admin commited on
Commit
9ff5a31
·
1 Parent(s): 9b73ab4
GZ_IsoTech.py DELETED
@@ -1,185 +0,0 @@
1
- import os
2
- import random
3
- import hashlib
4
- import datasets
5
- from datasets.tasks import ImageClassification
6
-
7
- _HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"
8
-
9
- _DOMAIN = f"{_HOMEPAGE}/resolve/master/data"
10
-
11
- _NAMES = {
12
- "vibrato": ["颤音", "chan4_yin1"],
13
- "upward_portamento": ["上滑音", "shang4_hua2_yin1"],
14
- "downward_portamento": ["下滑音", "xia4_hua2_yin1"],
15
- "returning_portamento": ["回滑音", "hui2_hua2_yin1"],
16
- "glissando": ["刮奏, 花指", "gua1_zou4/hua1_zhi3"],
17
- "tremolo": ["摇指", "yao2_zhi3"],
18
- "harmonics": ["泛音", "fan4_yin1"],
19
- "plucks": ["勾, 打, 抹, 托, ...", "gou1/da3/mo3/tuo1/etc"],
20
- }
21
-
22
- _URLS = {
23
- "audio": f"{_DOMAIN}/audio.zip",
24
- "mel": f"{_DOMAIN}/mel.zip",
25
- "eval": f"{_DOMAIN}/eval.zip",
26
- }
27
-
28
-
29
- class GZ_IsoTech(datasets.GeneratorBasedBuilder):
30
- def _info(self):
31
- return datasets.DatasetInfo(
32
- features=(
33
- datasets.Features(
34
- {
35
- "audio": datasets.Audio(sampling_rate=44100),
36
- "mel": datasets.Image(),
37
- "label": datasets.features.ClassLabel(
38
- names=list(_NAMES.keys())
39
- ),
40
- "name": datasets.Value("string"),
41
- "cname": datasets.Value("string"),
42
- "pinyin": datasets.Value("string"),
43
- }
44
- )
45
- if self.config.name == "default"
46
- else (
47
- datasets.Features(
48
- {
49
- "mel": datasets.Image(),
50
- "cqt": datasets.Image(),
51
- "chroma": datasets.Image(),
52
- "label": datasets.features.ClassLabel(
53
- names=list(_NAMES.keys())
54
- ),
55
- }
56
- )
57
- )
58
- ),
59
- supervised_keys=("mel", "label"),
60
- homepage=_HOMEPAGE,
61
- license="CC-BY-NC-ND",
62
- version="1.2.0",
63
- task_templates=[
64
- ImageClassification(
65
- task="image-classification",
66
- image_column="image",
67
- label_column="label",
68
- )
69
- ],
70
- )
71
-
72
- def _str2md5(self, original_string: str):
73
- md5_obj = hashlib.md5()
74
- md5_obj.update(original_string.encode("utf-8"))
75
- return md5_obj.hexdigest()
76
-
77
- def _split_generators(self, dl_manager):
78
- if self.config.name == "default":
79
- audio_files = dl_manager.download_and_extract(_URLS["audio"])
80
- mel_files = dl_manager.download_and_extract(_URLS["mel"])
81
- train_files, files = {}, {}
82
- for path in dl_manager.iter_files([audio_files]):
83
- fname: str = os.path.basename(path)
84
- dirname = os.path.dirname(path)
85
- splt = os.path.basename(os.path.dirname(dirname))
86
- if fname.endswith(".wav"):
87
- cls = f"{splt}/{os.path.basename(dirname)}/"
88
- item_id = self._str2md5(cls + fname.split(".wa")[0])
89
- if splt == "train":
90
- train_files[item_id] = {"audio": path}
91
-
92
- else:
93
- files[item_id] = {"audio": path}
94
-
95
- for path in dl_manager.iter_files([mel_files]):
96
- fname = os.path.basename(path)
97
- dirname = os.path.dirname(path)
98
- splt = os.path.basename(os.path.dirname(dirname))
99
- if fname.endswith(".jpg"):
100
- cls = f"{splt}/{os.path.basename(dirname)}/"
101
- item_id = self._str2md5(cls + fname.split(".jp")[0])
102
- if splt == "train":
