File size: 9,186 Bytes
43d0356
d8599ba
 
 
 
 
 
 
 
 
 
 
 
9ff5a31
 
 
 
 
 
 
 
 
 
5c9a61e
 
 
 
 
 
 
 
 
 
 
9ff5a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c9a61e
 
 
 
 
 
 
 
 
 
 
9ff5a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43d0356
9ff5a31
d8599ba
74e66b3
e366eea
d8599ba
74e66b3
 
 
 
 
dc750ef
d8599ba
d5c1060
7dae1b8
d8599ba
 
 
 
 
 
 
983323c
d8599ba
93bf72f
d8599ba
74e66b3
 
 
 
 
d5c1060
74e66b3
 
 
 
 
 
 
 
 
 
9502712
d8599ba
0683d11
d8599ba
 
 
 
 
74e66b3
d8599ba
 
 
7dae1b8
d8599ba
 
 
 
 
 
 
74e66b3
 
 
 
 
 
 
 
 
 
 
 
 
d8599ba
 
9ff5a31
 
7dae1b8
 
9ff5a31
44c6524
 
7dae1b8
44c6524
983323c
d8599ba
 
 
 
e366eea
 
d8599ba
 
 
ed0a2bd
636b5fb
 
 
d5c1060
636b5fb
d8599ba
 
 
 
0683d11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
license: cc-by-nc-nd-4.0
task_categories:
- audio-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: GZ_IsoTech Dataset
size_categories:
- n<1K
dataset_info:
  - config_name: default
    features:
      - name: audio
        dtype:
          audio:
            sampling_rate: 44100
      - name: mel
        dtype: image
      - name: label
        dtype:
          class_label:
            names:
                '0': vibrato
                '1': upward_portamento
                '2': downward_portamento
                '3': returning_portamento
                '4': glissando
                '5': tremolo
                '6': harmonics
                '7': plucks
      - name: name
        dtype: string
      - name: cname
        dtype: string
      - name: pinyin
        dtype: string
    splits:
      - name: train
        num_bytes: 1102596
        num_examples: 2328
      - name: test
        num_bytes: 223896
        num_examples: 496
    download_size: 273681660
    dataset_size: 1326492
  - config_name: eval
    features:
      - name: mel
        dtype: image
      - name: cqt
        dtype: image
      - name: chroma
        dtype: image
      - name: label
        dtype:
          class_label:
            names:
                '0': vibrato
                '1': upward_portamento
                '2': downward_portamento
                '3': returning_portamento
                '4': glissando
                '5': tremolo
                '6': harmonics
                '7': plucks
    splits:
      - name: train
        num_bytes: 1560776
        num_examples: 2389
      - name: validation
        num_bytes: 155960
        num_examples: 253
      - name: test
        num_bytes: 158410
        num_examples: 257
    download_size: 249961089
    dataset_size: 1875146
configs:
  - config_name: default
    data_files:
      - split: train
        path: default/train/data-*.arrow
      - split: test
        path: default/test/data-*.arrow
  - config_name: eval
    data_files:
      - split: train
        path: eval/train/data-*.arrow
      - split: validation
        path: eval/validation/data-*.arrow
      - split: test
        path: eval/test/data-*.arrow
---

# Dataset Card for GZ_IsoTech Dataset
## Original Content
The dataset is created and used for Guzheng playing technique detection by [[1]](https://archives.ismir.net/ismir2022/paper/000037.pdf). The original dataset comprises 2,824 variable-length audio clips showcasing various Guzheng playing techniques. Specifically, 2,328 clips were sourced from virtual sound banks, while 496 clips were performed by a professional Guzheng artist.

The clips are annotated in eight categories, with a Chinese pinyin and Chinese characters written in parentheses: _Vibrato (chanyin 颤音), Upward Portamento (shanghuayin 上滑音), Downward Portamento (xiahuayin 下滑音), Returning Portamento (huihuayin 回滑音), Glissando (guazou 刮奏, huazhi 花指...), Tremolo (yaozhi 摇指), Harmonic (fanyin 泛音), Plucks (gou 勾, da 打, mo 抹, tuo 托...)_.

## Integration
In the original dataset, the labels were represented by folder names, which provided Italian and Chinese pinyin labels. During the integration process, we added the corresponding Chinese character labels to ensure comprehensiveness. Lastly, after integration, the data structure has six columns: audio clip sampled at a rate of 44,100 Hz, mel spectrogram, numerical label, Italian label, Chinese character label, and Chinese pinyin label. The data number after integration remains at 2,824 with a total duration of 63.98 minutes. The average duration is 1.36 seconds.

