Dataset Viewer
Auto-converted to Parquet
id
int64
1
8.14M
meaning
int64
6
37.7M
langvar
int64
3
12k
txt
stringlengths
1
3.23k
langvar_uid
stringlengths
7
7
example
stringlengths
1
218
example_langvar
int64
3
12k
example_langvar_uid
stringlengths
7
7
2,594,684
20,269,712
4,934
pey / pa =o
aau-000
ǀá
10,057
ktz-003
2,594,936
20,269,748
4,934
po-sokwaw / po-se
aau-000
žu-ba
10,057
ktz-003
4,125,907
27,893,032
3
уа, хәылбзиа
abk-000
bon vèspre
11,072
oci-000
4,125,913
27,893,036
3
уа, мшы бзиа
abk-000
selamat siang
444
zsm-000
4,125,932
27,893,048
3
уа, шьыжьы бзиа
abk-000
selamat pagi
444
zsm-000
4,195,612
27,961,580
3
апролетарцәа атәылақуа ӡегьы рҿы иҟоу, шәҽеидышәкыл
abk-000
ชนชั้นกรรมาชีพทั่วโลก จงสามัคคีกัน
712
tha-000
4,299,702
28,549,961
3
аиаҵәа/аеҵәа
abk-000
аҵиаҵәаа
3
abk-000
2,824,546
21,049,140
3
(лит.) ажәрытә
abk-000
ажәрытә
3
abk-000
2,594,545
20,269,692
3
са / сара
abk-000
me
10,057
ktz-003
2,594,825
20,269,737
3
уа / уара
abk-000
a-hi
10,057
ktz-003
2,594,898
20,269,745
3
ҳа / ҳара
abk-000
e
10,057
ktz-003
2,785,342
20,934,328
3
аа (мн. аақәа)
abk-000
аа
3
abk-000
2,785,344
20,934,329
3
аа (мн. аақәа)
abk-000
аа
3
abk-000
2,785,380
20,934,420
3
ааџьақьа (ачыхә)
abk-000
ааџьақьа
3
abk-000
2,785,388
20,934,432
3
авиаспорт (авиациатә спорт)
abk-000
авиаспорт
3
abk-000
2,785,433
20,934,544
3
аиқәысра (асы азы)
abk-000
аиқәысра
3
abk-000
2,785,443
20,934,587
3
аимҵакьача (аԥсуа жәлартә хәмарра)
abk-000
аимҵакьача
3
abk-000
2,785,473
20,934,682
3
аихыԥа-ҵыԥа (абхазская детская игра)
abk-000
аихыԥа-ҵыԥа
3
abk-000
2,785,554
20,934,863
3
арԥарцәа (азаҵә. арԥыс)
abk-000
арԥарцәа
3
abk-000
2,785,652
20,935,073
3
абла аш (хуп)
abk-000
абла аш
3
abk-000
2,785,694
20,935,177
3
ганкахьы аԥхьаҳәара (абра азы)
abk-000
ганкахьы аԥхьаҳәара
3
abk-000
2,785,710
20,935,204
3
(ақәхра, аԥыдатәра)
abk-000
агол ақәгара
3
abk-000
2,785,807
20,935,433
3
адгьылҵәаҟьа (аԥсуа жәлартә хәмарра)
abk-000
адгьылҵәаҟьа
3
abk-000
2,785,944
20,935,657
3
ажәырра (асы азы)
abk-000
ажәырра
3
abk-000
2,785,961
20,935,686
3
асаандаҟ (арх.)
abk-000
асаандаҟ
3
abk-000
2,786,044
20,935,876
3
ӡеиқәҭәа (аԥсуа хәыҷтәы хәмарра)
abk-000
ӡеиқәҭәа
3
abk-000
2,786,047
20,935,882
3
аӡкьацра (аԥсуа хәыҷтәы хәмарра)
abk-000
аӡкьацра
3
abk-000
2,786,070
20,935,927
3
аӡхәыҵа (аԥсуа хәыҷтәы хәмарра)
abk-000
аӡхәыҵа
3
abk-000
2,786,074
20,935,934
3
ӡыблеимда (аԥсуа хәыҷтәы хәмарра)
abk-000
ӡыблеимда
3
abk-000
2,786,078
20,935,940
3
ӡықәырс (аԥсуа хәыҷтәы хәмарра)
abk-000
ӡықәырс
3
abk-000
2,786,094
20,935,965
3
ӡыхиаала (аԥсуа хәыҷтәы хәмарра)
abk-000
ӡыхиаала
3
abk-000
2,786,254
20,936,201
3
каламкыдҵа (аԥсуа жәлар рыхәмарра)
abk-000
каламкыдҵа
3
abk-000
2,786,257
20,936,203
3
акаламшьҭыхра (аҽырхәмарра хкы)