103
- train_files[item_id]["mel"] = path
104
-
105
- else:
106
- files[item_id]["mel"] = path
107
-
108
- trainset = list(train_files.values())
109
- testset = list(files.values())
110
- random.shuffle(trainset)
111
- random.shuffle(testset)
112
- return [
113
- datasets.SplitGenerator(
114
- name=datasets.Split.TRAIN,
115
- gen_kwargs={"files": trainset},
116
- ),
117
- datasets.SplitGenerator(
118
- name=datasets.Split.TEST,
119
- gen_kwargs={"files": testset},
120
- ),
121
- ]
122
-
123
- else:
124
- data_files = dl_manager.download_and_extract(_URLS["eval"])
125
- trainset, validset, testset = [], [], []
126
- files = {key: [] for key in _NAMES}
127
- for path in dl_manager.iter_files([data_files]):
128
- clsdir = os.path.dirname(path)
129
- cls = os.path.basename(clsdir)
130
- splt = os.path.basename(os.path.dirname(clsdir))
131
- if path.endswith(".jpg") and "mel" in path:
132
- if splt == "train":
133
- trainset.append(path)
134
- else:
135
- files[cls].append(path)
136
-
137
- for cls in _NAMES:
138
- count = len(files[cls])
139
- if count < 2:
140
- raise ValueError(f"Class {cls} in test data has items < 2 !")
141
-
142
- random.shuffle(files[cls])
143
- half = max(count // 2, 1)
144
- validset += files[cls][:half]
145
- testset += files[cls][half:]
146
-
147
- random.shuffle(trainset)
148
- random.shuffle(validset)
149
- random.shuffle(testset)
150
- return [
151
- datasets.SplitGenerator(
152
- name=datasets.Split.TRAIN,
153
- gen_kwargs={"files": trainset},
154
- ),
155
- datasets.SplitGenerator(
156
- name=datasets.Split.VALIDATION,
157
- gen_kwargs={"files": validset},
158
- ),
159
- datasets.SplitGenerator(
160
- name=datasets.Split.TEST,
161
- gen_kwargs={"files": testset},
162
- ),
163
- ]
164
-
165
- def _generate_examples(self, files):
166
- if self.config.name == "default":
167
- for i, path in enumerate(files):
168
- pt = os.path.basename(os.path.dirname(path["audio"]))
169
- yield i, {
170
- "audio": path["audio"],
171
- "mel": path["mel"],
172
- "label": pt,
173
- "name": pt,
174
- "cname": _NAMES[pt][0],
175
- "pinyin": _NAMES[pt][1],
176
- }
177
-
178
- else:
179
- for i, path in enumerate(files):
180
- yield i, {
181
- "mel": path,
182
- "cqt": path.replace("mel", "cqt"),
183
- "chroma": path.replace("mel", "chroma"),
184
- "label": os.path.basename(os.path.dirname(path)),
185
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -11,9 +11,71 @@ tags:
11
  pretty_name: GZ_IsoTech Dataset
12
  size_categories:
13
  - n<1K
14
- viewer: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
- If you want to view the dataset, please visit [here](https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/dataPeview)
17
  # Dataset Card for GZ_IsoTech Dataset
18
  ## Original Content
19
  The dataset is created and used for Guzheng playing technique detection by [[1]](https://archives.ismir.net/ismir2022/paper/000037.pdf). The original dataset comprises 2,824 variable-length audio clips showcasing various Guzheng playing techniques. Specifically, 2,328 clips were sourced from virtual sound banks, while 496 clips were performed by a professional Guzheng artist.
