kris927b commited on
Commit
23d4959
·
1 Parent(s): 78cc135

Fixing minor things after reviews

Browse files
README.md CHANGED
@@ -336,7 +336,7 @@ Below follows a brief overview of the sources in the corpus along with their ind
336
  | [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M | [CC-0] |
337
  | [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M | [CC-BY-SA 4.0] |
338
  | [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M | [NLOD 2.0] |
339
- | [scrape_hovedstaden] | A document collection containing guidelines and informational documents for healthcare professionals | Encyclopedic | 27.07M | [CC-0] |
340
  | [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M | [CC-BY-SA 4.0] |
341
  | [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.23M | [CC-0] |
342
  | [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M | [CC-0] |
 
336
  | [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M | [CC-0] |
337
  | [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M | [CC-BY-SA 4.0] |
338
  | [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M | [NLOD 2.0] |
339
+ | [scrape_hovedstaden] | Guidelines and informational documents for healthcare professionals from the Capital Region | Medical | 27.07M | [CC-0] |
340
  | [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M | [CC-BY-SA 4.0] |
341
  | [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.23M | [CC-0] |
342
  | [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M | [CC-0] |
data/scrape_hovedstaden/descriptive_stats.json CHANGED
@@ -2,5 +2,5 @@
2
  "number_of_samples": 23996,
3
  "average_document_length": 3329.0515919319887,
4
  "number_of_tokens": 27066716,
5
- "revision": "16931a4cca4569bf00335846bc85c549ea59a82a"
6
  }
 
2
  "number_of_samples": 23996,
3
  "average_document_length": 3329.0515919319887,
4
  "number_of_tokens": 27066716,
5
+ "revision": "78cc135f92c8c12ee8ba131d1a03befc5c78477d"
6
  }
data/scrape_hovedstaden/scrape_hovedstaden.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- pretty_name: "Scrape fra dokumentsamling p\xE5 Vip Region Hovedstaden"
3
  language:
4
  - da
5
  license: cc0-1.0
@@ -12,25 +12,22 @@ task_ids:
12
  source_datasets:
13
  - Den-Intelligente-Patientjournal/region_hovedstaden_text
14
  domains:
 
15
  - Encyclopedic
16
  ---
17
 
18
- # Dataset Card for Scrape fra dokumentsamling på Vip Region Hovedstaden
19
 
20
  <!-- START-SHORT DESCRIPTION -->
21
- A document collection containing guidelines and informational documents for healthcare professionals.
22
  <!-- END-SHORT DESCRIPTION -->
23
 
24
  The document collection consists of guidelines and informational documents for healthcare professionals in the Capital Region of Denmark. The documents therefore contain a number of specialized terms and concepts that are frequently used within the healthcare sector.
25
 
26
- The corpus contains 9,941,236 tokens (word separation by spaces) extracted from 15,829 documents and 8,923 tables.
27
-
28
  The corpus was created based on the texts in the document collection and has been post-processed so that the texts can be used for the development of language technology.
29
 
30
  Martin Sundahl Laursen and Thiusius R. Savarimuthu from the University of Southern Denmark have assisted the Danish Agency for Digital Government with the post-processing of the data. Read their joint paper on "Automatic Annotation of Training Data for Deep Learning Based De-identification of Narrative Clinical Text."
31
 
32
- Please note that the corpus has been developed for the purpose of language technology development and should not be used as a source of healthcare information. The documents were scraped at a specific time and will therefore not be updated with changes. In this regard, please refer to the Capital Region of Denmark's document collection.
33
-
34
 
35
 
36
 
@@ -38,7 +35,7 @@ Please note that the corpus has been developed for the purpose of language techn
38
 
