Datasets:
File size: 9,186 Bytes
43d0356 d8599ba 9ff5a31 5c9a61e 9ff5a31 5c9a61e 9ff5a31 43d0356 9ff5a31 d8599ba 74e66b3 e366eea d8599ba 74e66b3 dc750ef d8599ba d5c1060 7dae1b8 d8599ba 983323c d8599ba 93bf72f d8599ba 74e66b3 d5c1060 74e66b3 9502712 d8599ba 0683d11 d8599ba 74e66b3 d8599ba 7dae1b8 d8599ba 74e66b3 d8599ba 9ff5a31 7dae1b8 9ff5a31 44c6524 7dae1b8 44c6524 983323c d8599ba e366eea d8599ba ed0a2bd 636b5fb d5c1060 636b5fb d8599ba 0683d11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
license: cc-by-nc-nd-4.0
task_categories:
- audio-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: GZ_IsoTech Dataset
size_categories:
- n<1K
dataset_info:
- config_name: default
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
- name: mel
dtype: image
- name: label
dtype:
class_label:
names:
'0': vibrato
'1': upward_portamento
'2': downward_portamento
'3': returning_portamento
'4': glissando
'5': tremolo
'6': harmonics
'7': plucks
- name: name
dtype: string
- name: cname
dtype: string
- name: pinyin
dtype: string
splits:
- name: train
num_bytes: 1102596
num_examples: 2328
- name: test
num_bytes: 223896
num_examples: 496
download_size: 273681660
dataset_size: 1326492
- config_name: eval
features:
- name: mel
dtype: image
- name: cqt
dtype: image
- name: chroma
dtype: image
- name: label
dtype:
class_label:
names:
'0': vibrato
'1': upward_portamento
'2': downward_portamento
'3': returning_portamento
'4': glissando
'5': tremolo
'6': harmonics
'7': plucks
splits:
- name: train
num_bytes: 1560776
num_examples: 2389
- name: validation
num_bytes: 155960
num_examples: 253
- name: test
num_bytes: 158410
num_examples: 257
download_size: 249961089
dataset_size: 1875146
configs:
- config_name: default
data_files:
- split: train
path: default/train/data-*.arrow
- split: test
path: default/test/data-*.arrow
- config_name: eval
data_files:
- split: train
path: eval/train/data-*.arrow
- split: validation
path: eval/validation/data-*.arrow
- split: test
path: eval/test/data-*.arrow
---
# Dataset Card for GZ_IsoTech Dataset
## Original Content
The dataset is created and used for Guzheng playing technique detection by [[1]](https://archives.ismir.net/ismir2022/paper/000037.pdf). The original dataset comprises 2,824 variable-length audio clips showcasing various Guzheng playing techniques. Specifically, 2,328 clips were sourced from virtual sound banks, while 496 clips were performed by a professional Guzheng artist.
The clips are annotated in eight categories, with a Chinese pinyin and Chinese characters written in parentheses: _Vibrato (chanyin 颤音), Upward Portamento (shanghuayin 上滑音), Downward Portamento (xiahuayin 下滑音), Returning Portamento (huihuayin 回滑音), Glissando (guazou 刮奏, huazhi 花指...), Tremolo (yaozhi 摇指), Harmonic (fanyin 泛音), Plucks (gou 勾, da 打, mo 抹, tuo 托...)_.
## Integration
In the original dataset, the labels were represented by folder names, which provided Italian and Chinese pinyin labels. During the integration process, we added the corresponding Chinese character labels to ensure comprehensiveness. Lastly, after integration, the data structure has six columns: audio clip sampled at a rate of 44,100 Hz, mel spectrogram, numerical label, Italian label, Chinese character label, and Chinese pinyin label. The data number after integration remains at 2,824 with a total duration of 63.98 minutes. The average duration is 1.36 seconds.