@@ -23,7 +85,7 @@ The clips are annotated in eight categories, with a Chinese pinyin and Chinese c
23
  ## Integration
24
  In the original dataset, the labels were represented by folder names, which provided Italian and Chinese pinyin labels. During the integration process, we added the corresponding Chinese character labels to ensure comprehensiveness. Lastly, after integration, the data structure has six columns: audio clip sampled at a rate of 44,100 Hz, mel spectrogram, numerical label, Italian label, Chinese character label, and Chinese pinyin label. The data number after integration remains at 2,824 with a total duration of 63.98 minutes. The average duration is 1.36 seconds.
25
 
26
- Based on the aforementioned original dataset, we conducted data processing to construct the [default subset](#default-subset) of the current integrated version of the dataset. Due to the pre-existing split in the original dataset, wherein the data has been partitioned approximately in a 4:1 ratio for training and testing sets, we uphold the original data division approach for the default subset. The data structure of the default subset can be viewed in the [viewer](https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/dataPeview). In addition, we have retained the [eval subset](#eval-subset) used in the experiment for easy replication.
27
 
28
  ## Default Subset Structure
29
  <style>
@@ -111,6 +173,12 @@ for item in ds["test"]:
111
  print(item)
112
  ```
113
 
 
 
 
 
 
 
114
  ## Dataset Creation
115
  ### Curation Rationale
116
  The Guzheng is a kind of traditional Chinese instrument with diverse playing techniques. Instrument playing techniques (IPT) play an important role in musical performance. However, most of the existing works for IPT detection show low efficiency for variable-length audio and do not assure generalization as they rely on a single sound bank for training and testing. In this study, we propose an end-to-end Guzheng playing technique detection system using Fully Convolutional Networks that can be applied to variable-length audio. Because each Guzheng playing technique is applied to a note, a dedicated onset detector is trained to divide an audio into several notes and its predictions are fused with frame-wise IPT predictions. During fusion, we add the IPT predictions frame by frame inside each note and get the IPT with the highest probability within each note as the final output of that note. We create a new dataset named GZ_IsoTech from multiple sound banks and real-world recordings for Guzheng performance analysis. Our approach achieves 87.97% in frame-level accuracy and 80.76% in note-level F1 score, outperforming existing works by a large margin, which indicates the effectiveness of our proposed method in IPT detection.
 
11
  pretty_name: GZ_IsoTech Dataset
12
  size_categories:
13
  - n<1K
14
+ dataset_info:
15
+ - config_name: default
16
+ features:
17
+ - name: audio
18
+ dtype:
19
+ audio:
20
+ sampling_rate: 44100
21
+ - name: mel
22
+ dtype: image
23
+ - name: label
24
+ dtype: int8
25
+ - name: name
26
+ dtype: string
27
+ - name: cname
28
+ dtype: string
29
+ - name: pinyin
30
+ dtype: string
31
+ splits:
32
+ - name: train
33
+ num_bytes: 1102596
34
+ num_examples: 2328
35
+ - name: test
36
+ num_bytes: 223896
37
+ num_examples: 496
38
+ download_size: 273681660
39
+ dataset_size: 1326492
40
+ - config_name: eval
41
+ features:
42
+ - name: mel
43
+ dtype: image
44
+ - name: cqt
45
+ dtype: image
46
+ - name: chroma
47
+ dtype: image
48
+ - name: label
49
+ dtype: int8
50
+ splits:
51
+ - name: train
52
+ num_bytes: 1560776
53
+ num_examples: 2389
54
+ - name: validation
55
+ num_bytes: 155960
56
+ num_examples: 253
57
+ - name: test
58
+ num_bytes: 158410
59
+ num_examples: 257
60
+ download_size: 249961089
61
+ dataset_size: 1875146
62
+ configs:
63
+ - config_name: default
64
+ data_files:
65
+ - split: train
66
+ path: default/train/data-*.arrow
67
+ - split: test
68
+ path: default/test/data-*.arrow
69
+ - config_name: eval
70
+ data_files:
71
+ - split: train
72
+ path: eval/train/data-*.arrow
73
+ - split: validation
74
+ path: eval/validation/data-*.arrow
75
+ - split: test
76
+ path: eval/test/data-*.arrow
77
  ---
78
+
79
  # Dataset Card for GZ_IsoTech Dataset
80
  ## Original Content
81
  The dataset is created and used for Guzheng playing technique detection by [[1]](https://archives.ismir.net/ismir2022/paper/000037.pdf). The original dataset comprises 2,824 variable-length audio clips showcasing various Guzheng playing techniques. Specifically, 2,328 clips were sourced from virtual sound banks, while 496 clips were performed by a professional Guzheng artist.
