |
+
________________________ test_no_one_word_documents[ft] ________________________
|
915 |
+
|
916 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x12e558620>
|
917 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ft/ft.parquet))}
|
918 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ft/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
919 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
920 |
+
|
921 |
+
def _prepare_split_single(
|
922 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
923 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
924 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
925 |
+
generator = self._generate_tables(**gen_kwargs)
|
926 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
927 |
+
embed_local_files = file_format == "parquet"
|
928 |
+
shard_lengths = []
|
929 |
+
total_num_examples, total_num_bytes = 0, 0
|
930 |
+
|
931 |
+
shard_id = 0
|
932 |
+
num_examples_progress_update = 0
|
933 |
+
try:
|
934 |
+
writer = writer_class(
|
935 |
+
features=self.info.features,
|
936 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
937 |
+
writer_batch_size=self._writer_batch_size,
|
938 |
+
storage_options=self._fs.storage_options,
|
939 |
+
embed_local_files=embed_local_files,
|
940 |
+
)
|
941 |
+
try:
|
942 |
+
_time = time.time()
|
943 |
+
for _, table in generator:
|
944 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
945 |
+
num_examples, num_bytes = writer.finalize()
|
946 |
+
writer.close()
|
947 |
+
shard_lengths.append(num_examples)
|
948 |
+
total_num_examples += num_examples
|
949 |
+
total_num_bytes += num_bytes
|
950 |
+
shard_id += 1
|
951 |
+
writer = writer_class(
|
952 |
+
features=writer._features,
|
953 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
954 |
+
writer_batch_size=self._writer_batch_size,
|
955 |
+
storage_options=self._fs.storage_options,
|
956 |
+
embed_local_files=embed_local_files,
|
957 |
+
)
|
958 |
+
try:
|
959 |
+
> writer.write_table(table)
|
960 |
+
|
961 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
962 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
963 |
+
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
964 |
+
self.pa_writer.write_table(pa_table, writer_batch_size)
|
965 |
+
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
966 |
+
???
|
967 |
+
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
968 |
+
???
|
969 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
970 |
+
|
971 |
+
self = <fsspec.implementations.local.LocalFileOpener object at 0x113eb1d50>
|
972 |
+
args = (<pyarrow.Buffer address=0x5e238020000 size=274397630 is_cpu=True is_mutable=True>,)
|
973 |
+
kwargs = {}
|
974 |
+
|
975 |
+
def write(self, *args, **kwargs):
|
976 |
+
> return self.f.write(*args, **kwargs)
|
977 |
+
E OSError: [Errno 28] No space left on device
|
978 |
+
|
979 |
+
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
980 |
+
|
981 |
+
The above exception was the direct cause of the following exception:
|
982 |
+
|
983 |
+
dataset_name = 'ft'
|
984 |
+
|
985 |
+
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
986 |
+
# @pytest.mark.skip("This tests currently fails")
|
987 |
+
def test_no_one_word_documents(dataset_name: str):
|
988 |
+
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
989 |
+
|
990 |
+
src/tests/test_quality/test_short_texts.py:14:
|
991 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
992 |
+
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
993 |
+
builder_instance.download_and_prepare(
|
994 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
995 |
+
self._download_and_prepare(
|
996 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
997 |
+
self._prepare_split(split_generator, **prepare_split_kwargs)
|
998 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
999 |
+
for job_id, done, content in self._prepare_split_single(
|
1000 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1001 |
+
|
1002 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x12e558620>
|
1003 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/ft/ft.parquet))}
|
1004 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/ft/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1005 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1006 |
+
|
1007 |
+
def _prepare_split_single(
|
1008 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1009 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1010 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1011 |
+
generator = self._generate_tables(**gen_kwargs)
|
1012 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1013 |
+
embed_local_files = file_format == "parquet"
|
1014 |
+
shard_lengths = []
|
1015 |
+
total_num_examples, total_num_bytes = 0, 0
|
1016 |
+
|
1017 |
+
shard_id = 0
|
1018 |
+
num_examples_progress_update = 0
|