abk-000
акаламшьҭыхра
3
abk-000
2,786,320
20,936,341
3
кьаанц (аԥсуа хәыҷтәы хәмарра)
abk-000
кьаанц
3
abk-000
2,786,322
20,936,342
3
акьаброу (аԥсуа жәлар рыхәмарра)
abk-000
акьаброу
3
abk-000
2,786,381
20,936,423
3
акәынҷын (аԥсуа жәлар рыхәмарра)
abk-000
акәынҷын
3
abk-000
2,786,389
20,936,444
3
ақьнысҭеимдара (аԥсуа хәыҷтәы хәмарра)
abk-000
ақьнысҭеимдара
3
abk-000
2,786,443
20,936,582
3
аҟыга (аҵәымҟа)
abk-000
аҟыга
3
abk-000
2,786,444
20,936,583
3
аҟыга (аҵәымҟа)
abk-000
аҟыга
3
abk-000
2,786,471
20,936,630
3
алабақәыршьқьраара (аԥсуа хәыҷтәы хәмарра)
abk-000
алабақәыршьқьраара
3
abk-000
2,786,555
20,936,870
3
амат (ауарҳал)
abk-000
амат
3
abk-000
2,786,556
20,936,871
3
мат (ашахмат)
abk-000
мат
3
abk-000
2,786,565
20,936,897
3
махцәыла аиқәԥара (аԥсуаа реиқәԥашьа ахкы)
abk-000
махцәыла аиқәԥара
3
abk-000
2,786,567
20,936,898
3
махәҿала аиқәԥара (аԥсуаа реиқәԥашьа ахкы)
abk-000
махәҿала аиқәԥара
3
abk-000
2,786,742
20,937,135
3
мцы-мца (аԥсуа хәыҷтәы хәмарра)
abk-000
мцы-мца
3
abk-000
2,786,781
20,937,238
3
напхцәы (аԥсуаа реиқәԥара ахкы)
abk-000
напхцәы
3
abk-000
2,786,792
20,937,265
3
анапыншьыла (ахәыҷтәы хәмарра)
abk-000
анапыншьыла
3
abk-000
2,786,840
20,937,383
3
анышьарӡсара (аспорт хкы)
abk-000
анышьарӡсара
3
abk-000
2,786,846
20,937,393
3
аолимпиаа (азаҵә. аолимпиауаҩ)
abk-000
аолимпиаа
3
abk-000
2,786,867
20,937,418
3
аолимпиауаҩ (арацәа. олимпиаа)
abk-000
аолимпиауаҩ
3
abk-000
2,786,887
20,937,465
3
аԥдан (абжь. аихатәы шьаҳага)
abk-000
аԥдан
3
abk-000
2,786,889
20,937,466
3
аԥдын (бз.)
abk-000
аԥдын
3
abk-000
2,786,890
20,937,467
3
аԥелоу (аԥсуа хәыҷтәы хәмарра)
abk-000
аԥелоу
3
abk-000
2,786,911
20,937,547
3
аԥсҭа (бз.)
abk-000
аԥсҭа
3
abk-000
2,786,999
20,937,761
3
расац (аԥсуа хәыҷтәы хәмарра)
abk-000
расац
3
abk-000
2,787,029
20,937,833
3
аркьыл (аԥсуа жәлар рыхәмарра)
abk-000
аркьыл
3
abk-000
2,787,035
20,937,838
3
аркьыц (абжь.)
abk-000
аркьыц
3
abk-000
2,787,042
20,937,860
3
арԥыс (мн. арԥарцәа)
abk-000
арԥыс
3
abk-000
2,787,059
20,937,932
3
асандаҟ (арх.)
abk-000
асандаҟ
3
abk-000
2,787,230
20,938,244
3
аҭарчеи (аԥсуа жәлар рмилаҭтә ҽыбӷаҟазаратә еицлабра ахкы)
abk-000
аҭарчеи
3
abk-000
2,787,234
20,938,246
3
ҭаршә (аиқәԥараҿ амаана хкы)
abk-000
ҭаршә
3
abk-000
2,787,270
20,938,315
3
ҭырасеирс (аԥсуа хәыҷтәы хәмарра)
abk-000
ҭырасеирс
3
abk-000
2,787,274
20,938,328
3
ауапа аихҵәара (аԥсуаа реицлабра ахкы)
abk-000
ауапа аихҵәара
3
abk-000
2,787,281
20,938,349
3
ауаҩымра (дуаҩымуеит)
abk-000
ауаҩымра
3
abk-000
2,787,323
20,938,424
3
ахада-кәыркәыр (аԥсуа хәыҷтәы хәмарра)
abk-000
ахада-кәыркәыр
3
abk-000
2,787,364
20,938,494
3
ахаҳәбӷаҵара (аԥсуа жәлар рыхәмарра)
abk-000
ахаҳәбӷаҵара
3
abk-000
2,787,398
20,938,565