39
  <!-- START-DESC-STATS -->
40
  - **Language**: dan, dansk, Danish
41
- - **Domains**: Encyclopedic
42
  - **Number of samples**: 24.00K
43
  - **Number of tokens (Llama 3)**: 27.07M
44
  - **Average document length (characters)**: 3329.05
@@ -76,6 +73,12 @@ An entry in the dataset consists of the following fields:
76
  ### Additional Processing
77
 
78
 
 
 
 
 
 
 
79
  ### Dataset Statistics
80
 
81
  <!-- START-DATASET PLOTS -->
@@ -88,19 +91,8 @@ An entry in the dataset consists of the following fields:
88
  # Additional Information
89
 
90
  ## License Information
91
- Udgivet under en CC-0 licens.
92
 
93
  ### Citation Information
94
 
95
- If you are using the data please reference the following paper:
96
-
97
- ```
98
- @inproceedings{laursen2023automatic,
99
- title={Automatic Annotation of Training Data for Deep Learning Based De-identification of Narrative Clinical Text},
100
- author={Laursen, Martin Sundahl and Pedersen, Jannik Skyttegaard and Vinholt, Pernille and Savarimuthu, Thiusius R},
101
- booktitle={The First Workshop on Context-aware NLP in eHealth:(WNLPe-Health 2022)},
102
- pages={30--44},
103
- year={2023},
104
- organization={CEUR Workshop Proceedings}
105
- }
106
- ```
 
1
  ---
2
+ pretty_name: "Health Hovedstaden"
3
  language:
4
  - da
5
  license: cc0-1.0
 
12
  source_datasets:
13
  - Den-Intelligente-Patientjournal/region_hovedstaden_text
14
  domains:
15
+ - Medical
16
  - Encyclopedic
17
  ---
18
 
19
+ # Dataset Card for Health Hovedstaden
20
 
21
  <!-- START-SHORT DESCRIPTION -->
22
+ Guidelines and informational documents for healthcare professionals from the Capital Region
23
  <!-- END-SHORT DESCRIPTION -->
24
 
25
  The document collection consists of guidelines and informational documents for healthcare professionals in the Capital Region of Denmark. The documents therefore contain a number of specialized terms and concepts that are frequently used within the healthcare sector.
26
 
 
 
27
  The corpus was created based on the texts in the document collection and has been post-processed so that the texts can be used for the development of language technology.
28
 
29
  Martin Sundahl Laursen and Thiusius R. Savarimuthu from the University of Southern Denmark have assisted the Danish Agency for Digital Government with the post-processing of the data. Read their joint paper on "Automatic Annotation of Training Data for Deep Learning Based De-identification of Narrative Clinical Text."
30
 
 
 
31
 
32
 
33
 
 
35
 
36
  <!-- START-DESC-STATS -->
37
  - **Language**: dan, dansk, Danish
38
+ - **Domains**: Medical, Encyclopedic
39
  - **Number of samples**: 24.00K
40
  - **Number of tokens (Llama 3)**: 27.07M
41
  - **Average document length (characters)**: 3329.05
 
73
  ### Additional Processing
74
 
75
 
76
+
77
+ ### Unintended Uses
78
+
79
+ Please note that the corpus has been developed for the purpose of language technology development and should not be used as a source of healthcare information. The documents were scraped at a specific time and will therefore not be updated with changes. In this regard, please refer to the Capital Region of Denmark's document collection.
80
+
81
+
82
  ### Dataset Statistics
83
 
84
  <!-- START-DATASET PLOTS -->
 
91
  # Additional Information
92
 
93
  ## License Information
94
+ The dataset have been released under a CC-0 license.
95
 
96
  ### Citation Information
97
 
98
+ If you are using the data please reference the following paper [Automatic Annotation of Training Data for Deep Learning Based De-identification of Narrative Clinical Text](https://ceur-ws.org/Vol-3416/paper_5.pdf)
 
 
 
 
 
 
 
 
 