1019 |
+
try:
|
1020 |
+
writer = writer_class(
|
1021 |
+
features=self.info.features,
|
1022 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1023 |
+
writer_batch_size=self._writer_batch_size,
|
1024 |
+
storage_options=self._fs.storage_options,
|
1025 |
+
embed_local_files=embed_local_files,
|
1026 |
+
)
|
1027 |
+
try:
|
1028 |
+
_time = time.time()
|
1029 |
+
for _, table in generator:
|
1030 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1031 |
+
num_examples, num_bytes = writer.finalize()
|
1032 |
+
writer.close()
|
1033 |
+
shard_lengths.append(num_examples)
|
1034 |
+
total_num_examples += num_examples
|
1035 |
+
total_num_bytes += num_bytes
|
1036 |
+
shard_id += 1
|
1037 |
+
writer = writer_class(
|
1038 |
+
features=writer._features,
|
1039 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1040 |
+
writer_batch_size=self._writer_batch_size,
|
1041 |
+
storage_options=self._fs.storage_options,
|
1042 |
+
embed_local_files=embed_local_files,
|
1043 |
+
)
|
1044 |
+
try:
|
1045 |
+
writer.write_table(table)
|
1046 |
+
except CastError as cast_error:
|
1047 |
+
raise DatasetGenerationCastError.from_cast_error(
|
1048 |
+
cast_error=cast_error,
|
1049 |
+
builder_name=self.info.builder_name,
|
1050 |
+
gen_kwargs=gen_kwargs,
|
1051 |
+
token=self.token,
|
1052 |
+
)
|
1053 |
+
num_examples_progress_update += len(table)
|
1054 |
+
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
1055 |
+
_time = time.time()
|
1056 |
+
yield job_id, False, num_examples_progress_update
|
1057 |
+
num_examples_progress_update = 0
|
1058 |
+
finally:
|
1059 |
+
yield job_id, False, num_examples_progress_update
|
1060 |
+
num_shards = shard_id + 1
|
1061 |
+
num_examples, num_bytes = writer.finalize()
|
1062 |
+
writer.close()
|
1063 |
+
shard_lengths.append(num_examples)
|
1064 |
+
total_num_examples += num_examples
|
1065 |
+
total_num_bytes += num_bytes
|
1066 |
+
except Exception as e:
|
1067 |
+
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
1068 |
+
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
1069 |
+
e = e.__context__
|
1070 |
+
if isinstance(e, DatasetGenerationError):
|
1071 |
+
raise
|
1072 |
+
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
1073 |
+
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
1074 |
+
|
1075 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
1076 |
+
----------------------------- Captured stderr call -----------------------------
|
1077 |
+
|
1078 |
+
_______________________ test_no_one_word_documents[hest] _______________________
|
1079 |
+
|
1080 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x118b3f1a0>
|
1081 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/hest/hest.parquet))}
|
1082 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/hest/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1083 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1084 |
+
|
1085 |
+
def _prepare_split_single(
|
1086 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1087 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1088 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1089 |
+
generator = self._generate_tables(**gen_kwargs)
|
1090 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1091 |
+
embed_local_files = file_format == "parquet"
|
1092 |
+
shard_lengths = []
|
1093 |
+
total_num_examples, total_num_bytes = 0, 0
|
1094 |
+
|
1095 |
+
shard_id = 0
|
1096 |
+
num_examples_progress_update = 0
|
1097 |
+
try:
|
1098 |
+
writer = writer_class(
|
1099 |
+
features=self.info.features,
|
1100 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1101 |
+
writer_batch_size=self._writer_batch_size,
|
1102 |
+
storage_options=self._fs.storage_options,
|
1103 |
+
embed_local_files=embed_local_files,
|
1104 |
+
)
|
1105 |
+
try:
|
1106 |
+
_time = time.time()
|
1107 |
+
for _, table in generator:
|
1108 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1109 |
+
num_examples, num_bytes = writer.finalize()
|
1110 |
+
writer.close()
|
1111 |
+
shard_lengths.append(num_examples)
|
1112 |
+
total_num_examples += num_examples
|
1113 |
+
total_num_bytes += num_bytes
|
1114 |
+
shard_id += 1
|
1115 |
+
writer = writer_class(
|
1116 |
+
features=writer._features,
|
1117 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1118 |
+
writer_batch_size=self._writer_batch_size,
|
1119 |
+
storage_options=self._fs.storage_options,
|
1120 |
+
embed_local_files=embed_local_files,
|
1121 |
+
)
|
1122 |
+
try:
|
1123 |
+
> writer.write_table(table)
|
1124 |
+
|
1125 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
1126 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1127 |
+
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
1128 |
+
self.pa_writer.write_table(pa_table, writer_batch_size)
|
1129 |
+
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
1130 |
+
???