Based on the aforementioned original dataset, we conducted data processing to construct the [default subset](#default-subset) of the current integrated version of the dataset. Due to the pre-existing split in the original dataset, wherein the data has been partitioned approximately in a 4:1 ratio for training and testing sets, we uphold the original data division approach for the default subset. The data structure of the default subset can be viewed in the [viewer](https://huggingface.co/datasets/ccmusic-database/GZ_IsoTech/viewer). In addition, we have retained the [eval subset](#eval-subset) used in the experiment for easy replication.

## Data Structure
<https://huggingface.co/datasets/ccmusic-database/GZ_IsoTech/viewer>

### Data Instances
.zip(.flac, .csv)

### Data Fields
Categorization of the clips is based on the diverse playing techniques characteristic of the guzheng, the clips are divided into eight categories: Vibrato (chanyin), Upward Portamento (shanghuayin), Downward Portamento (xiahuayin), Returning Portamento (huihuayin), Glissando (guazou, huazhi), Tremolo (yaozhi), Harmonic (fanyin), Plucks (gou, da, mo, tuo…).

## Dataset Description
### Dataset Summary
A dataset for Guzheng playing technique classification

### Statistics
| ![](https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/gziso_pie.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/gziso.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/gziso_bar.jpg) |
| :---------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------: |
|                                              **Fig. 1**                                               |                                            **Fig. 2**                                             |                                              **Fig. 3**                                               |

Firstly, **Fig. 1** illustrates the number and proportion of audio clips in each category. The category with the largest proportion is Upward Portamento, accounting for 19.0% with 536 clips. The smallest category is Tremolo, accounting for 8.1% with 228 clips. The difference in proportion between the largest and smallest categories is 10.9%. Next, **Fig. 2** displays the total audio duration for each category. The category with the longest total duration is Upward Portamento, with 14.11 minutes, consistent with the results shown in the pie chart. However, the category with the shortest total duration is Plucks, with a total of 5.06 minutes, which differs from the ranking in the pie chart. Overall, this dataset is comparatively balanced within the database. Finally, **Fig. 3** presents the number of audio clips distributed across different duration intervals. Most of the audio clips are concentrated in the 0-3 second range. Among them, 1,742 audio clips are concentrated in the 0-1.5 second range, while 1,033 clips are concentrated in the 1.5-3 second range. Only 49 clips exceed 3 seconds in length.

|  Statistical items  |        Values        |
| :-----------------: | :------------------: |
|     Total count     |        `2824`        |
|  Total duration(s)  | `3838.6787528344717` |
|  Mean duration(s)   | `1.359305507377644`  |
|   Min duration(s)   | `0.3935827664399093` |
|   Max duration(s)   |        `11.5`        |
|  Eval subset total  |        `2899`        |
| Class with max durs |     `Glissando`      |

### Supported Tasks and Leaderboards
MIR, audio classification, Guzheng playing technique classification

### Languages
Chinese, English

## Usage
### Default subset
```python
from datasets import load_dataset

ds = load_dataset("ccmusic-database/GZ_IsoTech", name="default")
for item in ds["train"]:
    print(item)

for item in ds["test"]:
    print(item)
```

### Eval subset
```python
from datasets import load_dataset

ds = load_dataset("ccmusic-database/GZ_IsoTech", name="eval")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
```

## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/GZ_IsoTech
cd GZ_IsoTech
```

## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech>

## Additional Information
### Dataset Curators
Dichucheng Li

### Evaluation
[1] [Li, Dichucheng, Yulun Wu, Qinyu Li, Jiahao Zhao, Yi Yu, Fan Xia and Wei Li. “Playing Technique Detection by Fusing Note Onset Information in Guzheng Performance.” International Society for Music Information Retrieval Conference (2022).](https://archives.ismir.net/ismir2022/paper/000037.pdf)<br>
[2] <https://huggingface.co/ccmusic-database/GZ_IsoTech>

### Citation Information
```bibtex
@inproceedings{LiWLZ0X022,
  author    = {Dichucheng Li and Yulun Wu and Qinyu Li and Jiahao Zhao and Yi Yu and Fan Xia and Wei Li},
  title     = {Playing Technique Detection by Fusing Note Onset Information in Guzheng Performance},
  booktitle = {Proceedings of the 23rd International Society for Music Information Retrieval Conference, {ISMIR} 2022, Bengaluru, India, December 4-8, 2022},
  pages     = {314-320},
  year      = {2022}
}
```

### Contributions
A dataset for Guzheng playing technique