Datasets:
id
int64 1
8.14M
| meaning
int64 6
37.7M
| langvar
int64 3
12k
| txt
stringlengths 1
3.23k
⌀ | langvar_uid
stringlengths 7
7
| example
stringlengths 1
218
⌀ | example_langvar
int64 3
12k
⌀ | example_langvar_uid
stringlengths 7
7
⌀ |
---|---|---|---|---|---|---|---|
2,594,684 | 20,269,712 | 4,934 | pey / pa =o | aau-000 | ǀá | 10,057 | ktz-003 |
2,594,936 | 20,269,748 | 4,934 | po-sokwaw / po-se | aau-000 | žu-ba | 10,057 | ktz-003 |
4,125,907 | 27,893,032 | 3 | уа, хәылбзиа | abk-000 | bon vèspre | 11,072 | oci-000 |
4,125,913 | 27,893,036 | 3 | уа, мшы бзиа | abk-000 | selamat siang | 444 | zsm-000 |
4,125,932 | 27,893,048 | 3 | уа, шьыжьы бзиа | abk-000 | selamat pagi | 444 | zsm-000 |
4,195,612 | 27,961,580 | 3 | апролетарцәа атәылақуа ӡегьы рҿы иҟоу, шәҽеидышәкыл | abk-000 | ชนชั้นกรรมาชีพทั่วโลก จงสามัคคีกัน | 712 | tha-000 |
4,299,702 | 28,549,961 | 3 | аиаҵәа/аеҵәа | abk-000 | аҵиаҵәаа | 3 | abk-000 |
2,824,546 | 21,049,140 | 3 | (лит.) ажәрытә | abk-000 | ажәрытә | 3 | abk-000 |
2,594,545 | 20,269,692 | 3 | са / сара | abk-000 | me | 10,057 | ktz-003 |
2,594,825 | 20,269,737 | 3 | уа / уара | abk-000 | a-hi | 10,057 | ktz-003 |
2,594,898 | 20,269,745 | 3 | ҳа / ҳара | abk-000 | e | 10,057 | ktz-003 |
2,785,342 | 20,934,328 | 3 | аа (мн. аақәа) | abk-000 | аа | 3 | abk-000 |
2,785,344 | 20,934,329 | 3 | аа (мн. аақәа) | abk-000 | аа | 3 | abk-000 |
2,785,380 | 20,934,420 | 3 | ааџьақьа (ачыхә) | abk-000 | ааџьақьа | 3 | abk-000 |
2,785,388 | 20,934,432 | 3 | авиаспорт (авиациатә спорт) | abk-000 | авиаспорт | 3 | abk-000 |
2,785,433 | 20,934,544 | 3 | аиқәысра (асы азы) | abk-000 | аиқәысра | 3 | abk-000 |
2,785,443 | 20,934,587 | 3 | аимҵакьача (аԥсуа жәлартә хәмарра) | abk-000 | аимҵакьача | 3 | abk-000 |
2,785,473 | 20,934,682 | 3 | аихыԥа-ҵыԥа (абхазская детская игра) | abk-000 | аихыԥа-ҵыԥа | 3 | abk-000 |
2,785,554 | 20,934,863 | 3 | арԥарцәа (азаҵә. арԥыс) | abk-000 | арԥарцәа | 3 | abk-000 |
2,785,652 | 20,935,073 | 3 | абла аш (хуп) | abk-000 | абла аш | 3 | abk-000 |
2,785,694 | 20,935,177 | 3 | ганкахьы аԥхьаҳәара (абра азы) | abk-000 | ганкахьы аԥхьаҳәара | 3 | abk-000 |
2,785,710 | 20,935,204 | 3 | (ақәхра, аԥыдатәра) | abk-000 | агол ақәгара | 3 | abk-000 |
2,785,807 | 20,935,433 | 3 | адгьылҵәаҟьа (аԥсуа жәлартә хәмарра) | abk-000 | адгьылҵәаҟьа | 3 | abk-000 |
2,785,944 | 20,935,657 | 3 | ажәырра (асы азы) | abk-000 | ажәырра | 3 | abk-000 |
2,785,961 | 20,935,686 | 3 | асаандаҟ (арх.) | abk-000 | асаандаҟ | 3 | abk-000 |
2,786,044 | 20,935,876 | 3 | ӡеиқәҭәа (аԥсуа хәыҷтәы хәмарра) | abk-000 | ӡеиқәҭәа | 3 | abk-000 |
2,786,047 | 20,935,882 | 3 | аӡкьацра (аԥсуа хәыҷтәы хәмарра) | abk-000 | аӡкьацра | 3 | abk-000 |
2,786,070 | 20,935,927 | 3 | аӡхәыҵа (аԥсуа хәыҷтәы хәмарра) | abk-000 | аӡхәыҵа | 3 | abk-000 |