 
 
descriptive_stats.json CHANGED
@@ -2,5 +2,5 @@
2
  "number_of_samples": 915090,
3
  "average_document_length": 14778.0072255188,
4
  "number_of_tokens": 4396075044,
5
- "revision": "16931a4cca4569bf00335846bc85c549ea59a82a"
6
  }
 
2
  "number_of_samples": 915090,
3
  "average_document_length": 14778.0072255188,
4
  "number_of_tokens": 4396075044,
5
+ "revision": "78cc135f92c8c12ee8ba131d1a03befc5c78477d"
6
  }
images/domain_distribution.png CHANGED

Git LFS Details

  • SHA256: e1b71e7b3d94d18004ff5e5c16033f07c35dcdb66fd1cbf36890d490da4e6b79
  • Pointer size: 131 Bytes
  • Size of remote file: 345 kB

Git LFS Details

  • SHA256: 4b5121568e2cff7370a4092d017e0c8c15169f9cddec018c35121f088ca4d318
  • Pointer size: 131 Bytes
  • Size of remote file: 345 kB
src/dynaword/typings.py CHANGED
@@ -6,6 +6,7 @@ DOMAIN = Literal[
6
  "Dialect",
7
  "Encyclopedic",
8
  "Legal",
 
9
  "News",
10
  "Other",
11
  "Readaloud",
 
6
  "Dialect",
7
  "Encyclopedic",
8
  "Legal",
9
+ "Medical",
10
  "News",
11
  "Other",
12
  "Readaloud",
test_results.log CHANGED
@@ -1,25 +1,24 @@
1
  ============================= test session starts ==============================
2
- platform darwin -- Python 3.12.0, pytest-8.3.4, pluggy-1.5.0
3
- rootdir: /Users/au561649/Github/danish-dynaword
4
  configfile: pyproject.toml
5
- plugins: anyio-4.9.0
6
- collected 310 items
7
 
8
  src/tests/test_dataset_schema.py ....................................... [ 12%]
9
- ............................. [ 21%]
10
  src/tests/test_datasheets.py ........................................... [ 35%]
11
- ........................................................................ [ 59%]
12
- ....................................................... [ 76%]
13
  src/tests/test_load.py .. [ 77%]
14
- src/tests/test_quality/test_duplicates.py .............................. [ 87%]
15
- ....s [ 88%]
16
- src/tests/test_quality/test_short_texts.py ............................. [ 98%]
17
- ..... [ 99%]
18
  src/tests/test_unique_ids.py . [100%]
19
 
20
  =============================== warnings summary ===============================
21
- src/tests/test_quality/test_short_texts.py: 34 warnings
22
- /Users/au561649/Github/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
23
 
24
  -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
25
- ============ 309 passed, 1 skipped, 34 warnings in 77.84s (0:01:17) ============
 
1
  ============================= test session starts ==============================
2
+ platform darwin -- Python 3.12.9, pytest-8.3.4, pluggy-1.5.0
3
+ rootdir: /Users/kristianjensen/Documents/danish-dynaword
4
  configfile: pyproject.toml
5
+ collected 319 items
 
6
 
7
  src/tests/test_dataset_schema.py ....................................... [ 12%]
8
+ ............................... [ 21%]
9
  src/tests/test_datasheets.py ........................................... [ 35%]
10
+ ........................................................................ [ 57%]
11
+ ............................................................ [ 76%]
12
  src/tests/test_load.py .. [ 77%]
13
+ src/tests/test_quality/test_duplicates.py .............................. [ 86%]
14
+ .....s [ 88%]
15
+ src/tests/test_quality/test_short_texts.py ............................. [ 97%]
16
+ ...... [ 99%]
17
  src/tests/test_unique_ids.py . [100%]
18
 
19
  =============================== warnings summary ===============================
20
+ src/tests/test_quality/test_short_texts.py: 35 warnings
21
+ /Users/kristianjensen/Documents/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
22
 
23
  -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
24
+ ================= 318 passed, 1 skipped, 35 warnings in 28.20s =================