Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
1M - 10M
License:
Fixing minor things after reviews
Browse files- README.md +1 -1
- data/scrape_hovedstaden/descriptive_stats.json +1 -1
- data/scrape_hovedstaden/scrape_hovedstaden.md +13 -21
- descriptive_stats.json +1 -1
- images/domain_distribution.png +2 -2
- src/dynaword/typings.py +1 -0
- test_results.log +13 -14
README.md
CHANGED
@@ -336,7 +336,7 @@ Below follows a brief overview of the sources in the corpus along with their ind
|
|
336 |
| [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M | [CC-0] |
|
337 |
| [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M | [CC-BY-SA 4.0] |
|
338 |
| [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M | [NLOD 2.0] |
|
339 |
-
| [scrape_hovedstaden] |
|
340 |
| [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M | [CC-BY-SA 4.0] |
|
341 |
| [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.23M | [CC-0] |
|
342 |
| [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M | [CC-0] |
|
|
|
336 |
| [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M | [CC-0] |
|
337 |
| [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M | [CC-BY-SA 4.0] |
|
338 |
| [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M | [NLOD 2.0] |
|
339 |
+
| [scrape_hovedstaden] | Guidelines and informational documents for healthcare professionals from the Capital Region | Medical | 27.07M | [CC-0] |
|
340 |
| [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M | [CC-BY-SA 4.0] |
|
341 |
| [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.23M | [CC-0] |
|
342 |
| [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M | [CC-0] |
|
data/scrape_hovedstaden/descriptive_stats.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"number_of_samples": 23996,
|
3 |
"average_document_length": 3329.0515919319887,
|
4 |
"number_of_tokens": 27066716,
|
5 |
-
"revision": "
|
6 |
}
|
|
|
2 |
"number_of_samples": 23996,
|
3 |
"average_document_length": 3329.0515919319887,
|
4 |
"number_of_tokens": 27066716,
|
5 |
+
"revision": "78cc135f92c8c12ee8ba131d1a03befc5c78477d"
|
6 |
}
|
data/scrape_hovedstaden/scrape_hovedstaden.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
pretty_name: "
|
3 |
language:
|
4 |
- da
|
5 |
license: cc0-1.0
|
@@ -12,25 +12,22 @@ task_ids:
|
|
12 |
source_datasets:
|
13 |
- Den-Intelligente-Patientjournal/region_hovedstaden_text
|
14 |
domains:
|
|
|
15 |
- Encyclopedic
|
16 |
---
|
17 |
|
18 |
-
# Dataset Card for
|
19 |
|
20 |
<!-- START-SHORT DESCRIPTION -->
|
21 |
-
|
22 |
<!-- END-SHORT DESCRIPTION -->
|
23 |
|
24 |
The document collection consists of guidelines and informational documents for healthcare professionals in the Capital Region of Denmark. The documents therefore contain a number of specialized terms and concepts that are frequently used within the healthcare sector.
|
25 |
|
26 |
-
The corpus contains 9,941,236 tokens (word separation by spaces) extracted from 15,829 documents and 8,923 tables.
|
27 |
-
|
28 |
The corpus was created based on the texts in the document collection and has been post-processed so that the texts can be used for the development of language technology.
|
29 |
|
30 |
Martin Sundahl Laursen and Thiusius R. Savarimuthu from the University of Southern Denmark have assisted the Danish Agency for Digital Government with the post-processing of the data. Read their joint paper on "Automatic Annotation of Training Data for Deep Learning Based De-identification of Narrative Clinical Text."
|
31 |
|
32 |
-
Please note that the corpus has been developed for the purpose of language technology development and should not be used as a source of healthcare information. The documents were scraped at a specific time and will therefore not be updated with changes. In this regard, please refer to the Capital Region of Denmark's document collection.