3
ХСГ (ахатәгәаԥхаратә спорттә гәыԥ)
abk-000
ХСГ
3
abk-000
2,787,406
20,938,571
3
ахҭарԥархәмарра (аԥсуа жәлар рыхәмарра)
abk-000
ахҭарԥархәмарра
3
abk-000
2,787,442
20,938,641
3
хылԥахас (аԥсуа жәлар рыхәмарра)
abk-000
хылԥахас
3
abk-000
2,787,460
20,938,683
3
ахырҩынтәкҩы (аӷбаҿы)
abk-000
ахырҩынтәкҩы
3
abk-000
2,787,462
20,938,684
3
ахырҩынтәы (аӷбаҿы)
abk-000
ахырҩынтәы
3
abk-000
2,787,502
20,938,748
3
ахьаԥштәала (аҽы аԥштәы)
abk-000
ахьаԥштәала
3
abk-000
2,787,509
20,938,765
3
ахьԥштәала (аҽы аԥштәы)
abk-000
ахьԥштәала
3
abk-000
2,787,529
20,938,802
3
ахьышьаш (аҽы аԥштәы)
abk-000
ахьышьаш
3
abk-000
2,787,637
20,939,019
3
аҳәызбахәмарра (аԥсуа хәыҷтәы хәмарра)
abk-000
аҳәызбахәмарра
3
abk-000
2,787,641
20,939,026
3
аҳәыҳәхы аихсра (аԥсуа жәлар реицлабра хкы)
abk-000
аҳәыҳәхы аихсра
3
abk-000
2,787,644
20,939,031
3
ацаԥха (аҽы адырга)
abk-000
ацаԥха
3
abk-000
2,787,701
20,939,166
3
аҵақь (аԥсуа хәыҷтәы хәмарра)
abk-000
аҵақь
3
abk-000
2,787,720
20,939,208
3
ҵиҵи-кәакәа (аԥсуа хәыҷтәы хәмарра)
abk-000
ҵиҵи-кәакәа
3
abk-000
2,787,722
20,939,209
3
ҵиҵу (аԥсуа хәыҷтәы хәмарра)
abk-000
ҵиҵу
3
abk-000
2,787,760
20,939,264
3
аҵәаҟьасра (аԥсуа хәыҷтәы хәмарра)
abk-000
аҵәаҟьасра
3
abk-000
2,787,775
20,939,281
3
аҵәырԥа (аԥсуа хәыҷтәы хәмарра)
abk-000
аҵәырԥа
3
abk-000
2,787,777
20,939,282
3
аҵәыршә (аԥсуа жәлар рыхәмарра)
abk-000
аҵәыршә
3
abk-000
2,787,784
20,939,289
3
чабракаршә (аԥсуа хәыҷтәы хәмарра)
abk-000
чабракаршә
3
abk-000
2,787,789
20,939,296
3
чараз (аԥсуаа рҽыӷбаҟазаратә хкы)
abk-000
чараз
3
abk-000
2,787,796
20,939,313
3
ачыфҭ (аԥсуа хәыҷтәы хәмарра)
abk-000
ачыфҭ
3
abk-000
2,787,799
20,939,317
3
аҷарпат (бз.)
abk-000
аҷарпат
3
abk-000
2,787,821
20,939,351
3
аҽада (аспорт маҭәахәы)
abk-000
аҽада
3
abk-000
2,787,823
20,939,352
3
ҽадарԥа (аԥсуаа рыԥара хкы)
abk-000
ҽадарԥа
3
abk-000
2,787,837
20,939,380
3
аҽаԥара (аура шәага)
abk-000
аҽаԥара
3
abk-000
2,787,862
20,939,409
3
аҽеиқәа цымцым (цыҩцыҩ)
abk-000
аҽеиқәа цымцым
3
abk-000
2,787,878
20,939,436
3
ҽкаршә (ақәԥара амаана хкы)
abk-000
ҽкаршә
3
abk-000
2,787,918
20,939,490
3
аҽҵыс (мн. аҽҵарақәа)
abk-000
аҽҵыс
3
abk-000
2,788,054
20,939,664
3
ҽырԥа (аԥсуаа рҽыбӷаҟазаратә хкы)
abk-000
ҽырԥа
3
abk-000
2,788,062
20,939,679
3
аҽырҩымҭа (абжьаӡара)
abk-000
аҽырҩымҭа
3
abk-000
2,788,069
20,939,687
3
аҽыуардынхьча (мн. -хьшьцәа)
abk-000
аҽыуардынхьча
3
abk-000
2,788,072
20,939,689
3
аҽыуаҩ (мн. аҽцәа, аҽыуаа)
abk-000
аҽыуаҩ
3
abk-000
2,788,073
20,939,690
3
аҽыуаҩ (мн. аҽцәа, аҽыуаа)
abk-000
аҽыуаҩ
3
abk-000
2,788,081
20,939,697
3
аҽыхьча (мн. аҽыхьшьцәа)
abk-000
аҽыхьча
3
abk-000
2,788,082
20,939,698
3
аҽыхьча (мн. аҽыхьшьцәа)
abk-000
аҽыхьча
3
abk-000
End of preview. Expand in Data Studio