 
85
  ## Integration
86
  In the original dataset, the labels were represented by folder names, which provided Italian and Chinese pinyin labels. During the integration process, we added the corresponding Chinese character labels to ensure comprehensiveness. Lastly, after integration, the data structure has six columns: audio clip sampled at a rate of 44,100 Hz, mel spectrogram, numerical label, Italian label, Chinese character label, and Chinese pinyin label. The data number after integration remains at 2,824 with a total duration of 63.98 minutes. The average duration is 1.36 seconds.
87
 
88
+ Based on the aforementioned original dataset, we conducted data processing to construct the [default subset](#default-subset) of the current integrated version of the dataset. Due to the pre-existing split in the original dataset, wherein the data has been partitioned approximately in a 4:1 ratio for training and testing sets, we uphold the original data division approach for the default subset. The data structure of the default subset can be viewed in the [viewer](https://huggingface.co/datasets/ccmusic-database/CNPM/viewer). In addition, we have retained the [eval subset](#eval-subset) used in the experiment for easy replication.
89
 
90
  ## Default Subset Structure
91
  <style>
 
173
  print(item)
174
  ```
175
 
176
+ ## Maintenance
177
+ ```bash
178
+ GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/CNPM
179
+ cd CNPM
180
+ ```
181
+
182
  ## Dataset Creation
183
  ### Curation Rationale
184
  The Guzheng is a kind of traditional Chinese instrument with diverse playing techniques. Instrument playing techniques (IPT) play an important role in musical performance. However, most of the existing works for IPT detection show low efficiency for variable-length audio and do not assure generalization as they rely on a single sound bank for training and testing. In this study, we propose an end-to-end Guzheng playing technique detection system using Fully Convolutional Networks that can be applied to variable-length audio. Because each Guzheng playing technique is applied to a note, a dedicated onset detector is trained to divide an audio into several notes and its predictions are fused with frame-wise IPT predictions. During fusion, we add the IPT predictions frame by frame inside each note and get the IPT with the highest probability within each note as the final output of that note. We create a new dataset named GZ_IsoTech from multiple sound banks and real-world recordings for Guzheng performance analysis. Our approach achieves 87.97% in frame-level accuracy and 80.76% in note-level F1 score, outperforming existing works by a large margin, which indicates the effectiveness of our proposed method in IPT detection.
