question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
1krzmlysr
maths
vector-algebra
algebra-and-modulus-of-vectors
Let a, b and c be distinct positive numbers. If the vectors $$a\widehat i + a\widehat j + c\widehat k,\widehat i+\widehat k$$ and $$c\widehat i + c\widehat j + b\widehat k$$ are co-planar, then c is equal to :
[{"identifier": "A", "content": "$${2 \\over {{1 \\over a} + {1 \\over b}}}$$"}, {"identifier": "B", "content": "$${{a + b} \\over 2}$$"}, {"identifier": "C", "content": "$${1 \\over a} + {1 \\over b}$$"}, {"identifier": "D", "content": "$$\\sqrt {ab} $$"}]
["D"]
null
Because vectors are coplanar<br><br>Hence, $$\left| {\matrix{ a &amp; a &amp; c \cr 1 &amp; 0 &amp; 1 \cr c &amp; c &amp; b \cr } } \right| = 0$$<br><br>$$ \Rightarrow {c^2} = ab \Rightarrow c = \sqrt {ab} $$
mcq
jee-main-2021-online-25th-july-evening-shift
1l54taa8j
maths
vector-algebra
algebra-and-modulus-of-vectors
Let A, B, C be three points whose position vectors respectively are <p>$$\overrightarrow a = \widehat i + 4\widehat j + 3\widehat k$$</p> <p>$$\overrightarrow b = 2\widehat i + \alpha \widehat j + 4\widehat k,\,\alpha \in R$$</p> <p>$$\overrightarrow c = 3\widehat i - 2\widehat j + 5\widehat k$$</p> <p>If $$\alpha$$ is the smallest positive integer for which $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are noncollinear, then the length of the median, in $$\Delta$$ABC, through A is :</p>
[{"identifier": "A", "content": "$${{\\sqrt {82} } \\over 2}$$"}, {"identifier": "B", "content": "$${{\\sqrt {62} } \\over 2}$$"}, {"identifier": "C", "content": "$${{\\sqrt {69} } \\over 2}$$"}, {"identifier": "D", "content": "$${{\\sqrt {66} } \\over 2}$$"}]
["A"]
null
$\overrightarrow{A B} \| \overrightarrow{A C}$ if <br/><br/> $\frac{1}{2}=\frac{\alpha-4}{-6}=\frac{1}{2}$ <br/><br/> $\Rightarrow \alpha=1$ <br/><br/> $\vec{a}, \vec{b}, \vec{c}$ are non-collinear for $\alpha=2$ (smallest positive integer) <br/><br/> Mid point of $B C=M\left(\frac{5}{2}, 0, \frac{9}{2}\right)$ <br/><br/> $A M=\sqrt{\frac{9}{4}+16+\frac{9}{4}}=\frac{\sqrt{82}}{2}$
mcq
jee-main-2022-online-29th-june-evening-shift
1l6m59jzo
maths
vector-algebra
algebra-and-modulus-of-vectors
<p>Let the vectors $$\vec{a}=(1+t) \hat{i}+(1-t) \hat{j}+\hat{k}, \vec{b}=(1-t) \hat{i}+(1+t) \hat{j}+2 \hat{k}$$ and $$\vec{c}=t \hat{i}-t \hat{j}+\hat{k}, t \in \mathbf{R}$$ be such that for $$\alpha, \beta, \gamma \in \mathbf{R}, \alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}=\overrightarrow{0} \Rightarrow \alpha=\beta=\gamma=0$$. Then, the set of all values of $$t$$ is :</p>
[{"identifier": "A", "content": "a non-empty finite set"}, {"identifier": "B", "content": "equal to $$\\mathbf{N}$$"}, {"identifier": "C", "content": "equal to $$\\mathbf{R}-\\{0\\}$$"}, {"identifier": "D", "content": "equal to $$\\mathbf{R}$$"}]
["C"]
null