2,786,074 | 20,935,934 | 3 | ӡыблеимда (аԥсуа хәыҷтәы хәмарра) | abk-000 | ӡыблеимда | 3 | abk-000 |
2,786,078 | 20,935,940 | 3 | ӡықәырс (аԥсуа хәыҷтәы хәмарра) | abk-000 | ӡықәырс | 3 | abk-000 |
2,786,094 | 20,935,965 | 3 | ӡыхиаала (аԥсуа хәыҷтәы хәмарра) | abk-000 | ӡыхиаала | 3 | abk-000 |
2,786,254 | 20,936,201 | 3 | каламкыдҵа (аԥсуа жәлар рыхәмарра) | abk-000 | каламкыдҵа | 3 | abk-000 |
2,786,257 | 20,936,203 | 3 | акаламшьҭыхра (аҽырхәмарра хкы) | abk-000 | акаламшьҭыхра | 3 | abk-000 |
2,786,320 | 20,936,341 | 3 | кьаанц (аԥсуа хәыҷтәы хәмарра) | abk-000 | кьаанц | 3 | abk-000 |
2,786,322 | 20,936,342 | 3 | акьаброу (аԥсуа жәлар рыхәмарра) | abk-000 | акьаброу | 3 | abk-000 |
2,786,381 | 20,936,423 | 3 | акәынҷын (аԥсуа жәлар рыхәмарра) | abk-000 | акәынҷын | 3 | abk-000 |
2,786,389 | 20,936,444 | 3 | ақьнысҭеимдара (аԥсуа хәыҷтәы хәмарра) | abk-000 | ақьнысҭеимдара | 3 | abk-000 |
2,786,443 | 20,936,582 | 3 | аҟыга (аҵәымҟа) | abk-000 | аҟыга | 3 | abk-000 |
2,786,444 | 20,936,583 | 3 | аҟыга (аҵәымҟа) | abk-000 | аҟыга | 3 | abk-000 |
2,786,471 | 20,936,630 | 3 | алабақәыршьқьраара (аԥсуа хәыҷтәы хәмарра) | abk-000 | алабақәыршьқьраара | 3 | abk-000 |
2,786,555 | 20,936,870 | 3 | амат (ауарҳал) | abk-000 | амат | 3 | abk-000 |
2,786,556 | 20,936,871 | 3 | мат (ашахмат) | abk-000 | мат | 3 | abk-000 |
2,786,565 | 20,936,897 | 3 | махцәыла аиқәԥара (аԥсуаа реиқәԥашьа ахкы) | abk-000 | махцәыла аиқәԥара | 3 | abk-000 |
2,786,567 | 20,936,898 | 3 | махәҿала аиқәԥара (аԥсуаа реиқәԥашьа ахкы) | abk-000 | махәҿала аиқәԥара | 3 | abk-000 |
2,786,742 | 20,937,135 | 3 | мцы-мца (аԥсуа хәыҷтәы хәмарра) | abk-000 | мцы-мца | 3 | abk-000 |
2,786,781 | 20,937,238 | 3 | напхцәы (аԥсуаа реиқәԥара ахкы) | abk-000 | напхцәы | 3 | abk-000 |
2,786,792 | 20,937,265 | 3 | анапыншьыла (ахәыҷтәы хәмарра) | abk-000 | анапыншьыла | 3 | abk-000 |
2,786,840 | 20,937,383 | 3 | анышьарӡсара (аспорт хкы) | abk-000 | анышьарӡсара | 3 | abk-000 |
2,786,846 | 20,937,393 | 3 | аолимпиаа (азаҵә. аолимпиауаҩ) | abk-000 | аолимпиаа | 3 | abk-000 |
2,786,867 | 20,937,418 | 3 | аолимпиауаҩ (арацәа. олимпиаа) | abk-000 | аолимпиауаҩ | 3 | abk-000 |
2,786,887 | 20,937,465 | 3 | аԥдан (абжь. аихатәы шьаҳага) | abk-000 | аԥдан | 3 | abk-000 |
2,786,889 | 20,937,466 | 3 | аԥдын (бз.) | abk-000 | аԥдын | 3 | abk-000 |
2,786,890 | 20,937,467 | 3 | аԥелоу (аԥсуа хәыҷтәы хәмарра) | abk-000 | аԥелоу | 3 | abk-000 |
2,786,911 | 20,937,547 | 3 | аԥсҭа (бз.) | abk-000 | аԥсҭа | 3 | abk-000 |
2,786,999 | 20,937,761 | 3 | расац (аԥсуа хәыҷтәы хәмарра) | abk-000 | расац | 3 | abk-000 |
2,787,029 | 20,937,833 | 3 | аркьыл (аԥсуа жәлар рыхәмарра) | abk-000 | аркьыл | 3 | abk-000 |