Dataset Card for panlex-definitions

This is a dataset of word definitions in several hudnred languages, extracted from https://panlex.org.

Dataset Details

Dataset Description

This dataset has been extracted from https://panlex.org (the 20250201 database dump) and rearranged on the per-language basis (by the language of the definition).

Each language subset consists of definitions (short phrases). Each definition is associated with some meanings (if there is more than one meaning, they are in separate rows). Each meanning is associated with one or more words (and occasionally, there are no words for a meaning, for a reason unknown to me). The database currently contains only one word per meaning, chosen arbitrary. To match a meaning with multiple words, please join the dataset with cointegrated/panlex-meanings.

Thus, by joining per-language datasets by meaning ids, one can obtain a bilingual dictionary for the chosen language pair.

  • Curated by: David Dale (@cointegrated), based on a snapshot of the Panlex database (https://panlex.org/snapshot).
  • Language(s) (NLP): The Panlex database mentions 7558 languages, but only 6241 of them have at least one entry (where entry is a combination of expression and meaning), and only 1012 have at least 1000 entries. These 1012 languages are tagged in the current dataset.
  • License: CC0 1.0 Universal License, as explained in https://panlex.org/license.

Dataset Sources [optional]

Uses

The intended use of the dataset is to extract monolingual or bilingual dictionaries for the purposes of language learning by machines or humans.