|
33 |
-
|
34 |
|
35 |
|
36 |
|
@@ -38,7 +35,7 @@ Please note that the corpus has been developed for the purpose of language techn
|
|
38 |
|
39 |
<!-- START-DESC-STATS -->
|
40 |
- **Language**: dan, dansk, Danish
|
41 |
-
- **Domains**: Encyclopedic
|
42 |
- **Number of samples**: 24.00K
|
43 |
- **Number of tokens (Llama 3)**: 27.07M
|
44 |
- **Average document length (characters)**: 3329.05
|
@@ -76,6 +73,12 @@ An entry in the dataset consists of the following fields:
|
|
76 |
### Additional Processing
|
77 |
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
### Dataset Statistics
|
80 |
|
81 |
<!-- START-DATASET PLOTS -->
|
@@ -88,19 +91,8 @@ An entry in the dataset consists of the following fields:
|
|
88 |
# Additional Information
|
89 |
|
90 |
## License Information
|
91 |
-
|
92 |
|
93 |
### Citation Information
|
94 |
|
95 |
-
If you are using the data please reference the following paper
|
96 |
-
|
97 |
-
```
|
98 |
-
@inproceedings{laursen2023automatic,
|
99 |
-
title={Automatic Annotation of Training Data for Deep Learning Based De-identification of Narrative Clinical Text},
|
100 |
-
author={Laursen, Martin Sundahl and Pedersen, Jannik Skyttegaard and Vinholt, Pernille and Savarimuthu, Thiusius R},
|
101 |
-
booktitle={The First Workshop on Context-aware NLP in eHealth:(WNLPe-Health 2022)},
|
102 |
-
pages={30--44},
|
103 |
-
year={2023},
|
104 |
-
organization={CEUR Workshop Proceedings}
|
105 |
-
}
|
106 |
-
```
|
|
|
1 |
---
|
2 |
+
pretty_name: "Health Hovedstaden"
|
3 |
language:
|
4 |
- da
|
5 |
license: cc0-1.0
|
|
|
12 |
source_datasets:
|
13 |
- Den-Intelligente-Patientjournal/region_hovedstaden_text
|
14 |
domains:
|
15 |
+
- Medical
|
16 |
- Encyclopedic
|
17 |
---
|
18 |
|
19 |
+
# Dataset Card for Health Hovedstaden
|
20 |
|
21 |
<!-- START-SHORT DESCRIPTION -->
|
22 |
+
Guidelines and informational documents for healthcare professionals from the Capital Region
|
23 |
<!-- END-SHORT DESCRIPTION -->
|
24 |
|
25 |
The document collection consists of guidelines and informational documents for healthcare professionals in the Capital Region of Denmark. The documents therefore contain a number of specialized terms and concepts that are frequently used within the healthcare sector.
|
26 |
|
|
|
|
|
27 |
The corpus was created based on the texts in the document collection and has been post-processed so that the texts can be used for the development of language technology.
|
28 |
|
29 |
Martin Sundahl Laursen and Thiusius R. Savarimuthu from the University of Southern Denmark have assisted the Danish Agency for Digital Government with the post-processing of the data. Read their joint paper on "Automatic Annotation of Training Data for Deep Learning Based De-identification of Narrative Clinical Text."
|
30 |
|
|
|
|
|
31 |
|
32 |
|
33 |
|
|
|
35 |
|
36 |
<!-- START-DESC-STATS -->
|
37 |
- **Language**: dan, dansk, Danish
|
38 |
+
- **Domains**: Medical, Encyclopedic
|
39 |
- **Number of samples**: 24.00K
|
40 |
- **Number of tokens (Llama 3)**: 27.07M
|
41 |
- **Average document length (characters)**: 3329.05
|
|
|
73 |
### Additional Processing
|
74 |
|
75 |
|
76 |
+
|
77 |
+
### Unintended Uses
|
78 |
+
|
79 |
+
Please note that the corpus has been developed for the purpose of language technology development and should not be used as a source of healthcare information. The documents were scraped at a specific time and will therefore not be updated with changes. In this regard, please refer to the Capital Region of Denmark's document collection.
|
80 |
+
|
81 |
+
|
82 |
### Dataset Statistics
|
83 |
|
84 |
<!-- START-DATASET PLOTS -->
|
|
|
91 |
# Additional Information
|
92 |
|
93 |
## License Information
|
94 |
+
The dataset have been released under a CC-0 license.
