#!/bin/bash #SBATCH --job-name=sub-005_ses-01-02_task-C_finetune_rtpreproc_unionmask #SBATCH --ntasks-per-node=1 #SBATCH --nodes=1 #SBATCH --gres=gpu:1 #SBATCH --constraint=gpu80 #SBATCH --gpus-per-task=1 # Set to equal gres=gpu:#! #SBATCH --cpus-per-task=1 # 40 / 80 / 176 distributed across node #SBATCH --time=02:35:00 # total run time limit (HH:MM:SS) #SBATCH -e slurms/%A_%a.err # first create a "slurms" folder in current directory to store logs #SBATCH -o slurms/%A_%a.out #SBATCH --no-requeue #SBATCH --array=0 # 0 or 0-9 #SBATCH --mail-type=END #SBATCH --mail-user=rsiyer@princeton.edu echo "My SLURM_ARRAY_JOB_ID is ${SLURM_ARRAY_JOB_ID}" echo "My SLURM_ARRAY_TASK_ID is ${SLURM_ARRAY_TASK_ID}" echo "Executing on the machine: $(hostname)" module purge module load anaconda3/2023.3 module load fsl/6.0.6.2 conda activate rt_mindEye2 # source /scratch/gpfs/ri4541/MindEyeV2/src/fmri/bin/activate # verify these variables before submitting # --- sub="sub-005" session="all" session_label='ses-01-02' split=MST # MST train/test split, alternative would be train on non-repeats and test on images that repeat (split=orig) task=C func_task_name=C resample_voxel_size=False resample_post_glmsingle=False load_from_resampled_file=True remove_close_to_MST=False remove_random_n=False resampled_vox_size=2.0 resample_method="trilinear" # Convert decimal point to underscore vox_dim_str=${resampled_vox_size//./_} # model_name="${sub}_multi_task-${task}_bs24_MST_rishab_${split}split" model_name="${sub}_${session}_task-${task}_bs24_MST_rishab_${split}split_finetune_rtpreproc_unionmask" # model_name="${sub}_${session}_task-${task}_bs24_MST_rishab_${split}split_resampled_${vox_dim_str}mm_${resample_method}_seed${SLURM_ARRAY_TASK_ID}" main_script="main-finetune-rt-preproc" # glmsingle_path="/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/glmsingle-multi" glmsingle_path="/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/glmsingle_${sub}_${session_label}_task-${task}" # --- export NUM_GPUS=1 # Set to equal gres=gpu:#! export BATCH_SIZE=24 export GLOBAL_BATCH_SIZE=$((BATCH_SIZE * NUM_GPUS)) Make sure another job doesnt use same port, here using random number export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000)) export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST") export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l) echo MASTER_ADDR=${MASTER_ADDR} echo MASTER_PORT=${MASTER_PORT} echo WORLD_SIZE=${COUNT_NODE} echo model_name=${model_name} eval_dir="/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/evals/${model_name}" export SUB=${sub} export SESSION=${session} export SESSION_LABEL=${session_label} export SPLIT=${split} export TASK=${task} export FUNC_TASK_NAME=${func_task_name} export RESAMPLE_VOXEL_SIZE=${resample_voxel_size} export RESAMPLE_POST_GLMSINGLE=${resample_post_glmsingle} export LOAD_FROM_RESAMPLED_FILE=${load_from_resampled_file} export REMOVE_CLOSE_TO_MST=${remove_close_to_MST} export REMOVE_RANDOM_N=${remove_random_n} export RESAMPLED_VOX_SIZE=${resampled_vox_size} export RESAMPLE_METHOD=${resample_method} export glmsingle_path=${glmsingle_path} export eval_dir=${eval_dir} export WANDB_MODE="offline" # singlesubject finetuning jupyter nbconvert "${main_script}.ipynb" --to python && \ accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT "${main_script}.py" --data_path=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2 --model_name=${model_name} --no-multi_subject --subj=1 --batch_size=${BATCH_SIZE} --max_lr=3e-4 --mixup_pct=.33 --num_epochs=150 --use_prior --prior_scale=30 --clip_scale=1 --no-blurry_recon --blur_scale=.5 --no-use_image_aug --n_blocks=4 --hidden_dim=1024 --num_sessions=40 --ckpt_interval=999 --ckpt_saving --wandb_log --multisubject_ckpt=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/train_logs/multisubject_subj01_1024hid_nolow_300ep --seed="${SLURM_ARRAY_TASK_ID}" && \ # jupyter nbconvert recon_inference-multisession.ipynb --to python && \ # python recon_inference-multisession.py --model_name=${model_name} --subj=1 --no-blurry_recon --use_prior --hidden_dim=1024 --n_blocks=4 --glmsingle_path="${glmsingle_path}" && \ # #jupyter nbconvert recon_inference_orig.ipynb --to python && \ # #python recon_inference_orig.py --model_name=${model_name} --subj=1 --no-blurry_recon --use_prior --hidden_dim=1024 --n_blocks=4 && \ # jupyter nbconvert enhanced_recon_inference.ipynb --to python && \ # python enhanced_recon_inference.py --model_name=${model_name} --all_recons_path=${eval_dir}/${model_name}_all_recons.pt && \ # #jupyter nbconvert enhanced_recon_inference_orig.ipynb --to python && \ # #python enhanced_recon_inference_orig.py --model_name=${model_name} && \ # jupyter nbconvert final_evaluations.ipynb --to python && \ # python final_evaluations.py --model_name=${model_name} --all_recons_path=${eval_dir}/all_enhancedrecons.pt --data_path=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2 --eval_dir=${eval_dir} && \ #jupyter nbconvert final_evaluations_orig.ipynb --to python && \ #python final_evaluations_orig.py --model_name=${model_name} --all_recons_path=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/evals/${model_name}/${model_name}_all_recons.pt --data_path=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2 --eval_dir=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/evals/${model_name} echo "Remember to sync wandb logs with online node!"