burtenshaw's picture
burtenshaw HF Staff
Upload dataset
b84f02b verified
|
raw
history blame
13.4 kB
metadata
size_categories: n<1K
tags:
  - rlfh
  - argilla
  - human-feedback
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
dataset_info:
  features:
    - name: id
      dtype: string
    - name: _server_id
      dtype: string
    - name: text
      dtype: string
    - name: label.responses
      sequence: string
    - name: label.responses.users
      sequence: string
    - name: label.suggestion
      dtype: string
    - name: label.suggestion.score
      dtype: 'null'
    - name: label.suggestion.agent
      dtype: 'null'
    - name: topics.suggestion
      sequence: string
    - name: topics.suggestion.score
      sequence: float64
    - name: topics.suggestion.agent
      dtype: 'null'
    - name: span.suggestion
      list:
        - name: end
          dtype: int64
        - name: label
          dtype: string
        - name: start
          dtype: int64
    - name: rating.suggestion.agent
      dtype: 'null'
    - name: ranking.suggestion
      sequence: string
    - name: comment.suggestion
      dtype: string
    - name: rating.suggestion
      dtype: int64
    - name: comment.suggestion.agent
      dtype: 'null'
    - name: comment_score
      dtype: float64
    - name: comment.suggestion.score
      dtype: float64
    - name: rating.suggestion.score
      dtype: 'null'
    - name: ranking.suggestion.score
      dtype: 'null'
    - name: ranking.suggestion.agent
      dtype: 'null'
    - name: span.suggestion.score
      dtype: 'null'
    - name: vector
      sequence: float64
    - name: span.suggestion.agent
      dtype: 'null'
  splits:
    - name: train
      num_bytes: 961
      num_examples: 3
  download_size: 16097
  dataset_size: 961

Dataset Card for test-argilla-dataset

This dataset has been created with Argilla.

As shown in the sections below, this dataset can be loaded into Argilla as explained in Load with Argilla, or used directly with the datasets library in Load with datasets.

Dataset Description

Dataset Summary

This dataset contains:

  • A dataset configuration file conforming to the Argilla dataset format named argilla.yaml. This configuration file will be used to configure the dataset when using the FeedbackDataset.from_huggingface method in Argilla.

  • Dataset records in a format compatible with HuggingFace datasets. These records will be loaded automatically when using FeedbackDataset.from_huggingface and can be loaded independently using the datasets library via load_dataset.

  • The annotation guidelines that have been used for building and curating the dataset, if they've been defined in Argilla.

Load with Argilla

To load with Argilla, you'll just need to install Argilla as pip install argilla --upgrade and then use the following code:

import argilla_v1 as rg

ds = rg.FeedbackDataset.from_huggingface("burtenshaw/test-argilla-dataset")

Load with datasets

To load this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code:

from datasets import load_dataset

ds = load_dataset("burtenshaw/test-argilla-dataset")

Supported Tasks and Leaderboards

This dataset can contain multiple fields, questions and responses so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the Dataset Structure section.

There are no leaderboards associated with this dataset.

Languages

[More Information Needed]

Dataset Structure

Data in Argilla

The dataset is created in Argilla with: fields, questions, suggestions, metadata, vectors, and guidelines.

The fields are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.

Field Name Title Type Required Markdown
text text text True False

The questions are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.

Question Name Title Type Required Description Values/Labels
label label label_selection True N/A ['positive', 'negative']
rating rating rating True N/A [1, 2, 3, 4, 5]
ranking ranking ranking True N/A ['label1', 'label2', 'label3']
comment comment text True N/A N/A
topics topics multi_label_selection True N/A ['topic1', 'topic2', 'topic3']
span span span True N/A N/A

The suggestions are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata".

The metadata is a dictionary that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the metadata_properties defined in the dataset configuration file in argilla.yaml.

✨ NEW The vectors are different columns that contain a vector in floating point, which is constraint to the pre-defined dimensions in the vectors_settings when configuring the vectors within the dataset itself, also the dimensions will always be 1-dimensional. The vectors are optional and identified by the pre-defined vector name in the dataset configuration file in argilla.yaml.

Vector Name Title Dimensions
vector vector [1, 3]
Metadata Name Title Type Values Visible for Annotators
comment_score comment_score None - None True

The guidelines, are optional as well, and are just a plain string that can be used to provide instructions to the annotators. Find those in the annotation guidelines section.