Based on the aforementioned original dataset, we conducted data processing to construct the [default subset](#default-subset) of the current integrated version of the dataset. Due to the pre-existing split in the original dataset, wherein the data has been partitioned approximately in a 4:1 ratio for training and testing sets, we uphold the original data division approach for the default subset. The data structure of the default subset can be viewed in the [viewer](https://huggingface.co/datasets/ccmusic-database/GZ_IsoTech/viewer). In addition, we have retained the [eval subset](#eval-subset) used in the experiment for easy replication.
## Data Structure
<https://huggingface.co/datasets/ccmusic-database/GZ_IsoTech/viewer>
### Data Instances
.zip(.flac, .csv)
### Data Fields
Categorization of the clips is based on the diverse playing techniques characteristic of the guzheng, the clips are divided into eight categories: Vibrato (chanyin), Upward Portamento (shanghuayin), Downward Portamento (xiahuayin), Returning Portamento (huihuayin), Glissando (guazou, huazhi), Tremolo (yaozhi), Harmonic (fanyin), Plucks (gou, da, mo, tuo…).
## Dataset Description
### Dataset Summary
A dataset for Guzheng playing technique classification
### Statistics
|  |  |  |
| :---------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------: |
| **Fig. 1** | **Fig. 2** | **Fig. 3** |
Firstly, **Fig. 1** illustrates the number and proportion of audio clips in each category. The category with the largest proportion is Upward Portamento, accounting for 19.0% with 536 clips. The smallest category is Tremolo, accounting for 8.1% with 228 clips. The difference in proportion between the largest and smallest categories is 10.9%. Next, **Fig. 2** displays the total audio duration for each category. The category with the longest total duration is Upward Portamento, with 14.11 minutes, consistent with the results shown in the pie chart. However, the category with the shortest total duration is Plucks, with a total of 5.06 minutes, which differs from the ranking in the pie chart. Overall, this dataset is comparatively balanced within the database. Finally, **Fig. 3** presents the number of audio clips distributed across different duration intervals. Most of the audio clips are concentrated in the 0-3 second range. Among them, 1,742 audio clips are concentrated in the 0-1.5 second range, while 1,033 clips are concentrated in the 1.5-3 second range. Only 49 clips exceed 3 seconds in length.
| Statistical items | Values |
| :-----------------: | :------------------: |
| Total count | `2824` |
| Total duration(s) | `3838.6787528344717` |
| Mean duration(s) | `1.359305507377644` |
| Min duration(s) | `0.3935827664399093` |
| Max duration(s) | `11.5` |
| Eval subset total | `2899` |
| Class with max durs | `Glissando` |
### Supported Tasks and Leaderboards
MIR, audio classification, Guzheng playing technique classification
### Languages
Chinese, English
## Usage
### Default subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/GZ_IsoTech", name="default")
for item in ds["train"]:
print(item)
for item in ds["test"]:
print(item)
```
### Eval subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/GZ_IsoTech", name="eval")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/GZ_IsoTech
cd GZ_IsoTech
```
## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech>
## Additional Information
### Dataset Curators
Dichucheng Li
### Evaluation
[1] [Li, Dichucheng, Yulun Wu, Qinyu Li, Jiahao Zhao, Yi Yu, Fan Xia and Wei Li. “Playing Technique Detection by Fusing Note Onset Information in Guzheng Performance.” International Society for Music Information Retrieval Conference (2022).](https://archives.ismir.net/ismir2022/paper/000037.pdf)<br>
[2] <https://huggingface.co/ccmusic-database/GZ_IsoTech>
### Citation Information
```bibtex
@inproceedings{LiWLZ0X022,
author = {Dichucheng Li and Yulun Wu and Qinyu Li and Jiahao Zhao and Yi Yu and Fan Xia and Wei Li},
title = {Playing Technique Detection by Fusing Note Onset Information in Guzheng Performance},
booktitle = {Proceedings of the 23rd International Society for Music Information Retrieval Conference, {ISMIR} 2022, Bengaluru, India, December 4-8, 2022},
pages = {314-320},
year = {2022}
}
```
### Contributions
A dataset for Guzheng playing technique |