default/dataset_dict.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"splits": ["train", "test"]}
default/test/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:064e3946c45f0c662ec88c6cb063a7847a67e3a6340df57986c4eeab58c45bee
3
+ size 56693320
default/test/dataset_info.json ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "gz_iso_tech",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "gz_iso_tech",
6
+ "dataset_size": 1326492,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/audio.zip": {
10
+ "num_bytes": 265012844,
11
+ "checksum": null
12
+ },
13
+ "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/mel.zip": {
14
+ "num_bytes": 8668816,
15
+ "checksum": null
16
+ }
17
+ },
18
+ "download_size": 273681660,
19
+ "features": {
20
+ "audio": {
21
+ "sampling_rate": 44100,
22
+ "_type": "Audio"
23
+ },
24
+ "mel": {
25
+ "_type": "Image"
26
+ },
27
+ "label": {
28
+ "names": [
29
+ "vibrato",
30
+ "upward_portamento",
31
+ "downward_portamento",
32
+ "returning_portamento",
33
+ "glissando",
34
+ "tremolo",
35
+ "harmonics",
36
+ "plucks"
37
+ ],
38
+ "_type": "ClassLabel"
39
+ },
40
+ "name": {
41
+ "dtype": "string",
42
+ "_type": "Value"
43
+ },
44
+ "cname": {
45
+ "dtype": "string",
46
+ "_type": "Value"
47
+ },
48
+ "pinyin": {
49
+ "dtype": "string",
50
+ "_type": "Value"
51
+ }
52
+ },
53
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech",
54
+ "license": "CC-BY-NC-ND",
55
+ "size_in_bytes": 275008152,
56
+ "splits": {
57
+ "train": {
58
+ "name": "train",
59
+ "num_bytes": 1102596,
60
+ "num_examples": 2328,
61
+ "dataset_name": "gz_iso_tech"
62
+ },
63
+ "test": {
64
+ "name": "test",
65
+ "num_bytes": 223896,
66
+ "num_examples": 496,
67
+ "dataset_name": "gz_iso_tech"
68
+ }
69
+ },
70
+ "supervised_keys": {
71
+ "input": "mel",
72
+ "output": "label"
73
+ },
74
+ "task_templates": [
75
+ {
76
+ "task": "image-classification",
77
+ "label_column": "label"
78
+ }
79
+ ],
80
+ "version": {
81
+ "version_str": "0.0.0",
82
+ "major": 0,
83
+ "minor": 0,
84
+ "patch": 0
85
+ }
86
+ }
default/test/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "c760a28217f0ba3a",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "test"
13
+ }
default/train/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4223107ec5a035091ce42207560b0777f2f86bb1f72e5b6a1bb216e4c13585a
3
+ size 291029112
default/train/dataset_info.json ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "gz_iso_tech",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "gz_iso_tech",
6
+ "dataset_size": 1326492,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/audio.zip": {
10
+ "num_bytes": 265012844,
11
+ "checksum": null
12
+ },
13
+ "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/mel.zip": {
14
+ "num_bytes": 8668816,
15
+ "checksum": null
16
+ }
17
+ },
18
+ "download_size": 273681660,
19
+ "features": {
20
+ "audio": {
21
+ "sampling_rate": 44100,
22
+ "_type": "Audio"
23
+ },
24
+ "mel": {
25
+ "_type": "Image"
26
+ },
27
+ "label": {
28
+ "names": [
29
+ "vibrato",
30
+ "upward_portamento",
31
+ "downward_portamento",
32
+ "returning_portamento",
33
+ "glissando",
34
+ "tremolo",
35
+ "harmonics",
36
+ "plucks"
37
+ ],
38
+ "_type": "ClassLabel"
39
+ },
40
+ "name": {
41
+ "dtype": "string",
42
+ "_type": "Value"
43
+ },
44
+ "cname": {
45
+ "dtype": "string",
46
+ "_type": "Value"
47
+ },
48
+ "pinyin": {
49
+ "dtype": "string",
50
+ "_type": "Value"
