content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def count_char(char, word): """Counts the characters in word""" return word.count(char) # If you want to do it manually try a for loop
363222f4876c5a574a84fe14214760c505e920b0
0
def getItemSize(dataType): """ Gets the size of an object depending on its data type name Args: dataType (String): Data type of the object Returns: (Integer): Size of the object """ # If it's a vector 6, its size is 6 if dataType.startswith("VECTOR6"): return 6 # If it,s a vector 3, its size is 6 elif dataType.startswith("VECTOR3"): return 3 # Else its size is only 1 return 1
2ab9c83bef56cd8dbe56c558d123e24c9da6eb0e
5
def CleanGrant(grant): """Returns a "cleaned" grant by rounding properly the internal data. This insures that 2 grants coming from 2 different sources are actually identical, irrespective of the logging/storage precision used. """ return grant._replace(latitude=round(grant.latitude, 6), longitude=round(grant.longitude, 6), height_agl=round(grant.height_agl, 2), max_eirp=round(grant.max_eirp, 3))
648bb0a76f9a7cfe355ee8ffced324eb6ceb601e
8
def trim(str): """Remove multiple spaces""" return ' '.join(str.strip().split())
ed98f521c1cea24552959aa334ffb0c314b9f112
9
import torch def get_optimizer(lr): """ Specify an optimizer and its parameters. Returns ------- tuple(torch.optim.Optimizer, dict) The optimizer class and the dictionary of kwargs that should be passed in to the optimizer constructor. """ return (torch.optim.SGD, {"lr": lr, "weight_decay": 1e-6, "momentum": 0.9})
213090258414059f7a01bd40ecd7ef04158d60e5
10
def merge(intervals: list[list[int]]) -> list[list[int]]: """Generate a new schedule with non-overlapping intervals by merging intervals which overlap Complexity: n = len(intervals) Time: O(nlogn) for the initial sort Space: O(n) for the worst case of no overlapping intervals Examples: >>> merge(intervals=[[1,3],[2,6],[8,10],[15,18]]) [[1, 6], [8, 10], [15, 18]] >>> merge(intervals=[[1,4],[4,5]]) [[1, 5]] >>> merge(intervals=[[1,4]]) [[1, 4]] """ ## EDGE CASES ## if len(intervals) <= 1: return intervals """ALGORITHM""" ## INITIALIZE VARS ## intervals.sort(key=lambda k: k[0]) # sort on start times # DS's/res merged_intervals = [] # MERGE INTERVALS prev_interval, remaining_intervals = intervals[0], intervals[1:] for curr_interval in remaining_intervals: # if prev interval end >= curr interval start if prev_interval[1] >= curr_interval[0]: # adjust new prev interval prev_interval[1] = max(prev_interval[1], curr_interval[1]) else: merged_intervals.append(prev_interval) prev_interval = curr_interval merged_intervals.append(prev_interval) return merged_intervals
49a9d7d461ba67ec3b5f839331c2a13d9fc068d0
13
def rsquared_adj(r, nobs, df_res, has_constant=True): """ Compute the adjusted R^2, coefficient of determination. Args: r (float): rsquared value nobs (int): number of observations the model was fit on df_res (int): degrees of freedom of the residuals (nobs - number of model params) has_constant (bool): whether the fitted model included a constant (intercept) Returns: float: adjusted coefficient of determination """ if has_constant: return 1.0 - (nobs - 1) / df_res * (1.0 - r) else: return 1.0 - nobs / df_res * (1.0 - r)
8d466437db7ec9de9bc7ee1d9d50a3355479209d
17
def map_string(affix_string: str, punctuation: str, whitespace_only: bool = False) -> str: """Turn affix string into type char representation. Types are 'w' for non-whitespace char, and 's' for whitespace char. :param affix_string: a string :type: str :param punctuation: the set of characters to treat as punctuation :type punctuation: str :param whitespace_only: whether to treat only whitespace as word boundary or also include (some) punctuation :type whitespace_only: bool :return: the type char representation :rtype: str """ if whitespace_only: return "".join(["s" if char == " " else "w" for char in affix_string]) else: return "".join(["s" if char == " " or char in punctuation else "w" for char in affix_string])
6258f9e57a9081a1c791ec7c22f855079a99cdfb
21
import re def extract_digits_from_end_of_string(input_string): """ Gets digits at the end of a string :param input_string: str :return: int """ result = re.search(r'(\d+)$', input_string) if result is not None: return int(result.group(0))
aae771a051a228c53c36062437de65ae4aa15d44
23
import torch def move_bdim_to_front(x, result_ndim=None): """ Returns a tensor with a batch dimension at the front. If a batch dimension already exists, move it. Otherwise, create a new batch dimension at the front. If `result_ndim` is not None, ensure that the resulting tensor has rank equal to `result_ndim`. """ x_dim = len(x.shape) x_bdim = x.bdim if x_bdim is None: x = torch.unsqueeze(x, 0) else: x = torch.movedim(x, x_bdim, 0) if result_ndim is None: return x diff = result_ndim - x_dim - (x_bdim is None) for _ in range(diff): x = torch.unsqueeze(x, 1) return x
313a1837b6c3b451cebacaa7815f2631dfa387e5
24
from typing import OrderedDict def build_pathmatcher(name, defaultServiceUrl): """ This builds and returns a full pathMatcher entry, for appending to an existing URL map. Parameters: name: The name of the pathMatcher. defaultServiceUrl: Denotes the URL requests should go to if none of the path patterns match. """ matcher = OrderedDict() matcher['defaultService'] = defaultServiceUrl matcher['name'] = name return matcher
