File size: 6,398 Bytes
b337a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f43e94e
b337a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29766c7
b337a6a
 
 
 
29766c7
b337a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Introduction to the Bio-Entity Recognition Task at JNLPBA"""

import glob
import os
import re

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{kim2004introduction,
               title={Introduction to the bio-entity recognition task at JNLPBA},
               author={Kim, Jin-Dong and Ohta, Tomoko and Tsuruoka, Yoshimasa and Tateisi, Yuka and Collier, Nigel},
               booktitle={Proceedings of the international joint workshop on natural language processing in biomedicine and its applications},
               pages={70--75},
               year={2004},
               organization={Citeseer}
}
"""

_DESCRIPTION = """\
The data came from the GENIA version 3.02 corpus (Kim et al., 2003). This was formed from a controlled search
on MEDLINE using the MeSH terms human, blood cells and transcription factors. From this search 2,000 abstracts
were selected and hand annotated according to a small taxonomy of 48 classes based on a chemical classification.
Among the classes, 36 terminal classes were used to annotate the GENIA corpus.
"""

_HOMEPAGE = "http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004"
TRAIN_URL = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Train/Genia4ERtraining.tar.gz"
VAL_URL = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Evaluation/Genia4ERtest.tar.gz"
TEST_URL = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Tool/JNLPBA2004_eval.tar.gz"	


class JNLPBAConfig(datasets.BuilderConfig):
    """BuilderConfig for JNLPBA"""

    def __init__(self, **kwargs):
        """BuilderConfig for JNLPBA.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(JNLPBAConfig, self).__init__(**kwargs)


class JNLPBA(datasets.GeneratorBasedBuilder):
    """JNLPBA dataset."""

    BUILDER_CONFIGS = [
        JNLPBAConfig(name="jnlpba", version=datasets.Version("1.0.0"), description="JNLPBA dataset"),
    ]

    def _info(self):
        custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE',
            'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE', 
            'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES'] 
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=custom_names 
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        train_files = dl_manager.download_and_extract(TRAIN_URL)
        val_files = dl_manager.download_and_extract(VAL_URL)
        # test_files = dl_manager.download_and_extract(TEST_URL)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_files}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_files}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": val_files}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        filenames = glob.glob(os.path.join(filepath, "Genia4ER*.iob2"))
        guid = 0
        for filename in filenames:
            with open(filename, encoding="utf-8") as f:
                if guid >= 0:
                    guid += 1  # update guid to avoid DuplicatedKeysError
                tokens = []
                ner_tags = []
                for line in f:
                    if len(re.split(r"###MEDLINE:", line)) == 2:
                        continue

                    elif line == "" or line == "\n":
                        if tokens:
                            # print(guid, line)
                            yield guid, {
                                "id": str(guid),
                                "tokens": tokens,
                                "ner_tags": ner_tags,
                            }
                            guid += 1
                            tokens = []
                            ner_tags = []

                    else:
                        # tokens are tab separated
                        splits = line.split("\t")
                        tokens.append(splits[0])
                        if(splits[1].rstrip()=="B-cell_line"):
                            ner_tags.append("B-CELL_LINE")
                        elif(splits[1].rstrip()=="I-cell_line"):
                            ner_tags.append("I-CELL_LINE")

                        elif(splits[1].rstrip()=="B-cell_type"):
                            ner_tags.append("B-CELL_TYPE")
                        elif(splits[1].rstrip()=="I-cell_type"):
                            ner_tags.append("I-CELL_TYPE")

                        elif(splits[1].rstrip()=="B-protein"):
                            ner_tags.append("B-PROTEIN")
                        elif(splits[1].rstrip()=="I-protein"):
                            ner_tags.append("I-PROTEIN")
                        else:
                            ner_tags.append(splits[1].rstrip())

                # last example
                yield guid, {
                    "id": str(guid),
                    "tokens": tokens,
                    "ner_tags": ner_tags,
                }