<p>Clearly $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ are non-coplanar</p> <p>$$\left| {\matrix{ {1 + t} & {1 - t} & 1 \cr {1 - t} & {1 + t} & 2 \cr t & { - t} & 1 \cr } } \right| \ne 0$$</p> <p>$$ \Rightarrow (1 + t)(1 + t + 2t) - (1 - t)(1 - t - 2t) + 1({t^2} - t - t - {t^2}) \ne 0$$</p> <p>$$ \Rightarrow (3{t^2} + 4t + 1) - (1 - t)(1 - 3t) - 2t \ne 0$$</p> <p>$$ \Rightarrow (3{t^2} + 4t + 1) - (3{t^2} - 4t + 1) - 2t \ne 0$$</p> <p>$$ \Rightarrow t \ne 0$$</p>
mcq
jee-main-2022-online-28th-july-morning-shift
1ldybks1h
maths
vector-algebra
algebra-and-modulus-of-vectors
<p>Let PQR be a triangle. The points A, B and C are on the sides QR, RP and PQ respectively such that <br/><br/>$${{QA} \over {AR}} = {{RB} \over {BP}} = {{PC} \over {CQ}} = {1 \over 2}$$. Then $${{Area(\Delta PQR)} \over {Area(\Delta ABC)}}$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{5}{2}$$"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "3"}]
["D"]
null
Let the position vector of $P, Q, R$ be $\overrightarrow{0}, \overrightarrow{a}, \overrightarrow{b}$ <br><br>$\Rightarrow$ Position vector of $A=\frac{2 \overrightarrow{a}+\overrightarrow{b}}{3}, $ <br><br>Position vector of $B=\frac{2 \overrightarrow{b}}{3}$ and <br><br>Position vector of $C=\frac{\overrightarrow{a}}{3}$ <br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lfhv3u5p/8ecc7bc1-f988-47d9-9271-a3d8261cd426/d568c1d0-c7af-11ed-b61f-698c390a560e/file-1lfhv3u5q.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lfhv3u5p/8ecc7bc1-f988-47d9-9271-a3d8261cd426/d568c1d0-c7af-11ed-b61f-698c390a560e/file-1lfhv3u5q.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 24th January Morning Shift Mathematics - Vector Algebra Question 61 English Explanation"> <br>$$ \begin{aligned} &amp; \therefore \overrightarrow{A B}=\frac{2 \vec{b}}{3}-\left(\frac{2 \vec{a}+\vec{b}}{3}\right)=\frac{\vec{b}}{3}-\frac{2 \vec{a}}{3}=\frac{\vec{b}-2 \vec{a}}{3} \\\\ &amp; \overrightarrow{C A}=\frac{2 \vec{a}+\vec{b}}{3}-\frac{\vec{a}}{3}=\frac{\vec{a}+\vec{b}}{3} \\\\ &amp; \text { Area of } \triangle P Q R=\frac{1}{2}|\overrightarrow{P Q} \times \overrightarrow{P R}|=\frac{1}{2}|\vec{a} \times \vec{b}| \\\\ &amp; \text { Area of } \triangle A B C=\frac{1}{2}|\overrightarrow{C A} \times \overrightarrow{A B}| \\ &amp; =\frac{1}{2}\left|\left(\frac{\vec{a}+\vec{b}}{3}\right) \times\left(\frac{\vec{b}-2 \vec{a}}{3}\right)\right|=\frac{1}{2}\left|\frac{\vec{a} \times \vec{b}}{3}\right| \\\\ &amp; \therefore \frac{\text { Area }(\triangle P Q R)}{\text { Area }(\triangle A B C)}=\frac{\frac{1}{2}|\vec{a} \times \vec{b}|}{\frac{1}{2}\left|\frac{\vec{a} \times \vec{b}}{3}\right|}=3 \text { sq. units } \end{aligned} $$
mcq
jee-main-2023-online-24th-january-morning-shift
lgnwmpwc
maths
vector-algebra
algebra-and-modulus-of-vectors
Let $\mathrm{ABCD}$ be a quadrilateral. If $\mathrm{E}$ and $\mathrm{F}$ are the mid points of the diagonals $\mathrm{AC}$ and $\mathrm{BD}$ respectively and $(\overrightarrow{A B}-\overrightarrow{B C})+(\overrightarrow{A D}-\overrightarrow{D C})=k \overrightarrow{F E}$, then $k$ is equal to :