e21a79d51b41bd393a8fa2e254c6db7cf61bd441
38
import re def add_whitespace(c_fn): """ Add two spaces between all tokens of a C function """ tok = re.compile(r'[a-zA-Z0-9_]+|\*|\(|\)|\,|\[|\]') return ' ' + ' '.join(tok.findall(c_fn)) + ' '
57d59a5956c3914fa01587b6262e7d4348d77446
39
def check_min_sample_periods(X, time_column, min_sample_periods): """ Check if all periods contained in a dataframe for a certain time_column contain at least min_sample_periods examples. """ return (X[time_column].value_counts() >= min_sample_periods).prod()
074c196a169d65582dbb32cc57c86c82ce4cb9c9
41
def webpage_attribute_getter(attr): """ Helper function for defining getters for web_page attributes, e.g. ``get_foo_enabled = webpage_attribute_getter("foo")`` returns a value of ``webpage.foo`` attribute. """ def _getter(self): return getattr(self.web_page, attr) return _getter
3626f8e2d8c6fb7fbb490dc72f796599cdbc874e
43
import uuid def make_uuid(value): """Converts a value into a python uuid object.""" if isinstance(value, uuid.UUID): return value return uuid.UUID(value)
b65b5739151d84bedd39bc994441d1daa33d1b51
46
import re from pathlib import Path import json def parse_json_with_comments(pathlike): """ Parse a JSON file after removing any comments. Comments can use either ``//`` for single-line comments or or ``/* ... */`` for multi-line comments. The input filepath can be a string or ``pathlib.Path``. Parameters ---------- filename : str or os.PathLike Path to the input JSON file either as a string or as a ``pathlib.Path`` object. Returns ------- obj : dict JSON object representing the input file. Note ---- This code was adapted from: https://web.archive.org/web/20150520154859/http://www.lifl.fr/~riquetd/parse-a-json-file-with-comments.html """ # Regular expression to identify comments comment_re = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?', re.DOTALL | re.MULTILINE) # if we passed in a string, convert it to a Path if isinstance(pathlike, str): pathlike = Path(pathlike) with open(pathlike, 'r') as file_buff: content = ''.join(file_buff.readlines()) # Looking for comments match = comment_re.search(content) while match: # single line comment content = content[:match.start()] + content[match.end():] match = comment_re.search(content) # Return JSON object config = json.loads(content) return config
e79a461c210879d66b699fe49e84d0d2c58a964b
47
def get_school_total_students(school_id, aug_school_info): """ Gets total number of students associated with a school. Args: district_id (str): NCES ID of target district (e.g. '0100005'). aug_school_info (pandas.DataFrame): Target augmented school information (as formatted by `auxiliary.data_handler.DataHandler`). Returns: int: Single number comprising school-level data. """ return int(aug_school_info.loc[school_id]["total_students"])
d0d2ea36a2e3f4b47992aea9cc0c18c5ba7e0ff3
51
import uuid def get_uuid_from_str(input_id: str) -> str: """ Returns an uuid3 string representation generated from an input string. :param input_id: :return: uuid3 string representation """ return str(uuid.uuid3(uuid.NAMESPACE_DNS, input_id))
51ce9ceab7c4f9d63d45fbee93286711bcba3093
53
def createList(value, n): """ @param value: value to initialize the list @param n: list size to be created @return: size n list initialized to value """ return [value for i in range (n)]
ff419e6c816f9b916a156e21c68fd66b36de9cfb
54
def heur(puzzle, item_total_calc, total_calc): """ Heuristic template that provides the current and target position for each number and the total function. Parameters: puzzle - the puzzle item_total_calc - takes 4 parameters: current row, target row, current col, target col. Returns int. total_calc - takes 1 parameter, the sum of item_total_calc over all entries, and returns int. This is the value of the heuristic function """ t = 0 for row in range(3): for col in range(3): val = puzzle.peek(row, col) - 1 target_col = val % 3 target_row = val / 3 # account for 0 as blank if target_row < 0: target_row = 2 t += item_total_calc(row, target_row, col, target_col) return total_calc(t)
bed67110858733a20b89bc1aacd6c5dc3ea04e13
56
def make_argparse_help_safe(s): """Make strings safe for argparse's help. Argparse supports %{} - templates. This is sometimes not needed. Make user supplied strings safe for this. """ return s.replace('%', '%%').replace('%%%', '%%')
3a1e6e072a8307df884e39b5b3a0218678d08462
57
from typing import Tuple def decimal_to_boolean_list(num: int, padding: int = 0) -> Tuple[bool, ...]: """ Convert a decimal number into a tuple of booleans, representing its binary value. """ # Convert the decimal into binary binary = bin(num).replace('0b', '').zfill(padding) # Return a tuple of booleans, one for each element of the binary number (it's either '0' or '1' so we can convert # directly to boolean) return tuple(char == '1' for char in binary)
c13831214faece847960089f781cc1c6442205ec
62
def tpack(text, width=100): """Pack a list of words into lines, so long as each line (including intervening spaces) is no longer than _width_""" lines = [text[0]] for word in text[1:]: if len(lines[-1]) + 1 + len(word) <= width: lines[-1] += (' ' + word) else: lines += [word] return lines
