Dataset Viewer
Auto-converted to Parquet
Country
stringclasses
52 values
Province
stringlengths
3
43
Rank
int32
1
855
Improvement
float64
-0.08
0.32
Gambia
Banjul
1
0.31955
Mali
Bamako
2
0.31376
Botswana
Francistown
3
0.28345
Egypt
Kafr ash Shaykh
4
0.27021
Algeria
Boumerdès
5
0.26634
Egypt
Ash Sharqiyah
6
0.26594
Egypt
Bur Sa`id
7
0.26321
Egypt
Ad Daqahliyah
8
0.26129
Egypt
Luxor
9
0.25765
Egypt
Dumyat
10
0.25121
Botswana
Gaborone
11
0.24716
Central African Republic
Bangui
12
0.24536
Egypt
Al Gharbiyah
13
0.24513
Egypt
Al Minufiyah
14
0.22851
Morocco
Grand Casablanca
15
0.22812
Botswana
Lobatse
16
0.22754
Algeria
Tizi Ouzou
17
0.22517
Libya
Tajura' wa an Nawahi al Arba
18
0.22499
Mozambique
Maputo
19
0.22482
Algeria
Sétif
20
0.22442
Angola
Luanda
21
0.22147
Tunisia
Ben Arous (Tunis Sud)
22
0.2203
Egypt
Asyut
23
0.21946
Algeria
Mila
24
0.21815
Algeria
Jijel
25
0.21676
Egypt
Qina
26
0.21588
Libya
Al Jifarah
27
0.21512
Egypt
Al Buhayrah
28
0.21469
Algeria
Blida
29
0.21357
Algeria
Constantine
30
0.20791
Algeria
Tipaza
31
0.20667
Algeria
Mostaganem
32
0.20647
Tunisia
Manubah
33
0.20299
Niger
Niamey
34
0.20255
Egypt
Al Qalyubiyah
35
0.2005
Tunisia
Monastir
36
0.19901
Algeria
Bordj Bou Arréridj
37
0.19734
Ethiopia
Addis Ababa
38
0.19314
Algeria
Béjaïa
39
0.1923
Algeria
Aïn Témouchent
40
0.19053
Kenya
Nairobi
41
0.19051
Tunisia
Mahdia
42
0.18971
Zimbabwe
Harare
43
0.18842
Egypt
Suhaj
44
0.18763
Algeria
Annaba
45
0.18544
Algeria
Mascara
46
0.18378
Algeria
Bouira
47
0.18271
Algeria
Oran
48
0.18269
Algeria
Aïn Defla
49
0.18008
Algeria
Chlef
50
0.17978
Algeria
El Tarf
51
0.1785
Tunisia
Zaghouan
52
0.17821
Morocco
Gharb - Chrarda - Béni Hssen
53
0.17795
Senegal
Thiès
54
0.17778
Algeria
Skikda
55
0.17667
Senegal
Dakar
56
0.17611
Tunisia
Sousse
57
0.17483
Algeria
Alger
58
0.17438
Tunisia
Kairouan
59
0.17427
Egypt
Al Qahirah
60
0.17394
Algeria
Guelma
61
0.17316
Algeria
Oum el Bouaghi
62
0.17177
Algeria
Batna
63
0.17102
Uganda
Kampala
64
0.17047
Republic of the Congo
Pointe Noire
65
0.17029
Tunisia
Jendouba
66
0.16717
Tunisia
Nabeul
67
0.16704
South Africa
Gauteng
68
0.16687
Egypt
Al Iskandariyah
69
0.16506
Burkina Faso
Kadiogo
70
0.16066
Tunisia
Béja
71
0.16058
Egypt
Al Isma`iliyah
72
0.15984
United Republic of Tanzania
Dar-Es-Salaam
73
0.15948
Tunisia
Tunis
74
0.15855
Zimbabwe
Bulawayo
75
0.15845
Botswana
Selebi-Phikwe
76
0.15845
Algeria
Relizane
77
0.15655
United Republic of Tanzania
Zanzibar West
78
0.15601
Senegal
Kaolack
79
0.1557
Tunisia
Bizerte
80
0.15402
Algeria
Souk Ahras
81
0.15168
Morocco
Chaouia - Ouardigha
82
0.14985
Senegal
Diourbel
83
0.14867
Libya
Az Zawiyah
84
0.14612
Guinea Bissau
Bissau
85
0.14429
Tunisia
Sfax
86
0.14233
Benin
Ouémé
87
0.14005
Tunisia
Siliana
88
0.13976
Morocco
Doukkala - Abda
89
0.13972
Algeria
Médéa
90
0.13814
Ivory Coast
Fromager
91
0.13803
Gambia
Central River
92
0.13574
Morocco
Marrakech - Tensift - Al Haouz
93
0.13534
Ivory Coast
Sud-Bandama
94
0.13477
Egypt
Al Fayyum
95
0.13474
Botswana
Jwaneng
96
0.13446
Ivory Coast
Lacs
97
0.1341
Gambia
Lower River
98
0.13397
Gambia
Upper River
99
0.13338
Mauritania
Nouakchott
100
0.13255
End of preview. Expand in Data Studio