51
+ }
52
+ },
53
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech",
54
+ "license": "CC-BY-NC-ND",
55
+ "size_in_bytes": 275008152,
56
+ "splits": {
57
+ "train": {
58
+ "name": "train",
59
+ "num_bytes": 1102596,
60
+ "num_examples": 2328,
61
+ "dataset_name": "gz_iso_tech"
62
+ },
63
+ "test": {
64
+ "name": "test",
65
+ "num_bytes": 223896,
66
+ "num_examples": 496,
67
+ "dataset_name": "gz_iso_tech"
68
+ }
69
+ },
70
+ "supervised_keys": {
71
+ "input": "mel",
72
+ "output": "label"
73
+ },
74
+ "task_templates": [
75
+ {
76
+ "task": "image-classification",
77
+ "label_column": "label"
78
+ }
79
+ ],
80
+ "version": {
81
+ "version_str": "0.0.0",
82
+ "major": 0,
83
+ "minor": 0,
84
+ "patch": 0
85
+ }
86
+ }
default/train/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "b73e2713eaf4772c",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "train"
13
+ }
eval/dataset_dict.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"splits": ["train", "validation", "test"]}
eval/test/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8206e1ea068d114d3949fb4a4e3ae31f5d0c673335afefaa4d24760acf78b757
3
+ size 25167584
eval/test/dataset_info.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "gz_iso_tech",
3
+ "citation": "",
4
+ "config_name": "eval",
5
+ "dataset_name": "gz_iso_tech",
6
+ "dataset_size": 1875146,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/eval.zip": {
10
+ "num_bytes": 249961089,
11
+ "checksum": null
12
+ }
13
+ },
14
+ "download_size": 249961089,
15
+ "features": {
16
+ "mel": {
17
+ "_type": "Image"
18
+ },
19
+ "cqt": {
20
+ "_type": "Image"
21
+ },
22
+ "chroma": {
23
+ "_type": "Image"
24
+ },
25
+ "label": {
26
+ "names": [
27
+ "vibrato",
28
+ "upward_portamento",
29
+ "downward_portamento",
30
+ "returning_portamento",
31
+ "glissando",
32
+ "tremolo",
33
+ "harmonics",
34
+ "plucks"
35
+ ],
36
+ "_type": "ClassLabel"
37
+ }
38
+ },
39
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech",
40
+ "license": "CC-BY-NC-ND",
41
+ "size_in_bytes": 251836235,
42
+ "splits": {
43
+ "train": {
44
+ "name": "train",
45
+ "num_bytes": 1560776,
46
+ "num_examples": 2389,
47
+ "dataset_name": "gz_iso_tech"
48
+ },
49
+ "validation": {
50
+ "name": "validation",
51
+ "num_bytes": 155960,
52
+ "num_examples": 253,
53
+ "dataset_name": "gz_iso_tech"
54
+ },
55
+ "test": {
56
+ "name": "test",
57
+ "num_bytes": 158410,
58
+ "num_examples": 257,
59
+ "dataset_name": "gz_iso_tech"
60
+ }
61
+ },
62
+ "supervised_keys": {
63
+ "input": "mel",
64
+ "output": "label"
65
+ },
66
+ "task_templates": [
67
+ {
68
+ "task": "image-classification",
69
+ "label_column": "label"
70
+ }
71
+ ],
72
+ "version": {
73
+ "version_str": "0.0.0",
74
+ "major": 0,
75
+ "minor": 0,
76
+ "patch": 0
77
+ }
78
+ }
eval/test/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "50ed6c7d0db66fc3",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "test"
13
+ }
eval/train/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25cb923b33880d5a3b959604f9899721ecff1abf543fe44a1b7f8e396ce91448
3
+ size 211420664
eval/train/dataset_info.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "gz_iso_tech",
3
+ "citation": "",
4
+ "config_name": "eval",
5
+ "dataset_name": "gz_iso_tech",
6
+ "dataset_size": 1875146,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/eval.zip": {
10
+ "num_bytes": 249961089,
11
+ "checksum": null
12
+ }
13
+ },
14