e1b1b54a528c8dc2142a750156d3db1f754b4268
63
def is_palindrome(s: str) -> bool: """Return whether a string is a palindrome This is as efficient as you can get when computing whether a string is a palindrome. It runs in O(n) time and O(1) space. """ if len(s) <= 1: return True i = 0 j = len(s) - 1 while i < j: if s[i] != s[j]: return False i += 1 j -= 1 return True
6d3001486fe3603a17e72861e3bdea495cd675c1
68
def reverse(password, position_x, position_y): """Reverse from position_x to position_y in password.""" password_slice = password[position_x:position_y + 1] password[position_x:position_y + 1] = password_slice[::-1] return password
46fec2c6b9c02d8efa71d53451974e46cbe68102
70
def GetBoolValueFromString(s): """Returns True for true/1 strings, and False for false/0, None otherwise.""" if s and s.lower() == 'true' or s == '1': return True elif s and s.lower() == 'false' or s == '0': return False else: return None
d6ef53e837fc825a32e073e3a86185093dd1d037
71
def get_typical_qualifications(cfg): """ create qualification list to filter just workers with: - + 98% approval rate - + 500 or more accepted HIT - Location USA :param cfg: :return: """ if not cfg['hit_type'].getboolean('apply_qualification'): return [] qualification_requirements=[ { # Worker_​NumberHITsApproved 'QualificationTypeId': '00000000000000000040', 'Comparator': 'GreaterThanOrEqualTo', 'IntegerValues': [ 500, ], 'RequiredToPreview': False, 'ActionsGuarded': 'Accept' }, { # Worker_​PercentAssignmentsApproved 'QualificationTypeId': '000000000000000000L0', 'Comparator': 'GreaterThanOrEqualTo', 'IntegerValues': [ 98, ], 'RequiredToPreview': False, 'ActionsGuarded': 'Accept' }, { # Worker_Locale 'QualificationTypeId': '00000000000000000071', 'Comparator': 'EqualTo', 'LocaleValues': [ { 'Country':"US" } ], 'RequiredToPreview': False, 'ActionsGuarded': 'Accept' }, ] return qualification_requirements
4cfad92d7c2587e2fce1caeac032a69f87c70c01
73
def _tear_down_response(data): """Helper function to extract header, payload and end from received response data.""" response_header = data[2:17] # Below is actually not used response_payload_size = data[18] response_payload = data[19:-2] response_end = data[-2:] return response_header, response_payload, response_end
0c9684c2c054beaff018f85a6775d46202d0095a
81
def isText(node): """ Returns True if the supplied node is free text. """ return node.nodeType == node.TEXT_NODE
150efc016028d0fab4630ad5e754ebaeed0c82c0
83
def scale_y_values(y_data, y_reference, y_max): """ Scale the plot in y direction, to prevent extreme values. :param y_data: the y data of the plot :param y_reference: the maximum value of the plot series (e.g. Normal force), which will be scaled to y_max :param y_max: the maximum y value for the plot (e.g. if y_max=1, no y value in the plot will be greater than 1) """ multipl_factor = y_max / y_reference for i in range(len(y_data)): y_data[i] = y_data[i] * multipl_factor return y_data, multipl_factor
b3b22b0f868ce46926a4eecfc1c5d0ac2a7c1f7e
87
def set_heating_contribution(agent, pv_power): """ If the water tank is currently in use, compute and return the part of the pv_power used for heating the water""" pv_power_to_heating = 0 if agent.water_tank.is_active(): pv_power_to_heating = pv_power * agent.pv_panel.heating_contribution return pv_power_to_heating
ece29b7f0fbbe10907ada8fd1450919f01ab74c3
88
def deep_len(lnk): """ Returns the deep length of a possibly deep linked list. >>> deep_len(Link(1, Link(2, Link(3)))) 3 >>> deep_len(Link(Link(1, Link(2)), Link(3, Link(4)))) 4 >>> levels = Link(Link(Link(1, Link(2)), \ Link(3)), Link(Link(4), Link(5))) >>> print(levels) <<<1 2> 3> <4> 5> >>> deep_len(levels) 5 """ if not lnk: return 0 if type(lnk.first) == int: return 1 + deep_len(lnk.rest) return deep_len(lnk.first) + deep_len(lnk.rest)
d8a33600085e51b181752b2dd81d5bcdae7aaff9
95
import math def pixel_distance(A, B): """ In 9th grade I sat in geometry class wondering "when then hell am I ever going to use this?"...today is that day. Return the distance between two pixels """ (col_A, row_A) = A (col_B, row_B) = B return math.sqrt(math.pow(col_B - col_A, 2) + math.pow(row_B - row_A, 2))
64853c44400428c8040ae47d1cc2cca17aed0a5f
101
def match_piecewise(candidates: set, symbol: str, sep: str='::') -> set: """ Match the requested symbol reverse piecewise (split on ``::``) against the candidates. This allows you to under-specify the base namespace so that ``"MyClass"`` can match ``my_namespace::MyClass`` Args: candidates: set of possible matches for symbol symbol: the symbol to match against sep: the separator between identifier elements Returns: set of matches """ piecewise_list = set() for item in candidates: split_symbol = symbol.split(sep) split_item = item.split(sep) split_symbol.reverse() split_item.reverse() min_length = len(split_symbol) split_item = split_item[:min_length] if split_symbol == split_item: piecewise_list.add(item) return piecewise_list
1c6d7240365ef22f753aa4195cfb5e879fc453e0
105
def kev_to_wavelength(kev): """Calculate the wavelength from kev""" lamda = 12.3984 / kev #keV to Angstrom return lamda