|
1131 |
+
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
1132 |
+
???
|
1133 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1134 |
+
|
1135 |
+
self = <fsspec.implementations.local.LocalFileOpener object at 0x113e85810>
|
1136 |
+
args = (<pyarrow.Buffer address=0x5e3c8020000 size=95688808 is_cpu=True is_mutable=True>,)
|
1137 |
+
kwargs = {}
|
1138 |
+
|
1139 |
+
def write(self, *args, **kwargs):
|
1140 |
+
> return self.f.write(*args, **kwargs)
|
1141 |
+
E OSError: [Errno 28] No space left on device
|
1142 |
+
|
1143 |
+
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
1144 |
+
|
1145 |
+
The above exception was the direct cause of the following exception:
|
1146 |
+
|
1147 |
+
dataset_name = 'hest'
|
1148 |
+
|
1149 |
+
@pytest.mark.parametrize("dataset_name", DATASET_NAMES)
|
1150 |
+
# @pytest.mark.skip("This tests currently fails")
|
1151 |
+
def test_no_one_word_documents(dataset_name: str):
|
1152 |
+
> ds = load_dataset(str(repo_path.resolve()), dataset_name, split="train")
|
1153 |
+
|
1154 |
+
src/tests/test_quality/test_short_texts.py:14:
|
1155 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1156 |
+
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
1157 |
+
builder_instance.download_and_prepare(
|
1158 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
1159 |
+
self._download_and_prepare(
|
1160 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
1161 |
+
self._prepare_split(split_generator, **prepare_split_kwargs)
|
1162 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
1163 |
+
for job_id, done, content in self._prepare_split_single(
|
1164 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1165 |
+
|
1166 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x118b3f1a0>
|
1167 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/hest/hest.parquet))}
|
1168 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/hest/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1169 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1170 |
+
|
1171 |
+
def _prepare_split_single(
|
1172 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1173 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1174 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1175 |
+
generator = self._generate_tables(**gen_kwargs)
|
1176 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1177 |
+
embed_local_files = file_format == "parquet"
|
1178 |
+
shard_lengths = []
|
1179 |
+
total_num_examples, total_num_bytes = 0, 0
|
1180 |
+
|
1181 |
+
shard_id = 0
|
1182 |
+
num_examples_progress_update = 0
|
1183 |
+
try:
|
1184 |
+
writer = writer_class(
|
1185 |
+
features=self.info.features,
|
1186 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1187 |
+
writer_batch_size=self._writer_batch_size,
|
1188 |
+
storage_options=self._fs.storage_options,
|
1189 |
+
embed_local_files=embed_local_files,
|
1190 |
+
)
|
1191 |
+
try:
|
1192 |
+
_time = time.time()
|
1193 |
+
for _, table in generator:
|
1194 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1195 |
+
num_examples, num_bytes = writer.finalize()
|
1196 |
+
writer.close()
|
1197 |
+
shard_lengths.append(num_examples)
|
1198 |
+
total_num_examples += num_examples
|
1199 |
+
total_num_bytes += num_bytes
|
1200 |
+
shard_id += 1
|
1201 |
+
writer = writer_class(
|
1202 |
+
features=writer._features,
|
1203 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1204 |
+
writer_batch_size=self._writer_batch_size,
|
1205 |
+
storage_options=self._fs.storage_options,
|
1206 |
+
embed_local_files=embed_local_files,
|
1207 |
+
)
|
1208 |
+
try:
|
1209 |
+
writer.write_table(table)
|
1210 |
+
except CastError as cast_error:
|
1211 |
+
raise DatasetGenerationCastError.from_cast_error(
|
1212 |