[{"identifier": "A", "content": "-2"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "-4"}, {"identifier": "D", "content": "2"}]
["C"]
null
<p>Let the position vectors of $A, B, C,$ and $D$ be $\vec{a}, \vec{b}, \vec{c},$ and $\vec{d}$, respectively.</p> <p>Then the position vector of $E$ is:</p> <p>$$ \vec{E} = \frac{\vec{a} + \vec{c}}{2} $$</p> <p>And the position vector of $F$ is:</p> <p>$$ \vec{F} = \frac{\vec{b} + \vec{d}}{2} $$</p> <p>Now, we are given the equation:</p> <p>$$ (\overrightarrow{AB} - \overrightarrow{BC}) + (\overrightarrow{AD} - \overrightarrow{DC}) = k\overrightarrow{FE} $$</p> <p>We can rewrite this equation using the position vectors:</p> <p>$$ (\vec{b} - \vec{a} - (\vec{c} - \vec{b})) + (\vec{d} - \vec{a} - (\vec{c} - \vec{d})) = k(\vec{E} - \vec{F}) $$</p> <p>Simplifying the equation, we get:</p> <p>$$ (2\vec{b} - 2\vec{a} - 2\vec{c} + 2\vec{d}) = \frac{k}{2}(2\vec{E} - 2\vec{F}) $$</p> <p>Now substitute $\vec{E}$ and $\vec{F}$ expressions we found earlier:</p> <p>$$ (2\vec{b} - 2\vec{a} - 2\vec{c} + 2\vec{d}) = \frac{k}{2}\left(2\left(\frac{\vec{a} + \vec{c}}{2}\right) - 2\left(\frac{\vec{b} + \vec{d}}{2}\right)\right) $$</p> <p>Simplifying the equation:</p> <p>$$ (2\vec{b} - 2\vec{a} - 2\vec{c} + 2\vec{d}) = -\frac{k}{2}(\vec{b} + \vec{d} - \vec{a} - \vec{c}) $$</p> <p>Since both sides of the equation are equal:</p> <p>$$ k = -4 $$</p>
mcq
jee-main-2023-online-15th-april-morning-shift
1lguu8s7l
maths
vector-algebra
algebra-and-modulus-of-vectors
<p>For any vector $$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$$, with $$10\left|a_{i}\right|&lt;1, i=1,2,3$$, consider the following statements :</p> <p>(A): $$\max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\} \leq|\vec{a}|$$</p> <p>(B) : $$|\vec{a}| \leq 3 \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}$$</p>
[{"identifier": "A", "content": "Only (B) is true"}, {"identifier": "B", "content": "Only (A) is true"}, {"identifier": "C", "content": "Neither (A) nor (B) is true"}, {"identifier": "D", "content": "Both (A) and (B) are true"}]
["D"]
null
We have, <br/><br/>$$ \begin{aligned} & 10\left|a_i\right|<1, i=1,2,3 \\\\ & \text { Let } \left|a_1\right| \geq\left|a_2\right| \geq\left|a_3\right| \\\\ & |\vec{a}|=\sqrt{a_1^2+a_2^2+a_3^2} \geq \sqrt{a_1^2} \\\\ & \therefore|\vec{a}| \geq\left|a_1\right| \text { or } \max \left\{\left|a_1\right|,\left|a_2\right|,\left|a_3\right|\right\} \text {. } \end{aligned} $$ <br/><br/>Hence, (A) is true. <br/><br/>$$ \begin{array}{rlrl} & |\vec{a}| =\sqrt{a_1^2+a_2^2+a_3^2} \leq \sqrt{a_1^2+a_1^2+a_1^2} \\\\ & =\sqrt{3}\left|a_1\right| \\\\ \therefore & |\vec{a}|=\sqrt{3}\left|a_1\right|<3\left|a_1\right| \\\\ \therefore & |\vec{a}|<3 \max \left\{\left|a_1\right|,\left|a_2\right|,\left|a_3\right|\right\} \end{array} $$ <br/><br/>Hence, (B) is also true.