cfb3126e56bc0890dd8cf2caa50a240b380dad56
107
def CalculateOSNames(os_name, os_variants): """Calculates all the names an OS can be called, according to its variants. @type os_name: string @param os_name: base name of the os @type os_variants: list or None @param os_variants: list of supported variants @rtype: list @return: list of valid names """ if os_variants: return ["%s+%s" % (os_name, v) for v in os_variants] else: return [os_name]
5689ed7da55cec929045e95344c60e7a06af711d
108
def pad(data, pad_id): """ Pad all lists in data to the same length. """ width = max(len(d) for d in data) return [d + [pad_id] * (width - len(d)) for d in data]
a0951f4332879600d25c061cf1c553126d6df8d2
109
def dropannotation(annotation_list): """ Drop out the annotation contained in annotation_list """ target = "" for c in annotation_list: if not c == "#": target += c else: return target return target
9f4a695eaf80f79dce943f2f91926d9c823483b6
111
def read_test_case(file_path): """ reads one test case from file. returns contents of test case Parameters ---------- file_path : str the path of the test case file to read. Returns ------- list a list of contents of the test case. """ file = open(file_path, "r") number = int(file.readline().strip()) case = list() for i in range(number): case.append(file.readline().strip()) file.close() return case
6a87ff979d0b1ccf838ebef56401a48760711541
114
import torch def accuracy4batch(model, testloader, criterion): """save a model checkpoint INPUT: model: pytorch nn model. testloader: DataLoader. test data set criterion: criterion. loss criterion device: torch.device. device on which model/data is based OUTPUT: accuracy: float in [0:1]. percenct proportion of correct classifications in testloader test_loss: float. absolute error """ test_loss = 0 accuracy = 0 model.eval() with torch.no_grad(): for inputs, labels in testloader: inputs, labels = inputs.to(model.device), labels.to(model.device) logps = model.forward(inputs) batch_loss = criterion(logps, labels) test_loss += batch_loss.item() # Calculate accuracy ps = torch.exp(logps) top_p, top_class = ps.topk(1, dim=1) equals = top_class == labels.view(*top_class.shape) accuracy += torch.mean(equals.type(torch.FloatTensor)).item() accuracy = accuracy/len(testloader) return accuracy, test_loss
2005984b94f17bf601034953bbea3dca6542143d
115
def clean_string(s: str) -> str: """Cleans and returns an input string >>> clean_string(" xYz ") 'XYZ' """ return str(s).strip().upper()
c97281505492ded5b9167076312959c5eee41a6c
124
def XOR(v1, v2): """ XOR operation element by element from 2 lists :param v1: [1, 0, 1, 0, 0, 1] :param v2: [1, 1, 0, 0, 1, 1] :return: [0, 1, 1, 0, 1, 0] """ return [a ^ b for a, b in zip(v1, v2)]
e3b94b35ccf4e1dd99cc51f32c70f96c5fe99795
125
def get_dayofweek(date): """ Returns day of week in string format from date parameter (in datetime format). """ return date.strftime("%A")
4a0f728733870998331ea6f796b167b9dd3276ab
126
import re def sortRules(ruleList): """Return sorted list of rules. Rules should be in a tab-delimited format: 'rule\t\t[four letter negation tag]' Sorts list of rules descending based on length of the rule, splits each rule into components, converts pattern to regular expression, and appends it to the end of the rule. """ ruleList.sort(key = len, reverse = True) sortedList = [] for rule in ruleList: s = rule.strip().split('\t') splitTrig = s[0].split() trig = r'\s+'.join(splitTrig) pattern = r'\b(' + trig + r')\b' s.append(re.compile(pattern, re.IGNORECASE)) sortedList.append(s) return sortedList
5b98903fd48f562d22e0ce269aa55e52963fa4a9
132
def extrapolate_coverage(lines_w_status): """ Given the following input: >>> lines_w_status = [ (1, True), (4, True), (7, False), (9, False), ] Return expanded lines with their extrapolated line status. >>> extrapolate_coverage(lines_w_status) == [ (1, True), (2, True), (3, True), (4, True), (5, None), (6, None), (7, False), (8, False), (9, False), ] """ lines = [] prev_lineno = 0 prev_status = True for lineno, status in lines_w_status: while (lineno - prev_lineno) > 1: prev_lineno += 1 if prev_status is status: lines.append((prev_lineno, status)) else: lines.append((prev_lineno, None)) lines.append((lineno, status)) prev_lineno = lineno prev_status = status return lines
e7685359f570ae979f2421c3a64513409b9df352
140
def extract_mesh_descriptor_id(descriptor_id_str: str) -> int: """ Converts descriptor ID strings (e.g. 'D000016') into a number ID (e.g. 16). """ if len(descriptor_id_str) == 0: raise Exception("Empty descriptor ID") if descriptor_id_str[0] != "D": raise Exception("Expected descriptor ID to start with 'D', {}".format(descriptor_id_str)) return int(descriptor_id_str[1:])
9f013eadee9a149b9617e4a1c058bbe67c6dd8ba
141
def lerp(x0, x1, t): """ Linear interpolation """ return (1.0 - t) * x0 + t * x1
82d9ce36dd5879c7aab64dc5615a2fb298471383
143
