|
--- |
|
dataset_info: |
|
features: |
|
- name: repo |
|
dtype: string |
|
- name: instance_id |
|
dtype: string |
|
- name: base_commit |
|
dtype: string |
|
- name: patch |
|
dtype: string |
|
- name: test_patch |
|
dtype: string |
|
- name: problem_statement |
|
dtype: string |
|
- name: hints_text |
|
dtype: string |
|
- name: created_at |
|
dtype: int64 |
|
- name: labels |
|
sequence: string |
|
- name: category |
|
dtype: string |
|
- name: edit_functions |
|
sequence: string |
|
- name: added_functions |
|
sequence: string |
|
- name: edit_functions_length |
|
dtype: int64 |
|
- name: __index_level_0__ |
|
dtype: int64 |
|
splits: |
|
- name: test |
|
num_bytes: 8489578 |
|
num_examples: 560 |
|
download_size: 3084430 |
|
dataset_size: 8489578 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
# LOC-BENCH: A Benchmark for Code Localization |
|
|
|
LOC-BENCH is a dataset specifically designed to evaluate code localization methods in software repositories. LOC-BENCH provides diverse issues, including bug reports, feature requests, security vulnerabilities, and performance optimizations. |
|
|
|
Code: https://github.com/gersteinlab/LocAgent |
|
|
|
## π Details |
|
[`Loc-Bench_V1`](https://huggingface.co/datasets/czlll/Loc-Bench_V1) is our **official** dataset for comparison with our approach. |
|
|
|
The table below shows the distribution of categories in the dataset. |
|
| category | count | |
|
|:---------|:---------| |
|
| Bug Report | 242 | |
|
| Feature Request | 150 | |
|
| Performance Issue | 139 | |
|
| Security Vulnerability | 29 | |
|
<details> |
|
<summary>Previous Versions</summary> |
|
|
|
- [`Loc-Bench_V0.1`](https://huggingface.co/datasets/czlll/Loc-Bench_V0.1): The dataset used in [the early version of our paper](https://arxiv.org/abs/2503.09089). |
|
Some examples in this dataset do not involve function-level code modifications but instead focus on modifying classes. |
|
V1 filters out 100 examples without function-level code modifications, creating a cleaner subset of the dataset. |
|
- [`Loc-Bench_V0.2`](https://huggingface.co/datasets/czlll/Loc-Bench_V0.2): Filtering out examples that do not involve function-level code modifications and then supplementing the dataset to restore it to the original size of 660 examples. |
|
</details> |
|
|
|
## π§ How to Use |
|
You can easily load LOC-BENCH using Hugging Face's datasets library: |
|
``` |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("czlll/Loc-Bench_V1", split="test") |
|
|
|
``` |
|
|
|
## π Citation |
|
If you use LOC-BENCH in your research, please cite our paper: |
|
``` |
|
@article{chen2025locagent, |
|
title={LocAgent: Graph-Guided LLM Agents for Code Localization}, |
|
author={Chen, Zhaoling and Tang,Xiangru and Deng,Gangda and Wu,Fang and Wu,Jialong and Jiang,Zhiwei and Prasanna,Viktor and Cohan,Arman and Wang,Xingyao}, |
|
journal={arXiv preprint arXiv:2503.09089}, |
|
year={2025} |
|
} |
|
``` |