+ "download_size": 249961089,
15
+ "features": {
16
+ "mel": {
17
+ "_type": "Image"
18
+ },
19
+ "cqt": {
20
+ "_type": "Image"
21
+ },
22
+ "chroma": {
23
+ "_type": "Image"
24
+ },
25
+ "label": {
26
+ "names": [
27
+ "vibrato",
28
+ "upward_portamento",
29
+ "downward_portamento",
30
+ "returning_portamento",
31
+ "glissando",
32
+ "tremolo",
33
+ "harmonics",
34
+ "plucks"
35
+ ],
36
+ "_type": "ClassLabel"
37
+ }
38
+ },
39
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech",
40
+ "license": "CC-BY-NC-ND",
41
+ "size_in_bytes": 251836235,
42
+ "splits": {
43
+ "train": {
44
+ "name": "train",
45
+ "num_bytes": 1560776,
46
+ "num_examples": 2389,
47
+ "dataset_name": "gz_iso_tech"
48
+ },
49
+ "validation": {
50
+ "name": "validation",
51
+ "num_bytes": 155960,
52
+ "num_examples": 253,
53
+ "dataset_name": "gz_iso_tech"
54
+ },
55
+ "test": {
56
+ "name": "test",
57
+ "num_bytes": 158410,
58
+ "num_examples": 257,
59
+ "dataset_name": "gz_iso_tech"
60
+ }
61
+ },
62
+ "supervised_keys": {
63
+ "input": "mel",
64
+ "output": "label"
65
+ },
66
+ "task_templates": [
67
+ {
68
+ "task": "image-classification",
69
+ "label_column": "label"
70
+ }
71
+ ],
72
+ "version": {
73
+ "version_str": "0.0.0",
74
+ "major": 0,
75
+ "minor": 0,
76
+ "patch": 0
77
+ }
78
+ }
eval/train/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "1280b5850ac0345d",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "train"
13
+ }
eval/validation/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15a0f30d76222eefe240abe3a7f4c33ae6f3fbde8dda2cf3640210823378a3f4
3
+ size 24680976
eval/validation/dataset_info.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "gz_iso_tech",
3
+ "citation": "",
4
+ "config_name": "eval",
5
+ "dataset_name": "gz_iso_tech",
6
+ "dataset_size": 1875146,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech/resolve/master/data/eval.zip": {
10
+ "num_bytes": 249961089,
11
+ "checksum": null
12
+ }
13
+ },
14
+ "download_size": 249961089,
15
+ "features": {
16
+ "mel": {
17
+ "_type": "Image"
18
+ },
19
+ "cqt": {
20
+ "_type": "Image"
21
+ },
22
+ "chroma": {
23
+ "_type": "Image"
24
+ },
25
+ "label": {
26
+ "names": [
27
+ "vibrato",
28
+ "upward_portamento",
29
+ "downward_portamento",
30
+ "returning_portamento",
31
+ "glissando",
32
+ "tremolo",
33
+ "harmonics",
34
+ "plucks"
35
+ ],
36
+ "_type": "ClassLabel"
37
+ }
38
+ },
39
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/GZ_IsoTech",
40
+ "license": "CC-BY-NC-ND",
41
+ "size_in_bytes": 251836235,
42
+ "splits": {
43
+ "train": {
44
+ "name": "train",
45
+ "num_bytes": 1560776,
46
+ "num_examples": 2389,
47
+ "dataset_name": "gz_iso_tech"
48
+ },
49
+ "validation": {
50
+ "name": "validation",
51
+ "num_bytes": 155960,
52
+ "num_examples": 253,
53
+ "dataset_name": "gz_iso_tech"
54
+ },
55
+ "test": {
56
+ "name": "test",
57
+ "num_bytes": 158410,
58
+ "num_examples": 257,
59
+ "dataset_name": "gz_iso_tech"
60
+ }
61
+ },
62
+ "supervised_keys": {
63
+ "input": "mel",
64
+ "output": "label"
65
+ },
66
+ "task_templates": [
67
+ {
68
+ "task": "image-classification",
69
+ "label_column": "label"
70
+ }
71
+ ],
72
+ "version": {
73
+ "version_str": "0.0.0",
74
+ "major": 0,
75
+ "minor": 0,
76
+ "patch": 0
77
+ }
78
+ }
eval/validation/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "481aa0f4278ef491",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "validation"
13
+ }