Data Instances

An example of a dataset instance in Argilla looks as follows:

"{\"id\":\"b1eb88d9-95ef-448f-983e-39b5fd4f9e08\",\"inserted_at\":null,\"updated_at\":null,\"fields\":{\"text\":\"Hello World, how are you?\"},\"metadata\":{},\"vectors\":{},\"responses\":[{\"values\":{\"label\":{\"value\":\"positive\"}},\"status\":\"draft\",\"user_id\":\"1a4d1b86-4392-41f4-8e17-4a9a635c3e81\"}],\"suggestions\":[{\"value\":\"positive\",\"question_name\":\"label\",\"type\":null,\"score\":null,\"agent\":null,\"id\":\"dda9c893-07d4-47e4-9621-f898127859d9\",\"question_id\":\"724a755e-6b0f-46fa-9f04-41e95753a0af\"},{\"value\":[\"topic1\",\"topic2\"],\"question_name\":\"topics\",\"type\":null,\"score\":[0.9,0.8],\"agent\":null,\"id\":\"a115eee5-d679-4d90-97a6-6cc2953825ab\",\"question_id\":\"790807dd-7699-4fdc-a4fb-be5a7ecffb58\"}],\"external_id\":\"5ed35fd4-a93b-4a81-9bab-9b73ffd1c30e\"}"

While the same record in HuggingFace datasets looks as follows:

{
    "_server_id": "b1eb88d9-95ef-448f-983e-39b5fd4f9e08",
    "comment.suggestion": null,
    "comment.suggestion.agent": null,
    "comment.suggestion.score": null,
    "comment_score": null,
    "id": "5ed35fd4-a93b-4a81-9bab-9b73ffd1c30e",
    "label.responses": [
        "positive"
    ],
    "label.responses.users": [
        "1a4d1b86-4392-41f4-8e17-4a9a635c3e81"
    ],
    "label.suggestion": "positive",
    "label.suggestion.agent": null,
    "label.suggestion.score": null,
    "ranking.suggestion": null,
    "ranking.suggestion.agent": null,
    "ranking.suggestion.score": null,
    "rating.suggestion": null,
    "rating.suggestion.agent": null,
    "rating.suggestion.score": null,
    "span.suggestion": null,
    "span.suggestion.agent": null,
    "span.suggestion.score": null,
    "text": "Hello World, how are you?",
    "topics.suggestion": [
        "topic1",
        "topic2"
    ],
    "topics.suggestion.agent": null,
    "topics.suggestion.score": [
        0.9,
        0.8
    ],
    "vector": null
}

Data Fields

Among the dataset fields, we differentiate between the following:

  • Fields: These are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.

    • text is of type text.
  • Questions: These are the questions that will be asked to the annotators. They can be of different types, such as RatingQuestion, TextQuestion, LabelQuestion, MultiLabelQuestion, and RankingQuestion.

    • label is of type label_selection with the following allowed values ['positive', 'negative'].
    • rating is of type rating with the following allowed values [1, 2, 3, 4, 5].
    • ranking is of type ranking with the following allowed values ['label1', 'label2', 'label3'].
    • comment is of type text.
    • topics is of type multi_label_selection with the following allowed values ['topic1', 'topic2', 'topic3'].
    • span is of type span.
  • Suggestions: As of Argilla 1.13.0, the suggestions have been included to provide the annotators with suggestions to ease or assist during the annotation process. Suggestions are linked to the existing questions, are always optional, and contain not just the suggestion itself, but also the metadata linked to it, if applicable.

    • (optional) label-suggestion is of type label_selection with the following allowed values ['positive', 'negative'].
    • (optional) rating-suggestion is of type rating with the following allowed values [1, 2, 3, 4, 5].
    • (optional) ranking-suggestion is of type ranking with the following allowed values ['label1', 'label2', 'label3'].
    • (optional) comment-suggestion is of type text.
    • (optional) topics-suggestion is of type multi_label_selection with the following allowed values ['topic1', 'topic2', 'topic3'].
    • (optional) span-suggestion is of type span.
  • ✨ NEW Vectors: As of Argilla 1.19.0, the vectors have been included in order to add support for similarity search to explore similar records based on vector search powered by the search engine defined. The vectors are optional and cannot be seen within the UI, those are uploaded and internally used. Also the vectors will always be optional, and only the dimensions previously defined in their settings.

    • (optional) vector is of type float32 and has a dimension of (1, 3).

Additionally, we also have two more fields that are optional and are the following:

  • metadata: This is an optional field that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the metadata_properties defined in the dataset configuration file in argilla.yaml.
  • external_id: This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file.

Data Splits

The dataset contains a single split, which is train.

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation guidelines

[More Information Needed]

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

[More Information Needed]