+
cast_error=cast_error,
|
1213 |
+
builder_name=self.info.builder_name,
|
1214 |
+
gen_kwargs=gen_kwargs,
|
1215 |
+
token=self.token,
|
1216 |
+
)
|
1217 |
+
num_examples_progress_update += len(table)
|
1218 |
+
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
1219 |
+
_time = time.time()
|
1220 |
+
yield job_id, False, num_examples_progress_update
|
1221 |
+
num_examples_progress_update = 0
|
1222 |
+
finally:
|
1223 |
+
yield job_id, False, num_examples_progress_update
|
1224 |
+
num_shards = shard_id + 1
|
1225 |
+
num_examples, num_bytes = writer.finalize()
|
1226 |
+
writer.close()
|
1227 |
+
shard_lengths.append(num_examples)
|
1228 |
+
total_num_examples += num_examples
|
1229 |
+
total_num_bytes += num_bytes
|
1230 |
+
except Exception as e:
|
1231 |
+
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
1232 |
+
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
1233 |
+
e = e.__context__
|
1234 |
+
if isinstance(e, DatasetGenerationError):
|
1235 |
+
raise
|
1236 |
+
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
1237 |
+
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
1238 |
+
|
1239 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
1240 |
+
----------------------------- Captured stderr call -----------------------------
|
1241 |
+
|
1242 |
+
__________________________ test_ensure_ids_are_unique __________________________
|
1243 |
+
|
1244 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x113ec1970>
|
1245 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/cellar/cellar.parquet))}
|
1246 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/default/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1247 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1248 |
+
|
1249 |
+
def _prepare_split_single(
|
1250 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1251 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1252 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1253 |
+
generator = self._generate_tables(**gen_kwargs)
|
1254 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1255 |
+
embed_local_files = file_format == "parquet"
|
1256 |
+
shard_lengths = []
|
1257 |
+
total_num_examples, total_num_bytes = 0, 0
|
1258 |
+
|
1259 |
+
shard_id = 0
|
1260 |
+
num_examples_progress_update = 0
|
1261 |
+
try:
|
1262 |
+
writer = writer_class(
|
1263 |
+
features=self.info.features,
|
1264 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1265 |
+
writer_batch_size=self._writer_batch_size,
|
1266 |
+
storage_options=self._fs.storage_options,
|
1267 |
+
embed_local_files=embed_local_files,
|
1268 |
+
)
|
1269 |
+
try:
|
1270 |
+
_time = time.time()
|
1271 |
+
for _, table in generator:
|
1272 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1273 |
+
num_examples, num_bytes = writer.finalize()
|
1274 |
+
writer.close()
|
1275 |
+
shard_lengths.append(num_examples)
|
1276 |
+
total_num_examples += num_examples
|
1277 |
+
total_num_bytes += num_bytes
|
1278 |
+
shard_id += 1
|
1279 |
+
writer = writer_class(
|
1280 |
+
features=writer._features,
|
1281 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1282 |
+
writer_batch_size=self._writer_batch_size,
|
1283 |
+
storage_options=self._fs.storage_options,
|
1284 |
+
embed_local_files=embed_local_files,
|
1285 |
+
)
|
1286 |
+
try:
|
1287 |
+
> writer.write_table(table)
|
1288 |
+
|
1289 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1870:
|
1290 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1291 |
+
.venv/lib/python3.12/site-packages/datasets/arrow_writer.py:627: in write_table
|
1292 |
+
self.pa_writer.write_table(pa_table, writer_batch_size)
|
1293 |
+
pyarrow/ipc.pxi:529: in pyarrow.lib._CRecordBatchWriter.write_table
|
1294 |
+
???