|
95 |
|
96 |
### Citation Information
|
97 |
|
98 |
+
If you are using the data please reference the following paper [Automatic Annotation of Training Data for Deep Learning Based De-identification of Narrative Clinical Text](https://ceur-ws.org/Vol-3416/paper_5.pdf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
descriptive_stats.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"number_of_samples": 915090,
|
3 |
"average_document_length": 14778.0072255188,
|
4 |
"number_of_tokens": 4396075044,
|
5 |
-
"revision": "
|
6 |
}
|
|
|
2 |
"number_of_samples": 915090,
|
3 |
"average_document_length": 14778.0072255188,
|
4 |
"number_of_tokens": 4396075044,
|
5 |
+
"revision": "78cc135f92c8c12ee8ba131d1a03befc5c78477d"
|
6 |
}
|
images/domain_distribution.png
CHANGED
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
src/dynaword/typings.py
CHANGED
@@ -6,6 +6,7 @@ DOMAIN = Literal[
|
|
6 |
"Dialect",
|
7 |
"Encyclopedic",
|
8 |
"Legal",
|
|
|
9 |
"News",
|
10 |
"Other",
|
11 |
"Readaloud",
|
|
|
6 |
"Dialect",
|
7 |
"Encyclopedic",
|
8 |
"Legal",
|
9 |
+
"Medical",
|
10 |
"News",
|
11 |
"Other",
|
12 |
"Readaloud",
|
test_results.log
CHANGED
@@ -1,25 +1,24 @@
|
|
1 |
============================= test session starts ==============================
|
2 |
-
platform darwin -- Python 3.12.
|
3 |
-
rootdir: /Users/
|
4 |
configfile: pyproject.toml
|
5 |
-
|
6 |
-
collected 310 items
|
7 |
|
8 |
src/tests/test_dataset_schema.py ....................................... [ 12%]
|
9 |
-
|
10 |
src/tests/test_datasheets.py ........................................... [ 35%]
|
11 |
-
........................................................................ [
|
12 |
-
|
13 |
src/tests/test_load.py .. [ 77%]
|
14 |
-
src/tests/test_quality/test_duplicates.py .............................. [
|
15 |
-
|
16 |
-
src/tests/test_quality/test_short_texts.py ............................. [
|
17 |
-
|
18 |
src/tests/test_unique_ids.py . [100%]
|
19 |
|
20 |
=============================== warnings summary ===============================
|
21 |
-
src/tests/test_quality/test_short_texts.py:
|
22 |
-
/Users/
|
23 |
|
24 |
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
|
25 |
-
|
|
|
1 |
============================= test session starts ==============================
|
2 |
+
platform darwin -- Python 3.12.9, pytest-8.3.4, pluggy-1.5.0
|
3 |
+
rootdir: /Users/kristianjensen/Documents/danish-dynaword
|
4 |
configfile: pyproject.toml
|
5 |
+
collected 319 items
|
|
|
6 |
|
7 |
src/tests/test_dataset_schema.py ....................................... [ 12%]
|
8 |
+
............................... [ 21%]
|
9 |
src/tests/test_datasheets.py ........................................... [ 35%]
|
10 |
+
........................................................................ [ 57%]
|
11 |
+
............................................................ [ 76%]
|
12 |
src/tests/test_load.py .. [ 77%]
|
13 |
+
src/tests/test_quality/test_duplicates.py .............................. [ 86%]
|
14 |
+
.....s [ 88%]
|
15 |
+
src/tests/test_quality/test_short_texts.py ............................. [ 97%]
|
16 |
+
...... [ 99%]
|
17 |
src/tests/test_unique_ids.py . [100%]
|
18 |
|
19 |
=============================== warnings summary ===============================
|
20 |
+
src/tests/test_quality/test_short_texts.py: 35 warnings
|
21 |
+
/Users/kristianjensen/Documents/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
|
22 |
|
23 |
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
|
24 |
+
================= 318 passed, 1 skipped, 35 warnings in 28.20s =================
|