from typing import Optional from typing import List def _check_str_input(var, input_name: str, valid_options: Optional[List[str]] = None) -> str: """ _check_str_input Convenience function to check if an input is a string. If argument valid_options is given, this function will also check that var is a valid option from the valid_options specified. Parameters ---------- var the input variable to check input_name : str the name of the variable to include if an error is raised valid_options: List[str], optional a list of valid options for var Returns ------- str the input var after lowering ans stripping the string """ if not isinstance(var, str): raise ValueError("Invalid input {0} for {1}. Input {1} must be a string.".format( var, input_name)) var = var.strip().lower() if valid_options is not None: valid_options = [option.strip().lower() for option in valid_options] if var not in valid_options: raise ValueError("Invalid input {0} for {1}. Input {1} must be one of the following " "options: {2}.".format(var, input_name, valid_options)) return var
357a8516fe65dddb35b7799ddc68b892da75ea02
147
def ps(s): """Process String: convert a string into a list of lowercased words.""" return s.lower().split()
9bf25b31d00544d96f96564ce67ff5def9a16348
156
from typing import Optional def binary_search(pool: list, target) -> Optional[int]: """Search for a target in a list, using binary search. Args: pool (list): a pool of all elements being searched. target: the target being searched. Returns: int: the index of the target. """ sorted_pool = sorted(pool) low = 0 high = len(sorted_pool) - 1 while low + 1 != high: mid = (low + high) // 2 if sorted_pool[mid] == target: return mid if sorted_pool[mid] < target: low = mid else: high = mid return None
7e7ef70126e02b3dc706b3b88bd950aa6322904e
158
def is_rotation(first, second): """Given two strings, is one a rotation of the other.""" if len(first) != len(second): return False double_second = second + second return first in double_second
f02576761014e1dc395f88f937dfdd0de15508d2
159
def bin_entities(uri_set, delimiter="/", splitpos=-1): """ Takes iteratable elemts and splits them according to the position (splitpos) of the delimiter. The first part is used as a key, whereas the second appended to a list connected to the former key. return: dict {key1: [id11, id12, id13, …], key2: […}} """ ent_dict = dict() for res in uri_set: # split entity up to splitpos using delimiter entity = delimiter.join(res.split(delimiter)[:splitpos]) # id_ is the remainder id_ = delimiter.join(res.split(delimiter)[splitpos:]) if entity in ent_dict: ent_dict[entity].append(id_) else: ent_dict[entity] = [id_] return ent_dict
fcbcddbff909d74fe14fe7cb3a21560c8ca9549a
160
def display_timestamp(num_seconds): """get a string to conveniently display a timestamp""" seconds = num_seconds % 60 minutes = int(num_seconds / 60) % 60 hrs = int(num_seconds / 3600) return "{}:{}:{}".format(hrs, minutes, seconds)
bdcc34ade38855df910d5005f6dac9b5e826f543
161
def filename(config, key, ext = '.h5', set = ''): """ Get the real file name by looking up the key in the config and suffixing. :param key: key to use in the config :type key: str :param ext: extension to use :type ext: str :param set: set name :type set: str :return: filepath :rtype: str """ name = config[key] + '_' if set: name += set + '_' name += str(config['multiplier']) + '_' + str(config['height']) + 'x' + str(config['width']) + 'x' + str(config['depth'])\ if ext: name += ext return name
f389a48e7e06a31722423857814149f474e46316
162
def get_urls(page_links): """Insert page links, return list of url addresses of the json""" urls = [] for link in page_links: link1 = link.replace('v3', 'VV') game_id = ''.join([char for char in link1 if char in list(map(str, list(range(10))))]) json_url = f'http://www.afa.com.ar/deposito/html/v3/htmlCenter/data/deportes/futbol/primeraa/events/{game_id}.json' urls.append(json_url) return urls
68c6796ad5a77676674252a0060776eabc4fb8e0
166
def Weekday(datetime): """Returns a weekday for display e.g. Mon.""" return datetime.strftime('%a')
bae413f0fa86f9e27bd6d7f6ee4480a6ddd564e7
168
def FlowBalance_rule(model, node): """Ensures that flows into and out of a node are equal """ return model.Supply[node] \ + sum(model.Flow[i, node] for i in model.NodesIn[node]) \ - model.Demand[node] \ - sum(model.Flow[node, j] for j in model.NodesOut[node]) \ == 0
628e8e2bb6967c9114dfcb8ea449d760180ab206
170
def rrange(x, y = 0): """ Creates a reversed range (from x - 1 down to y). Example: >>> rrange(10, 0) # => [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] """ return range(x - 1, y - 1, -1)
37c41673dab3fca797f4f6f0ab2f8160e7650248
172
import math def col_round(x): """ As Python 3 rounds 0.5 fraction to closest even, floor and cell round methods used here to round 0.5 up to next digit and 0.4 down back to previos. """ frac = x - math.floor(x) if frac < 0.5: return math.floor(x) return math.ceil(x)
3f21a6dcc525daebf78c9adfd6afee9ba865399b
175
def get_best_response_actions_as_string(best_response_actions): """Turns a dict<bytes, int> into a bytestring compatible with C++. i.e. the bytestring can be copy-pasted as the brace initialization for a {std::unordered_,std::,absl::flat_hash_}map<std::string, int>. Args: best_response_actions: A dict mapping bytes to ints. Returns: A bytestring that can be copy-pasted to brace-initialize a C++ std::map<std::string, T>. """ best_response_keys = sorted(best_response_actions.keys()) best_response_strings = [ "%s: %i" % (k, best_response_actions[k]) for k in best_response_keys ] return "{%s}" % (", ".join(best_response_strings))