2,787,035 | 20,937,838 | 3 | аркьыц (абжь.) | abk-000 | аркьыц | 3 | abk-000 |
2,787,042 | 20,937,860 | 3 | арԥыс (мн. арԥарцәа) | abk-000 | арԥыс | 3 | abk-000 |
2,787,059 | 20,937,932 | 3 | асандаҟ (арх.) | abk-000 | асандаҟ | 3 | abk-000 |
2,787,230 | 20,938,244 | 3 | аҭарчеи (аԥсуа жәлар рмилаҭтә ҽыбӷаҟазаратә еицлабра ахкы) | abk-000 | аҭарчеи | 3 | abk-000 |
2,787,234 | 20,938,246 | 3 | ҭаршә (аиқәԥараҿ амаана хкы) | abk-000 | ҭаршә | 3 | abk-000 |
2,787,270 | 20,938,315 | 3 | ҭырасеирс (аԥсуа хәыҷтәы хәмарра) | abk-000 | ҭырасеирс | 3 | abk-000 |
2,787,274 | 20,938,328 | 3 | ауапа аихҵәара (аԥсуаа реицлабра ахкы) | abk-000 | ауапа аихҵәара | 3 | abk-000 |
2,787,281 | 20,938,349 | 3 | ауаҩымра (дуаҩымуеит) | abk-000 | ауаҩымра | 3 | abk-000 |
2,787,323 | 20,938,424 | 3 | ахада-кәыркәыр (аԥсуа хәыҷтәы хәмарра) | abk-000 | ахада-кәыркәыр | 3 | abk-000 |
2,787,364 | 20,938,494 | 3 | ахаҳәбӷаҵара (аԥсуа жәлар рыхәмарра) | abk-000 | ахаҳәбӷаҵара | 3 | abk-000 |
2,787,398 | 20,938,565 | 3 | ХСГ (ахатәгәаԥхаратә спорттә гәыԥ) | abk-000 | ХСГ | 3 | abk-000 |
2,787,406 | 20,938,571 | 3 | ахҭарԥархәмарра (аԥсуа жәлар рыхәмарра) | abk-000 | ахҭарԥархәмарра | 3 | abk-000 |
2,787,442 | 20,938,641 | 3 | хылԥахас (аԥсуа жәлар рыхәмарра) | abk-000 | хылԥахас | 3 | abk-000 |
2,787,460 | 20,938,683 | 3 | ахырҩынтәкҩы (аӷбаҿы) | abk-000 | ахырҩынтәкҩы | 3 | abk-000 |
2,787,462 | 20,938,684 | 3 | ахырҩынтәы (аӷбаҿы) | abk-000 | ахырҩынтәы | 3 | abk-000 |
2,787,502 | 20,938,748 | 3 | ахьаԥштәала (аҽы аԥштәы) | abk-000 | ахьаԥштәала | 3 | abk-000 |
2,787,509 | 20,938,765 | 3 | ахьԥштәала (аҽы аԥштәы) | abk-000 | ахьԥштәала | 3 | abk-000 |
2,787,529 | 20,938,802 | 3 | ахьышьаш (аҽы аԥштәы) | abk-000 | ахьышьаш | 3 | abk-000 |
2,787,637 | 20,939,019 | 3 | аҳәызбахәмарра (аԥсуа хәыҷтәы хәмарра) | abk-000 | аҳәызбахәмарра | 3 | abk-000 |
2,787,641 | 20,939,026 | 3 | аҳәыҳәхы аихсра (аԥсуа жәлар реицлабра хкы) | abk-000 | аҳәыҳәхы аихсра | 3 | abk-000 |
2,787,644 | 20,939,031 | 3 | ацаԥха (аҽы адырга) | abk-000 | ацаԥха | 3 | abk-000 |
2,787,701 | 20,939,166 | 3 | аҵақь (аԥсуа хәыҷтәы хәмарра) | abk-000 | аҵақь | 3 | abk-000 |
2,787,720 | 20,939,208 | 3 | ҵиҵи-кәакәа (аԥсуа хәыҷтәы хәмарра) | abk-000 | ҵиҵи-кәакәа | 3 | abk-000 |
2,787,722 | 20,939,209 | 3 | ҵиҵу (аԥсуа хәыҷтәы хәмарра) | abk-000 | ҵиҵу | 3 | abk-000 |
2,787,760 | 20,939,264 | 3 | аҵәаҟьасра (аԥсуа хәыҷтәы хәмарра) | abk-000 | аҵәаҟьасра | 3 | abk-000 |
2,787,775 | 20,939,281 | 3 | аҵәырԥа (аԥсуа хәыҷтәы хәмарра) | abk-000 | аҵәырԥа | 3 | abk-000 |
2,787,777 | 20,939,282 | 3 | аҵәыршә (аԥсуа жәлар рыхәмарра) | abk-000 | аҵәыршә | 3 | abk-000 |
2,787,784 | 20,939,289 | 3 | чабракаршә (аԥсуа хәыҷтәы хәмарра) | abk-000 | чабракаршә | 3 | abk-000 |
