Datasets:
annotations_creators:
- expert-generated
language_creators:
- found
language:
- pl
license:
- cc-by-nc-sa-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
- multi-class-classification
- multi-label-classification
- sentiment-classification
- sentiment-scoring
- topic-classification
pretty_name: HateSpeechPl
dataset_info:
features:
- name: id
dtype: uint16
- name: text_id
dtype: uint32
- name: annotator_id
dtype: uint8
- name: minority_id
dtype: uint8
- name: negative_emotions
dtype: bool
- name: call_to_action
dtype: bool
- name: source_of_knowledge
dtype: uint8
- name: irony_sarcasm
dtype: bool
- name: topic
dtype: uint8
- name: text
dtype: string
- name: rating
dtype: uint8
splits:
- name: train
num_bytes: 3436182
num_examples: 13887
download_size: 2184056
dataset_size: 3436182
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Dataset Card for HateSpeechPl
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: http://zil.ipipan.waw.pl/HateSpeech
- Repository: [N/A]
- Paper: http://www.qualitativesociologyreview.org/PL/Volume38/PSJ_13_2_Troszynski_Wawer.pdf
- Leaderboard: [N/A]
- Point of Contact: Marek Troszyński, Aleksander Wawer
Dataset Summary
The dataset was created to analyze the possibility of automating the recognition of hate speech in Polish. It was collected from the Polish forums and represents various types and degrees of offensive language, expressed towards minorities.
The original dataset is provided as an export of MySQL tables, what makes it hard to load. Due to that, it was converted to CSV and put to a Github repository.
Supported Tasks and Leaderboards
text-classification
: The dataset might be used to perform the text classification on different target fields, like the presence of irony/sarcasm, minority it describes or a topic.text-scoring
: The sentiment analysis is another task which might be solved on a dataset.
Languages
Polish, collected from public forums, including the HTML formatting of the text.
Dataset Structure
Data Instances
The dataset consists of three collections, originally provided as separate MySQL tables. Here represented as three CSV files.
{
'id': 1,
'text_id': 121713,
'annotator_id': 1,
'minority_id': 72,
'negative_emotions': false,
'call_to_action': false,
'source_of_knowledge': 2,
'irony_sarcasm': false,
'topic': 18,
'text': ' <font color=\"blue\"> Niemiec</font> mówi co innego',
'rating': 0
}
Data Fields
List and describe the fields present in the dataset. Mention their data type, and whether they are used as input or output in any of the tasks the dataset currently supports. If the data has span indices, describe their attributes, such as whether they are at the character level or word level, whether they are contiguous or not, etc. If the datasets contains example IDs, state whether they have an inherent meaning, such as a mapping to other datasets or pointing to relationships between data points.
id
: unique identifier of the entrytext_id
: text identifier, useful when a single text is rated several times by different annotatorsannotator_id
: identifier of the person who annotated the textminority_id
: the internal identifier of the minority described in the textnegative_emotions
: boolean indicator of the presence of negative emotions in the textcall_to_action
: boolean indicator set to true, if the text calls the audience to perform any action, typically with a negative emotionssource_of_knowledge
: categorical variable, describing the source of knowledge for the post rating - 0, 1 or 2 (direct, lexical or contextual, but the description of the meaning for different values couldn't be found)irony_sarcasm
: boolean indicator of the present of irony or sarcasmtopic
: internal identifier of the topic the text is abouttext
: post text contentrating
: integer value, from 0 to 4 - the higher the value, the more negative the text content is
Data Splits
The dataset was not originally split at all.
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
The dataset was collected from the public forums.
[More Information Needed]
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
[More Information Needed]
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
The dataset doesn't contain any personal or sensitive information.
Considerations for Using the Data
Social Impact of Dataset
The automated hate speech recognition is the main beneficial outcome of using the dataset.
Discussion of Biases
The dataset contains negative posts only and due to that might underrepresent the whole language.
Other Known Limitations
Dataset provided for research purposes only. Please check dataset license for additional information.
Additional Information
Dataset Curators
The dataset was created by Marek Troszyński and Aleksander Wawer, during work done at IPI PAN.
Licensing Information
According to Metashare, the dataset is licensed under CC-BY-NC-SA, but the version is not mentioned.
Citation Information
@article{troszynski2017czy,
title={Czy komputer rozpozna hejtera? Wykorzystanie uczenia maszynowego (ML) w jako{\'s}ciowej analizie danych},
author={Troszy{\'n}ski, Marek and Wawer, Aleksander},
journal={Przegl{\k{a}}d Socjologii Jako{\'s}ciowej},
volume={13},
number={2},
pages={62--80},
year={2017},
publisher={Uniwersytet {\L}{\'o}dzki, Wydzia{\l} Ekonomiczno-Socjologiczny, Katedra Socjologii~…}
}
Contributions
Thanks to @kacperlukawski for adding this dataset.