|
--- |
|
language: |
|
- en |
|
license: |
|
- apache-2.0 |
|
task_categories: |
|
- token-classification |
|
pretty_name: 'Chemical Named Entity Recognition (CNER) Dataset for BatteryDataExtractor' |
|
--- |
|
|
|
# CNER Dataset |
|
## Original Data Source |
|
|
|
#### CHEMDNER |
|
M. Krallinger, O. Rabal, F. Leitner, M. Vazquez, D. Salgado, |
|
Z. Lu, R. Leaman, Y. Lu, D. Ji, D. M. Lowe et al., J. Cheminf., |
|
2015, 7, 1–17. |
|
|
|
#### MatScholar |
|
I. Weston, V. Tshitoyan, J. Dagdelen, O. Kononova, A. Tre- |
|
wartha, K. A. Persson, G. Ceder and A. Jain, J. Chem. Inf. |
|
Model., 2019, 59, 3692–3702. |
|
|
|
#### SOFC |
|
A. Friedrich, H. Adel, F. Tomazic, J. Hingerl, R. Benteau, |
|
A. Maruscyk and L. Lange, The SOFC-exp corpus and neural |
|
approaches to information extraction in the materials science |
|
domain, 2020, https://arxiv.org/abs/2006.03039. |
|
|
|
#### BioNLP |
|
G. Crichton, S. Pyysalo, B. Chiu and A. Korhonen, BMC Bioinf., |
|
2017, 18, 1–14. |
|
|
|
## Citation |
|
BatteryDataExtractor: battery-aware text-mining software embedded with BERT models |