cf2b475d6bb76d262c17dc7753f1624e38cc69f4
178
def build_genome(tree, genome): """ Goes through a tree and builds a genome from all codons in the subtree. :param tree: An individual's derivation tree. :param genome: The list of all codons in a subtree. :return: The fully built genome of a subtree. """ if tree.codon: # If the current node has a codon, append it to the genome. genome.append(tree.codon) for child in tree.children: # Recurse on all children. genome = child.build_genome(genome) return genome
67fd7a23a9ca812717bde5d3e35affc5cc7474f4
179
def diff_pf_potential(phi): """ Derivative of the phase field potential. """ return phi**3-phi
c22af096d27cf817ffee683453ecafb4e5c61cdc
186
def resolve_alias(term: str) -> str: """ Resolves search term aliases (e.g., 'loc' for 'locations'). """ if term in ("loc", "location"): return "locations" elif term == "kw": return "keywords" elif term == "setting": return "setting" elif term == "character": return "characters" else: return term
8080d6ffb73457fd61aeca610b30b18695ec01bd
188
def add_standard_attention_hparams(hparams): """Adds the hparams used by get_standadized_layers.""" # All hyperparameters ending in "dropout" are automatically set to 0.0 # when not in training mode. # hparams used and which should have been defined outside (in # common_hparams): # Global flags # hparams.mode # hparams.hidden_size # Pre-post processing flags # hparams.layer_preprocess_sequence # hparams.layer_postprocess_sequence # hparams.layer_prepostprocess_dropout # hparams.norm_type # hparams.norm_epsilon # Mixture-of-Expert flags # hparams.moe_hidden_sizes # hparams.moe_num_experts # hparams.moe_k # hparams.moe_loss_coef # Attention layers flags hparams.add_hparam("num_heads", 8) hparams.add_hparam("attention_key_channels", 0) hparams.add_hparam("attention_value_channels", 0) hparams.add_hparam("attention_dropout", 0.0) # Attention: Local hparams.add_hparam("attention_loc_block_length", 256) # Attention: Local (unmasked only): How much to look left. hparams.add_hparam("attention_loc_block_width", 128) # Attention: Memory-compressed hparams.add_hparam("attention_red_factor", 3) hparams.add_hparam("attention_red_type", "conv") hparams.add_hparam("attention_red_nonlinearity", "none") # Fully connected layers flags # To be more consistent, should use filter_size to also control the MOE # size if moe_hidden_sizes not set. hparams.add_hparam("filter_size", 2048) hparams.add_hparam("relu_dropout", 0.0) return hparams
de9f1a3b30a105a89d3400ca0b36e4c747f1ab46
198
def Storeligandnames(csv_file): """It identifies the names of the ligands in the csv file PARAMETERS ---------- csv_file : filename of the csv file with the ligands RETURNS ------- lig_list : list of ligand names (list of strings) """ Lig = open(csv_file,"rt") lig_aux = [] for ligand in Lig: lig_aux.append(ligand.replace(" ","_").replace("\n","").lower()) return lig_aux
dc4510a4ea946eaf00152cb445acdc7535ce0379
199
import requests import logging def upload(filename, url, token=None): """ Upload a file to a URL """ headers = {} if token: headers['X-Auth-Token'] = token try: with open(filename, 'rb') as file_obj: response = requests.put(url, data=file_obj, timeout=120, headers=headers, verify=False) except requests.exceptions.RequestException as err: logging.warning('RequestException when trying to upload file %s: %s', filename, err) return None except IOError as err: logging.warning('IOError when trying to upload file %s: %s', filename, err) return None if response.status_code == 200 or response.status_code == 201: return True return None
eb8a8060294322bd9df187c8076d8f66b4dc775c
202
def flatmap(fn, seq): """ Map the fn to each element of seq and append the results of the sublists to a resulting list. """ result = [] for lst in map(fn, seq): for elt in lst: result.append(elt) return result
c42d07f712a29ece76cd2d4cec4f91ec2562a1c0
203
def DefaultTo(default_value, msg=None): """Sets a value to default_value if none provided. >>> s = Schema(DefaultTo(42)) >>> s(None) 42 """ def f(v): if v is None: v = default_value return v return f
10401d7214d15c2b0bf28f52430ef71b5df0a116
207
import re from typing import Literal def extract_text( pattern: re.Pattern[str] | str, source_text: str, ) -> str | Literal[False]: """Match the given pattern and extract the matched text as a string.""" match = re.search(pattern, source_text) if not match: return False match_text = match.groups()[0] if match.groups() else match.group() return match_text
a6f762cfd26dd1231db4b6e88247e2566d186212
208
import torch def rotate_tensor(l: torch.Tensor, n: int = 1) -> torch.Tensor: """Roate tensor by n positions to the right Args: l (torch.Tensor): input tensor n (int, optional): positions to rotate. Defaults to 1. Returns: torch.Tensor: rotated tensor """ return torch.cat((l[n:], l[:n]))
9cdaa7be718f0676ad85e05b01ee918459697c60
210
def grelha_nr_colunas(g): """ grelha_nr_colunas: grelha --> inteiro positivo grelha_nr_colunas(g) devolve o numero de colunas da grelha g. """ return len(g[0])
740b06c186ad1455aecadfaf112f253fb434d5ff
214