|
1295 |
+
pyarrow/error.pxi:89: in pyarrow.lib.check_status
|
1296 |
+
???
|
1297 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1298 |
+
|
1299 |
+
self = <fsspec.implementations.local.LocalFileOpener object at 0x113aaffd0>
|
1300 |
+
args = (<pyarrow.Buffer address=0x5e500020000 size=81139164 is_cpu=True is_mutable=True>,)
|
1301 |
+
kwargs = {}
|
1302 |
+
|
1303 |
+
def write(self, *args, **kwargs):
|
1304 |
+
> return self.f.write(*args, **kwargs)
|
1305 |
+
E OSError: [Errno 28] No space left on device
|
1306 |
+
|
1307 |
+
.venv/lib/python3.12/site-packages/fsspec/implementations/local.py:426: OSError
|
1308 |
+
|
1309 |
+
The above exception was the direct cause of the following exception:
|
1310 |
+
|
1311 |
+
def test_ensure_ids_are_unique():
|
1312 |
+
name = str(repo_path.resolve())
|
1313 |
+
> ds = load_dataset(name, split="train")
|
1314 |
+
|
1315 |
+
src/tests/test_unique_ids.py:11:
|
1316 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1317 |
+
.venv/lib/python3.12/site-packages/datasets/load.py:2151: in load_dataset
|
1318 |
+
builder_instance.download_and_prepare(
|
1319 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:924: in download_and_prepare
|
1320 |
+
self._download_and_prepare(
|
1321 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1000: in _download_and_prepare
|
1322 |
+
self._prepare_split(split_generator, **prepare_split_kwargs)
|
1323 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1741: in _prepare_split
|
1324 |
+
for job_id, done, content in self._prepare_split_single(
|
1325 |
+
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
1326 |
+
|
1327 |
+
self = <datasets.packaged_modules.parquet.parquet.ParquetDanish-dynaword object at 0x113ec1970>
|
1328 |
+
gen_kwargs = {'files': tracked_list(current=FilesIterable(current=/Users/au561649/Github/danish-dynaword/data/cellar/cellar.parquet))}
|
1329 |
+
fpath = '/Users/au561649/.cache/huggingface/datasets/danish-dynaword/default/0.0.0/5055500453bef830.incomplete/danish-dynaword-train-JJJJJ-SSSSS-of-NNNNN.arrow'
|
1330 |
+
file_format = 'arrow', max_shard_size = 500000000, job_id = 0
|
1331 |
+
|
1332 |
+
def _prepare_split_single(
|
1333 |
+
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
|
1334 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
1335 |
+
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
|
1336 |
+
generator = self._generate_tables(**gen_kwargs)
|
1337 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
1338 |
+
embed_local_files = file_format == "parquet"
|
1339 |
+
shard_lengths = []
|
1340 |
+
total_num_examples, total_num_bytes = 0, 0
|
1341 |
+
|
1342 |
+
shard_id = 0
|
1343 |
+
num_examples_progress_update = 0
|
1344 |
+
try:
|
1345 |
+
writer = writer_class(
|
1346 |
+
features=self.info.features,
|
1347 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1348 |
+
writer_batch_size=self._writer_batch_size,
|
1349 |
+
storage_options=self._fs.storage_options,
|
1350 |
+
embed_local_files=embed_local_files,
|
1351 |
+
)
|
1352 |
+
try:
|
1353 |
+
_time = time.time()
|
1354 |
+
for _, table in generator:
|
1355 |
+
if max_shard_size is not None and writer._num_bytes > max_shard_size:
|
1356 |
+
num_examples, num_bytes = writer.finalize()
|
1357 |
+
