|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to the Bio-Entity Recognition Task at JNLPBA""" |
|
|
|
import glob |
|
import os |
|
import re |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{kim2004introduction, |
|
title={Introduction to the bio-entity recognition task at JNLPBA}, |
|
author={Kim, Jin-Dong and Ohta, Tomoko and Tsuruoka, Yoshimasa and Tateisi, Yuka and Collier, Nigel}, |
|
booktitle={Proceedings of the international joint workshop on natural language processing in biomedicine and its applications}, |
|
pages={70--75}, |
|
year={2004}, |
|
organization={Citeseer} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The data came from the GENIA version 3.02 corpus (Kim et al., 2003). This was formed from a controlled search |
|
on MEDLINE using the MeSH terms human, blood cells and transcription factors. From this search 2,000 abstracts |
|
were selected and hand annotated according to a small taxonomy of 48 classes based on a chemical classification. |
|
Among the classes, 36 terminal classes were used to annotate the GENIA corpus. |
|
""" |
|
|
|
_HOMEPAGE = "http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004" |
|
TRAIN_URL = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Train/Genia4ERtraining.tar.gz" |
|
VAL_URL = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Evaluation/Genia4ERtest.tar.gz" |
|
TEST_URL = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Tool/JNLPBA2004_eval.tar.gz" |
|
|
|
|
|
class JNLPBAConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for JNLPBA""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for JNLPBA. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(JNLPBAConfig, self).__init__(**kwargs) |
|
|
|
|
|
class JNLPBA(datasets.GeneratorBasedBuilder): |
|
"""JNLPBA dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
JNLPBAConfig(name="jnlpba", version=datasets.Version("1.0.0"), description="JNLPBA dataset"), |
|
] |
|
|
|
def _info(self): |
|
custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE', |
|
'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE', |
|
'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES'] |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=custom_names |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train_files = dl_manager.download_and_extract(TRAIN_URL) |
|
val_files = dl_manager.download_and_extract(VAL_URL) |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_files}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_files}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": val_files}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
filenames = glob.glob(os.path.join(filepath, "Genia4ER*.iob2")) |
|
guid = 0 |
|
for filename in filenames: |
|
with open(filename, encoding="utf-8") as f: |
|
if guid >= 0: |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if len(re.split(r"###MEDLINE:", line)) == 2: |
|
continue |
|
|
|
elif line == "" or line == "\n": |
|
if tokens: |
|
|
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
|
|
else: |
|
|
|
splits = line.split("\t") |
|
tokens.append(splits[0]) |
|
if(splits[1].rstrip()=="B-cell_line"): |
|
ner_tags.append("B-CELL_LINE") |
|
elif(splits[1].rstrip()=="I-cell_line"): |
|
ner_tags.append("I-CELL_LINE") |
|
|
|
elif(splits[1].rstrip()=="B-cell_type"): |
|
ner_tags.append("B-CELL_TYPE") |
|
elif(splits[1].rstrip()=="I-cell_type"): |
|
ner_tags.append("I-CELL_TYPE") |
|
|
|
elif(splits[1].rstrip()=="B-protein"): |
|
ner_tags.append("B-PROTEIN") |
|
elif(splits[1].rstrip()=="I-protein"): |
|
ner_tags.append("I-PROTEIN") |
|
else: |
|
ner_tags.append(splits[1].rstrip()) |
|
|
|
|
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
|