|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
echo "My SLURM_ARRAY_JOB_ID is ${SLURM_ARRAY_JOB_ID}" |
|
echo "My SLURM_ARRAY_TASK_ID is ${SLURM_ARRAY_TASK_ID}" |
|
echo "Executing on the machine: $(hostname)" |
|
|
|
module purge |
|
module load anaconda3/2023.3 |
|
module load fsl/6.0.6.2 |
|
conda activate rt_mindEye2 |
|
|
|
|
|
|
|
|
|
sub="sub-005" |
|
session="all" |
|
session_label='ses-01-02' |
|
split=MST # MST train/test split, alternative would be train on non-repeats and test on images that repeat (split=orig) |
|
task=C |
|
func_task_name=C |
|
resample_voxel_size=False |
|
resample_post_glmsingle=False |
|
load_from_resampled_file=True |
|
remove_close_to_MST=False |
|
remove_random_n=False |
|
resampled_vox_size=2.0 |
|
resample_method="trilinear" |
|
|
|
vox_dim_str=${resampled_vox_size//./_} |
|
|
|
|
|
model_name="${sub}_${session}_task-${task}_bs24_MST_rishab_${split}split_finetune_rtpreproc_unionmask" |
|
|
|
main_script="main-finetune-rt-preproc" |
|
|
|
glmsingle_path="/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/glmsingle_${sub}_${session_label}_task-${task}" |
|
|
|
|
|
export NUM_GPUS=1 # Set to equal gres=gpu:#! |
|
export BATCH_SIZE=24 |
|
export GLOBAL_BATCH_SIZE=$((BATCH_SIZE * NUM_GPUS)) |
|
|
|
Make sure another job doesnt use same port, here using random number |
|
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000)) |
|
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST") |
|
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) |
|
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l) |
|
echo MASTER_ADDR=${MASTER_ADDR} |
|
echo MASTER_PORT=${MASTER_PORT} |
|
echo WORLD_SIZE=${COUNT_NODE} |
|
|
|
echo model_name=${model_name} |
|
|
|
eval_dir="/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/evals/${model_name}" |
|
export SUB=${sub} |
|
export SESSION=${session} |
|
export SESSION_LABEL=${session_label} |
|
export SPLIT=${split} |
|
export TASK=${task} |
|
export FUNC_TASK_NAME=${func_task_name} |
|
export RESAMPLE_VOXEL_SIZE=${resample_voxel_size} |
|
export RESAMPLE_POST_GLMSINGLE=${resample_post_glmsingle} |
|
export LOAD_FROM_RESAMPLED_FILE=${load_from_resampled_file} |
|
export REMOVE_CLOSE_TO_MST=${remove_close_to_MST} |
|
export REMOVE_RANDOM_N=${remove_random_n} |
|
export RESAMPLED_VOX_SIZE=${resampled_vox_size} |
|
export RESAMPLE_METHOD=${resample_method} |
|
|
|
export glmsingle_path=${glmsingle_path} |
|
export eval_dir=${eval_dir} |
|
export WANDB_MODE="offline" |
|
|
|
|
|
jupyter nbconvert "${main_script}.ipynb" --to python && \ |
|
accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT "${main_script}.py" --data_path=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2 --model_name=${model_name} --no-multi_subject --subj=1 --batch_size=${BATCH_SIZE} --max_lr=3e-4 --mixup_pct=.33 --num_epochs=150 --use_prior --prior_scale=30 --clip_scale=1 --no-blurry_recon --blur_scale=.5 --no-use_image_aug --n_blocks=4 --hidden_dim=1024 --num_sessions=40 --ckpt_interval=999 --ckpt_saving --wandb_log --multisubject_ckpt=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/train_logs/multisubject_subj01_1024hid_nolow_300ep --seed="${SLURM_ARRAY_TASK_ID}" && \ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
echo "Remember to sync wandb logs with online node!" |
|
|