The code below illustrates how the dataset could be used to extract all French definitions of Finnish words found on Panlex.

from datasets import load_dataset
ds_fin_word = load_dataset('cointegrated/panlex-meanings', name='fin', split='train')
ds_fra_def = load_dataset('cointegrated/panlex-definitions', name='fra', split='train')
df_fin_word = ds_fin_word.to_pandas()
df_fra_def = ds_fra_def.to_pandas()

df_matched = df_fin_word.merge(df_fra_def, on='meaning', suffixes=['_wrd', '_def']).drop_duplicates(subset=['txt_wrd', 'txt_def'])
print(df_matched.shape)
# (11512, 13)

print(df_matched.sample(5)[['txt_wrd', 'meaning', 'txt_def']])
#                txt_wrd   meaning                                    txt_def
# 101   kalsiumpitoisuus  30766618                          teneur en calcium
# 7003              keho  28131094  Partie matérielle de tout être animé. (2)
# 8180      mikä tahansa  27960302                    quel que soit celui qui
# 4606            Safari   1689224                          Safari (logiciel)
# 9833        suositella  28251812                                    à trier

Dataset Structure

The dataset is split by languages of the definition, denoted by their ISO 639 codes. Each language might contain multiple varieties; they are annotated within each per-language split.

To determine a code for your language, please consult the https://panlex.org webside. For additional information about a language, you may also want to consult https://glottolog.org/.

Each split contains the following fields:

  • id (int): id of the definition
  • meaning (int): id of the meaning, joinable with cointegrated/panlex-meanings
  • langvar (int): id of the language variety of the definition
  • txt (str): text of the definition
  • langvar_uid (str): more human-readable id of the definition language (e.g. eng-000 stands for generic English, eng-001 for simple English, eng-004 for American English). These ids could be looked up in the language dropdown at https://vocab.panlex.org/.
  • example (str, optional): example of a word corresponding to the meaning of the definition (preferably, but not always, in the language of the definition)
  • example_langvar (int, optional): id of the language variety of the example
  • example_langvar_uid (str, optional): human-readable id of the language variety of the example

Dataset Creation

This dataset has been extracted from https://panlex.org (the 20250201 database dump) and automatically rearranged on the per-language basis.

The rearrangement consisted of the following steps:

  1. Grouping together the language varieties from the langvar table with the same lang_code.
  2. For each language, selecting the corresponding subset from the definition table.
  3. Joining the selected set with the denotation table, to match an example of expression id with the given meaning, and then with the expr table, to get the text and language of the expression.

Bias, Risks, and Limitations

As with any multilingual dataset, Panlex data may exhbit the problem of under- and mis-representation of some languages.

Citation

Kamholz, David, Jonathan Pool, and Susan M. Colowick. 2014. PanLex: Building a Resource for Panlingual Lexical Translation. Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC 2014).

BibTeX:

@inproceedings{kamholz-etal-2014-panlex,
    title = "{P}an{L}ex: Building a Resource for Panlingual Lexical Translation",
    author = "Kamholz, David  and
      Pool, Jonathan  and
      Colowick, Susan",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Loftsson, Hrafn  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
    month = may,
    year = "2014",
    address = "Reykjavik, Iceland",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/1029_Paper.pdf",
    pages = "3145--3150",
    abstract = "PanLex, a project of The Long Now Foundation, aims to enable the translation of lexemes among all human languages in the world. By focusing on lexemic translations, rather than grammatical or corpus data, it achieves broader lexical and language coverage than related projects. The PanLex database currently documents 20 million lexemes in about 9,000 language varieties, with 1.1 billion pairwise translations. The project primarily engages in content procurement, while encouraging outside use of its data for research and development. Its data acquisition strategy emphasizes broad, high-quality lexical and language coverage. The project plans to add data derived from 4,000 new sources to the database by the end of 2016. The dataset is publicly accessible via an HTTP API and monthly snapshots in CSV, JSON, and XML formats. Several online applications have been developed that query PanLex data. More broadly, the project aims to make a contribution to the preservation of global linguistic diversity.",
}

Glossary

To understand the terms like "language", "language variety", "expression" and "meaning" more precisely, please read the Panlex documentation on their data model and database design.

Downloads last month
93