2,787,789 | 20,939,296 | 3 | чараз (аԥсуаа рҽыӷбаҟазаратә хкы) | abk-000 | чараз | 3 | abk-000 |
2,787,796 | 20,939,313 | 3 | ачыфҭ (аԥсуа хәыҷтәы хәмарра) | abk-000 | ачыфҭ | 3 | abk-000 |
2,787,799 | 20,939,317 | 3 | аҷарпат (бз.) | abk-000 | аҷарпат | 3 | abk-000 |
2,787,821 | 20,939,351 | 3 | аҽада (аспорт маҭәахәы) | abk-000 | аҽада | 3 | abk-000 |
2,787,823 | 20,939,352 | 3 | ҽадарԥа (аԥсуаа рыԥара хкы) | abk-000 | ҽадарԥа | 3 | abk-000 |
2,787,837 | 20,939,380 | 3 | аҽаԥара (аура шәага) | abk-000 | аҽаԥара | 3 | abk-000 |
2,787,862 | 20,939,409 | 3 | аҽеиқәа цымцым (цыҩцыҩ) | abk-000 | аҽеиқәа цымцым | 3 | abk-000 |
2,787,878 | 20,939,436 | 3 | ҽкаршә (ақәԥара амаана хкы) | abk-000 | ҽкаршә | 3 | abk-000 |
2,787,918 | 20,939,490 | 3 | аҽҵыс (мн. аҽҵарақәа) | abk-000 | аҽҵыс | 3 | abk-000 |
2,788,054 | 20,939,664 | 3 | ҽырԥа (аԥсуаа рҽыбӷаҟазаратә хкы) | abk-000 | ҽырԥа | 3 | abk-000 |
2,788,062 | 20,939,679 | 3 | аҽырҩымҭа (абжьаӡара) | abk-000 | аҽырҩымҭа | 3 | abk-000 |
2,788,069 | 20,939,687 | 3 | аҽыуардынхьча (мн. -хьшьцәа) | abk-000 | аҽыуардынхьча | 3 | abk-000 |
2,788,072 | 20,939,689 | 3 | аҽыуаҩ (мн. аҽцәа, аҽыуаа) | abk-000 | аҽыуаҩ | 3 | abk-000 |
2,788,073 | 20,939,690 | 3 | аҽыуаҩ (мн. аҽцәа, аҽыуаа) | abk-000 | аҽыуаҩ | 3 | abk-000 |
2,788,081 | 20,939,697 | 3 | аҽыхьча (мн. аҽыхьшьцәа) | abk-000 | аҽыхьча | 3 | abk-000 |
2,788,082 | 20,939,698 | 3 | аҽыхьча (мн. аҽыхьшьцәа) | abk-000 | аҽыхьча | 3 | abk-000 |
Dataset Card for panlex-definitions
This is a dataset of word definitions in several hudnred languages, extracted from https://panlex.org.
Dataset Details
Dataset Description
This dataset has been extracted from https://panlex.org (the 20250201
database dump) and rearranged on the per-language basis (by the language of the definition).
Each language subset consists of definitions (short phrases). Each definition is associated with some meanings (if there is more than one meaning, they are in separate rows). Each meanning is associated with one or more words (and occasionally, there are no words for a meaning, for a reason unknown to me). The database currently contains only one word per meaning, chosen arbitrary. To match a meaning with multiple words, please join the dataset with cointegrated/panlex-meanings.
Thus, by joining per-language datasets by meaning ids, one can obtain a bilingual dictionary for the chosen language pair.
- Curated by: David Dale (@cointegrated), based on a snapshot of the Panlex database (https://panlex.org/snapshot).
- Language(s) (NLP): The Panlex database mentions 7558 languages, but only 6241 of them have at least one entry (where entry is a combination of expression and meaning), and only 1012 have at least 1000 entries. These 1012 languages are tagged in the current dataset.