def readFile(sFile, sMode = 'rb'): """ Reads the entire file. """ oFile = open(sFile, sMode); sRet = oFile.read(); oFile.close(); return sRet;
d44e8217ae7dcab1c826ccbbe80e066d76db31b5
215
import re def clean_text_from_multiple_consecutive_whitespaces(text): """Cleans the text from multiple consecutive whitespaces, by replacing these with a single whitespace.""" multi_space_regex = re.compile(r"\s+", re.IGNORECASE) return re.sub(multi_space_regex, ' ', text)
f25b27da070d6a984012a4cb5b1ae4a477713033
220
def plasma_parameter(N_particles, N_grid, dx): """ Estimates the plasma parameter as the number of particles per step. Parameters ---------- N_particles : int, float Number of physical particles N_grid : int Number of grid cells dx : float grid step size """ return (N_particles / N_grid) * dx
51d3b96ccba2689db461fd6117cb5c2961dc3812
224
import bz2 import gzip import json def load_json(filename): """ Load a JSON file that may be .bz2 or .gz compressed """ if '.bz2' in filename: with bz2.open(filename, 'rt') as infile: return json.load(infile) elif '.gz' in filename: with gzip.open(filename, 'rt') as infile: return json.load(infile) else: with open(filename, 'rt') as infile: return json.load(infile)
1b985db386e85c3b8e87911d89a7652133bfee7b
228
def rescale(img, thresholds): """ Linear stretch of image between two threshold values. """ return img.subtract(thresholds[0]).divide(thresholds[1] - thresholds[0])
76d5f56384f408e57161848ded85142e68296258
235
def transform(nodes, fxn, *args, **kwargs): """ Apply an arbitrary function to an array of node coordinates. Parameters ---------- nodes : numpy.ndarray An N x M array of individual node coordinates (i.e., the x-coords or the y-coords only) fxn : callable The transformation to be applied to the whole ``nodes`` array args, kwargs Additional positional and keyword arguments that are passed to ``fxn``. The final call will be ``fxn(nodes, *args, **kwargs)``. Returns ------- transformed : numpy.ndarray The transformed array. """ return fxn(nodes, *args, **kwargs)
edc487b7f1b83f750f868ee446ecf2676365a214
238
from typing import Dict from typing import Any import yaml def as_yaml(config: Dict[str, Any], **yaml_args: Any) -> str: """Use PyYAML library to write YAML file""" return yaml.dump(config, **yaml_args)
28c792504d7a6ccd7dbf040d516343e44e072b16
240
def prepend_with_baseurl(files, base_url): """prepend url to beginning of each file Parameters ------ files (list): list of files base_url (str): base url Returns ------ list: a list of files with base url pre-pended """ return [base_url + file for file in files]
4c29b3e9230239c1ff8856c707253608ce2503cd
247
def get_bounding_box(dataframe, dataIdentifier): """Returns the rectangle in a format (min_lat, max_lat, min_lon, max_lon) which bounds all the points of the ´dataframe´. Parameters ---------- dataframe : pandas.DataFrame the dataframe with the data dataIdentifier : DataIdentifier the identifier of the dataframe to be used """ b_box = (getattr(dataframe, dataIdentifier.latitude).min(), getattr(dataframe, dataIdentifier.latitude).max(), getattr(dataframe, dataIdentifier.longitude).min(), getattr(dataframe, dataIdentifier.longitude).max()) return b_box
6989118af8db36cc38fd670f5cd7506859d2150e
249
def stat_cleaner(stat: str) -> int: """Cleans and converts single stat. Used for the tweets, followers, following, and likes count sections. Args: stat: Stat to be cleaned. Returns: A stat with commas removed and converted to int. """ return int(stat.replace(",", ""))
cb6b6035ab21871ca5c00d5d39d9efe87e0acc89
250
def module_for_category( category ): """Return the OpenGL.GL.x module for the given category name""" if category.startswith( 'VERSION_' ): name = 'OpenGL.GL' else: owner,name = category.split( '_',1) if owner.startswith( '3' ): owner = owner[1:] name = 'OpenGL.GL.%s.%s'%( owner,name ) return __import__( name, {}, {}, name.split( '.' ))
0e88467a1dd7f5b132d46a9bdc99765c274f69f3
255
import shutil def cp_dir(src_dir, dest_dir): """Function: cp_dir Description: Copies a directory from source to destination. Arguments: (input) src_dir -> Source directory. (input) dest_dir -> Destination directory. (output) status -> True|False - True if copy was successful. (output) err_msg -> Error message from copytree exception or None. """ status = True err_msg = None try: shutil.copytree(src_dir, dest_dir) # Directory permission error. except shutil.Error as err: err_msg = "Directory not copied. Perms Error Message: %s" % (err) status = False # Directory does not exist. except OSError as err: err_msg = "Directory not copied. Exist Error Message: %s" % (err) status = False return status, err_msg
13f82a485fb46e102780c2462f0ab092f0d62df1
256
def index_wrap(data, index): """ Description: Select an index from an array data :param data: array data :param index: index (e.g. 1,2,3, account_data,..) :return: Data inside the position index """ return data[index]
42b53f1d9edf237b904f822c15ad1f1b930aa69c
268
import unicodedata def simplify_name(name): """Converts the `name` to lower-case ASCII for fuzzy comparisons.""" return unicodedata.normalize('NFKD', name.lower()).encode('ascii', 'ignore')
a7c01471245e738fce8ab441e3a23cc0a67c71be
270