Temporal Neighborhood-Level Material Wealth Maps of Africa (1990–2019)

This repository provides neighborhood-level material wealth estimates across Africa for the period 1990–2019. The data are stored in a single GeoTIFF file (wealth_map.tif), where each band corresponds to a three-year interval. These estimates were generated using a deep-learning model trained on Demographic and Health Surveys (DHS) data, as described in Pettersson et al. (2023).

Overview

  • Data File: wealth_map.tif
  • Spatial Resolution: ~6.72 km x 6.72 km
  • Geographic Coverage: Africa
  • Temporal Coverage: 1990–2019 (in 3-year intervals)
  • Measurement Unit: International Wealth Index (IWI), scaled from 0 to 1
  • File Size: ~52.2 MB
  • MD5 Checksum: ab33e78dceeae49c06e753f0bb7eb904

Bands and Time Periods

Band Time Window
1 1990–1992
2 1993–1995
3 1996–1998
4 1999–2001
5 2002–2004
6 2005–2007
7 2008–2010
8 2011–2013
9 2014–2016
10 2017–2019

Description

These maps estimate the International Wealth Index (IWI) at a neighborhood resolution of approximately 6.72 km for all populated areas in Africa, as determined by the Global Human Settlement Layer (GHSL). The IWI is scaled between 0 and 1, representing a relative wealth measure derived from satellite imagery (Landsat, DMSP, and VIIRS).

For further methodological details, please see:

Pettersson, M. B., Kakooei, M., Ortheden, J., Johansson, F. D., & Daoud, A. (2023).
Time Series of Satellite Imagery Improve Deep Learning Estimates of Neighborhood-Level Poverty in Africa.
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI 2023), 6165–6173.
doi:10.24963/ijcai.2023/684

For more information: aidevlab.org.

Additional Metadata

  • Deposit Date: 2023-10-20
  • Metadata Release Date: 2023-10-20
  • Publication Date: 2023-10-20
  • Type: TIFF Image
  • Description: Multiband GeoTIFF containing IWI estimates for 10 time windows between 1990 and 2019.

How to Use

Quick Start in Python

import rasterio
import numpy as np

# Open the dataset
with rasterio.open("wealth_map.tif") as src:
    # Read band 1 (1990–1992)
    band1 = src.read(1)
    # Read band 10 (2017–2019)
    band10 = src.read(10)
    
    # Print basic info
    print("Band 1 shape:", band1.shape)
    print("Band 10 shape:", band10.shape)
    
    # Example: compute the mean wealth in 2017–2019
    mean_wealth_2017_2019 = np.nanmean(band10)
    print("Mean IWI (2017–2019):", mean_wealth_2017_2019)

Additional Tabular Data: poverty_improvement_by_state.csv

This CSV file provides an aggregate measure of how average wealth has changed between the early 1990s and the late 2010s at the first-level administrative region (state/province) across Africa. Each row corresponds to a specific country–province pair, along with the estimated improvement in wealth over this period.

Columns

Country: Name of the country. Province: Name of the first-level administrative region (e.g., state or province). Rank: Ordering from largest to smallest improvement (1 indicates the greatest improvement). Improvement: Estimated change in the mean International Wealth Index (IWI) between 1990–1992 and 2017–2019 for that province.

Data Source

Derived from the same deep-learning model as the main dataset (wealth_map.tif), as described in Pettersson et al. (2023). The IWI values for each province were averaged over the initial time window (1990–1992) and final time window (2017–2019). The difference of these two averages forms the Improvement value.

Example Rows

Country, Province, Rank, Improvement
Gambia, Banjul, 1, 0.31955
Mali, Bamako, 2, 0.31376
Botswana, Francistown, 3, 0.28345
Egypt, Kafr ash Shaykh, 4, 0.27021
Algeria, Boumerdès, 5, 0.26634
Egypt, Ash Sharqiyah, 6, 0.26594
Egypt, Bur Said, 7, 0.26321
Egypt, Ad Daqahliyah, 8, 0.26129

This table can help users quickly identify which provinces experienced the most significant gains in material wealth (as measured by IWI) over the nearly three-decade span. It complements the raster dataset by offering a province-level summary of changes in living conditions.

Disclaimer

While we have made every effort to ensure the accuracy and reliability of these wealth estimates, they should be interpreted within the context and limitations of the source data and modeling methods. The authors and contributors accept no liability for any loss or damage arising from the use of this data.

Downloads last month
65

Collection including cjerzak/TemporalNeighborhoodMaterialWealthAfrica