writer.close()
|
1358 |
+
shard_lengths.append(num_examples)
|
1359 |
+
total_num_examples += num_examples
|
1360 |
+
total_num_bytes += num_bytes
|
1361 |
+
shard_id += 1
|
1362 |
+
writer = writer_class(
|
1363 |
+
features=writer._features,
|
1364 |
+
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
|
1365 |
+
writer_batch_size=self._writer_batch_size,
|
1366 |
+
storage_options=self._fs.storage_options,
|
1367 |
+
embed_local_files=embed_local_files,
|
1368 |
+
)
|
1369 |
+
try:
|
1370 |
+
writer.write_table(table)
|
1371 |
+
except CastError as cast_error:
|
1372 |
+
raise DatasetGenerationCastError.from_cast_error(
|
1373 |
+
cast_error=cast_error,
|
1374 |
+
builder_name=self.info.builder_name,
|
1375 |
+
gen_kwargs=gen_kwargs,
|
1376 |
+
token=self.token,
|
1377 |
+
)
|
1378 |
+
num_examples_progress_update += len(table)
|
1379 |
+
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
|
1380 |
+
_time = time.time()
|
1381 |
+
yield job_id, False, num_examples_progress_update
|
1382 |
+
num_examples_progress_update = 0
|
1383 |
+
finally:
|
1384 |
+
yield job_id, False, num_examples_progress_update
|
1385 |
+
num_shards = shard_id + 1
|
1386 |
+
num_examples, num_bytes = writer.finalize()
|
1387 |
+
writer.close()
|
1388 |
+
shard_lengths.append(num_examples)
|
1389 |
+
total_num_examples += num_examples
|
1390 |
+
total_num_bytes += num_bytes
|
1391 |
+
except Exception as e:
|
1392 |
+
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
|
1393 |
+
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
|
1394 |
+
e = e.__context__
|
1395 |
+
if isinstance(e, DatasetGenerationError):
|
1396 |
+
raise
|
1397 |
+
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
|
1398 |
+
E datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
|
1399 |
+
|
1400 |
+
.venv/lib/python3.12/site-packages/datasets/builder.py:1897: DatasetGenerationError
|
1401 |
+
----------------------------- Captured stderr call -----------------------------
|
1402 |
+
|
1403 |
+
|
1404 |
=============================== warnings summary ===============================
|
1405 |
+
src/tests/test_quality/test_short_texts.py: 33 warnings
|
1406 |
+
/Users/au561649/Github/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
|
1407 |
|
1408 |
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
|
1409 |
+
=========================== short test summary info ============================
|
1410 |
+
FAILED src/tests/test_quality/test_duplicates.py::test_no_within_data_duplicates[ep]
|
1411 |
+
FAILED src/tests/test_quality/test_duplicates.py::test_no_within_data_duplicates[ft]
|
1412 |
+
FAILED src/tests/test_quality/test_duplicates.py::test_no_within_data_duplicates[tv2r]
|
1413 |
+
FAILED src/tests/test_quality/test_duplicates.py::test_no_within_data_duplicates[hest]
|
1414 |
+
FAILED src/tests/test_quality/test_short_texts.py::test_no_one_word_documents[ep]
|
1415 |
+
FAILED src/tests/test_quality/test_short_texts.py::test_no_one_word_documents[ft]
|
1416 |
+
FAILED src/tests/test_quality/test_short_texts.py::test_no_one_word_documents[hest]
|
1417 |
+
FAILED src/tests/test_unique_ids.py::test_ensure_ids_are_unique - datasets.ex...
|
1418 |
+
====== 8 failed, 319 passed, 1 skipped, 33 warnings in 365.20s (0:06:05) =======
|