def values(df, varname): """Values and counts in index order. df: DataFrame varname: strign column name returns: Series that maps from value to frequency """ return df[varname].value_counts().sort_index()
ea548afc8e0b030e441baa54abad32318c9c007f
273
def is_seq(x, step=1): """Checks if the elements in a list-like object are increasing by step Parameters ---------- x: list-like step Returns ------- True if elements increase by step, else false and the index at which the condition is violated. """ for i in range(1, len(x)): if not x[i] == (x[i - 1] + step): print('Not seq at: ', i) return False return True
032e12b86aa7e50dfba2ddccd244475f58d70b29
278
def ecio_quality_rating(value, unit): """ ECIO (Ec/Io) - Energy to Interference Ratio (3G, CDMA/UMTS/EV-DO) """ if unit != "dBm": raise ValueError("Unsupported unit '{:}'".format(unit)) rating = 0 if value > -2: rating = 4 elif -2 >= value > -5: rating = 3 elif -5 >= value > -10: rating = 2 elif value <= -10: rating = 1 return rating
4cc21012464b8476d026f9dfbc35b8b1ea3c2d85
279
def template_check(value): """Check if a rendered template string equals true. If value is not a string, return value as is. """ if isinstance(value, str): return value.lower() == "true" return value
3733db5c107068e815bac079fdef1a450f7acdc9
280
def return_npc(mcc, mnc): """ Format MCC and MNC into a NPC. :param mcc: Country code. :type mcc: int :param mnc: Network code. :type mnc: int """ return "{0}{1}30".format(str(mcc).zfill(3), str(mnc).zfill(3))
0ae5952fd7b026c2c90c72046f63ca4d08dacf06
281
from typing import Callable import click def with_input(func: Callable) -> Callable: """ Attaches a "source" argument to the command. """ return click.argument( "source", type=click.Path(exists=True), required=True )(func)
3117f183ac4e4d459a718b59fc9a3ba00b36e291
287
def check_loop_validity(inst_list): """ Given a list of instructions, check whether they can form a valid loop. This means, checking for anything that could create an infinite loop. We are also disallowing double loops right now""" for i, c in enumerate(inst_list): if c in [5, 6, 16, 25]: return False, i return True, -1
a58923e014947d1406165a831a57b73fcb9ab226
288
def calc_high_outlier(values) -> float: """Calculates the high outlier from a pandas Series""" q1, q3 = [values.quantile(x, 'midpoint') for x in (0.25, 0.75)] return q3 + 1.5 * (q3 - q1)
8ee929aec1cb4af9a90d04893f8f94444d00ad22
289
from typing import Union from typing import Dict from typing import Tuple from typing import Any def serialize_framework_build_config(dict_: Union[Dict[str, str], str]) -> Tuple[Any, ...]: """Serialize a dict to a hashable tuple. Parameters ---------- dict_: Dict[str, str] Returns ------- hashable_tuple: Tuple[Any, ...] A hashable tuple. """ if isinstance(dict_, dict): return tuple(sorted(list(dict_.items()))) return (dict_,)
365b413ff21bf4fb7f5d153dbe74801ee125108f
291
def get_confidence(imgfilename): """ 1003_c60.jpg -> c6 """ if not imgfilename: return '' return 'c' + imgfilename.split('/')[-1][0:1]
7c98f2abd2119b41d7e2501823985a894da5a1a1
292
def min_max_median(lst): """ a function that takes a simple list of numbers lst as a parameter and returns a list with the min, max, and the median of lst. """ s = sorted(lst) n = len(s) return [ s[0], s[-1], s[n//2] if n % 2 == 1 else (s[n//2 - 1] + s[n//2]) / 2]
59b1ceef5796d77cc039a42593ddb3d1d2244bd7
293
def _enzyme_path_to_sequence(path, graph, enzymes_sites): """Converts a path of successive enzymes into a sequence.""" return "".join( [enzymes_sites[path[0]]] + [graph[(n1, n2)]["diff"] for n1, n2 in zip(path, path[1:])] )
a3de9de5dc37df641e36d09d07b49c402fa17fd1
295
import string def simple_caesar(txt, rot=7): """Caesar cipher through ASCII manipulation, lowercase only.""" alphabet = string.ascii_lowercase # pick alphabet shifted_alphabet = alphabet[rot:] + alphabet[:rot] # shift it table = str.maketrans(alphabet, shifted_alphabet) # create mapping table return txt.lower().translate(table) # apply
eb8d86d37d8a8902663ff68e095b3b822225859c
296
def _is_url_without_path_query_or_fragment(url_parts): """ Determines if a URL has a blank path, query string and fragment. :param url_parts: A URL. :type url_parts: :class:`urlparse.ParseResult` """ return url_parts.path.strip('/') in ['', 'search'] and url_parts.query == '' \ and url_parts.fragment == ''
4bad1f230adfa77df019519db276a181d57682dd
299
def get_colours_extend(graph_size, start_set, end_set, source, target, reachable=None): """ Get colours for nodes including source and target nodes. Blue nodes are those in the source set. Orange nodes are those in the start set, not in the source set. Green nodes are those reachable from the source that are in target. Red nodes are those in target that are not reachable from the source. All other nodes are grey. """ # Setup the colours c = [] if reachable is None: reachable = end_set for acc_val in range(graph_size): if acc_val in start_set: if acc_val in source: c.append("dodgerblue") else: c.append("darkorange") elif acc_val in target: if acc_val in reachable: c.append("g") else: c.append("r") else: c.append("gray") return c
d366ed6c4c387d0b4de4440d34d358d5a142661a
301

Seed dataset utilized for StarCoder2-Instruct's self-alignment pipeline.

Downloads last month
45