- License: CC0 1.0 Universal License, as explained in https://panlex.org/license.
Dataset Sources [optional]
- Original website: https://panlex.org/
- Paper: Kamholz, David, Jonathan Pool, and Susan M. Colowick. 2014. PanLex: Building a Resource for Panlingual Lexical Translation. Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC 2014).
Uses
The intended use of the dataset is to extract monolingual or bilingual dictionaries for the purposes of language learning by machines or humans.
The code below illustrates how the dataset could be used to extract all French definitions of Finnish words found on Panlex.
from datasets import load_dataset
ds_fin_word = load_dataset('cointegrated/panlex-meanings', name='fin', split='train')
ds_fra_def = load_dataset('cointegrated/panlex-definitions', name='fra', split='train')
df_fin_word = ds_fin_word.to_pandas()
df_fra_def = ds_fra_def.to_pandas()
df_matched = df_fin_word.merge(df_fra_def, on='meaning', suffixes=['_wrd', '_def']).drop_duplicates(subset=['txt_wrd', 'txt_def'])
print(df_matched.shape)
# (11512, 13)
print(df_matched.sample(5)[['txt_wrd', 'meaning', 'txt_def']])
# txt_wrd meaning txt_def
# 101 kalsiumpitoisuus 30766618 teneur en calcium
# 7003 keho 28131094 Partie matérielle de tout être animé. (2)
# 8180 mikä tahansa 27960302 quel que soit celui qui
# 4606 Safari 1689224 Safari (logiciel)
# 9833 suositella 28251812 à trier
Dataset Structure
The dataset is split by languages of the definition, denoted by their ISO 639 codes. Each language might contain multiple varieties; they are annotated within each per-language split.
To determine a code for your language, please consult the https://panlex.org webside. For additional information about a language, you may also want to consult https://glottolog.org/.
Each split contains the following fields:
id
(int): id of the definitionmeaning
(int): id of the meaning, joinable with cointegrated/panlex-meaningslangvar
(int): id of the language variety of the definitiontxt
(str): text of the definitionlangvar_uid
(str): more human-readable id of the definition language (e.g.eng-000
stands for generic English,eng-001
for simple English,eng-004
for American English). These ids could be looked up in the language dropdown at https://vocab.panlex.org/.example
(str, optional): example of a word corresponding to the meaning of the definition (preferably, but not always, in the language of the definition)example_langvar
(int, optional): id of the language variety of the exampleexample_langvar_uid
(str, optional): human-readable id of the language variety of the example
Dataset Creation
This dataset has been extracted from https://panlex.org (the 20250201
database dump) and automatically rearranged on the per-language basis.
The rearrangement consisted of the following steps:
- Grouping together the language varieties from the
langvar
table with the samelang_code
. - For each language, selecting the corresponding subset from the
definition
table. - Joining the selected set with the
denotation
table, to match an example of expression id with the given meaning, and then with theexpr
table, to get the text and language of the expression.
Bias, Risks, and Limitations
As with any multilingual dataset, Panlex data may exhbit the problem of under- and mis-representation of some languages.
Citation
Kamholz, David, Jonathan Pool, and Susan M. Colowick. 2014. PanLex: Building a Resource for Panlingual Lexical Translation. Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC 2014).
BibTeX:
@inproceedings{kamholz-etal-2014-panlex,
title = "{P}an{L}ex: Building a Resource for Panlingual Lexical Translation",
author = "Kamholz, David and
Pool, Jonathan and
Colowick, Susan",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Loftsson, Hrafn and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
month = may,
year = "2014",
address = "Reykjavik, Iceland",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/1029_Paper.pdf",
pages = "3145--3150",
abstract = "PanLex, a project of The Long Now Foundation, aims to enable the translation of lexemes among all human languages in the world. By focusing on lexemic translations, rather than grammatical or corpus data, it achieves broader lexical and language coverage than related projects. The PanLex database currently documents 20 million lexemes in about 9,000 language varieties, with 1.1 billion pairwise translations. The project primarily engages in content procurement, while encouraging outside use of its data for research and development. Its data acquisition strategy emphasizes broad, high-quality lexical and language coverage. The project plans to add data derived from 4,000 new sources to the database by the end of 2016. The dataset is publicly accessible via an HTTP API and monthly snapshots in CSV, JSON, and XML formats. Several online applications have been developed that query PanLex data. More broadly, the project aims to make a contribution to the preservation of global linguistic diversity.",
}
Glossary
To understand the terms like "language", "language variety", "expression" and "meaning" more precisely, please read the Panlex documentation on their data model and database design.
- Downloads last month
- 93