mcq
jee-main-2023-online-11th-april-morning-shift
1lgvq2r23
maths
vector-algebra
algebra-and-modulus-of-vectors
<p>If the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ are respectively the circumcenter and the orthocentre of a $$\triangle \mathrm{ABC}$$, then $$\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\overrightarrow {QP} $$"}, {"identifier": "B", "content": "$$\\overrightarrow {PQ} $$"}, {"identifier": "C", "content": "$$2\\overrightarrow {PQ} $$"}, {"identifier": "D", "content": "$$2\\overrightarrow {QP} $$"}]
["B"]
null
1. **Circumcenter $ P $**: <br/><br/>The circumcenter of a triangle is equidistant from the vertices of the triangle. It is the center of the circumcircle, the circle that passes through all three vertices of the triangle. <br/><br/>2. **Orthocenter $ Q $**: <br/><br/>The orthocenter of a triangle is the point of intersection of its three altitudes. An altitude of a triangle is a perpendicular line segment drawn from a vertex to its opposite side (or its extension). <br/><br/>3. **Centroid $ G $**: <br/><br/>The centroid of a triangle is the point of intersection of its medians. A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side. The centroid always divides each median in a 2:1 ratio, with the larger segment being closer to the vertex. <br/><br/>With the above definitions, it's known that the centroid divides the line segment joining the circumcenter and orthocenter in the ratio 2 : 1, meaning : <br/><br/>$ \overrightarrow{PG} = \frac{2}{3} \overrightarrow{PQ} $ <br/><br/>$ \overrightarrow{PQ} = 3\overrightarrow{PG} $ <p>The position vector of the centroid $G$ in terms of the vertices $A, B,$ and $C$ is : <br/><br/>$ \overrightarrow{G} = \frac{\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}}{3} $</p> <p>Because $P$ is the circumcenter and is at the origin in this problem: <br/><br/>$ \overrightarrow{PA} = \overrightarrow{A} $ <br/><br/>$ \overrightarrow{PB} = \overrightarrow{B} $ <br/><br/>$ \overrightarrow{PC} = \overrightarrow{C} $</p> <p>Substituting these into the equation for $G$ : <br/><br/>$ \overrightarrow{PG} = \frac{\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}}{3} $</p> <p>Now, using the relationship between $PQ$ and $PG$ established earlier : <br/><br/>$ \overrightarrow{PQ} = 3\overrightarrow{PG} = \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} $</p>
mcq
jee-main-2023-online-10th-april-evening-shift
1lgxt48t5
maths
vector-algebra
algebra-and-modulus-of-vectors
<p>An arc PQ of a circle subtends a right angle at its centre O. The mid point of the arc PQ is R. If $$\overrightarrow {OP} = \overrightarrow u ,\overrightarrow {OR} = \overrightarrow v $$, and $$\overrightarrow {OQ} = \alpha \overrightarrow u + \beta \overrightarrow v $$, then $$\alpha ,{\beta ^2}$$ are the roots of the equation :</p>
[{"identifier": "A", "content": "$${x^2} + x - 2 = 0$$"}, {"identifier": "B", "content": "$$3{x^2} + 2x - 1 = 0$$"}, {"identifier": "C", "content": "$$3{x^2} - 2x - 1 = 0$$"}, {"identifier": "D", "content": "$${x^2} - x - 2 = 0$$"}]
["D"]
null
An arc $P Q$ of a circle subtends a right angle at its centre $O$. The mid-point of an $\operatorname{arc} P Q$ is $R$. So, $P R=R Q$ <br><br>Also given that, $$\overrightarrow {OP} = \overrightarrow u ,\overrightarrow {OR} = \overrightarrow v $$, and $$\overrightarrow {OQ} = \alpha \overrightarrow u + \beta \overrightarrow v $$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lnbavvev/3506a77b-c00f-43d4-873d-aea0b917a5f0/c874fd70-6275-11ee-af05-bf9054b926c1/file-6y3zli1lnbavvew.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lnbavvev/3506a77b-c00f-43d4-873d-aea0b917a5f0/c874fd70-6275-11ee-af05-bf9054b926c1/file-6y3zli1lnbavvew.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 10th April Morning Shift Mathematics - Vector Algebra Question 46 English Explanation"> <br><br>Let $$\overrightarrow {OP} = \overrightarrow u$$ <br><br>$$ \begin{aligned} &amp; \overrightarrow{OQ}=\overrightarrow{q}=\alpha \overrightarrow{u}+\beta \overrightarrow{v} \\\\ &amp; \overrightarrow{O R}=\overrightarrow{v} \end{aligned} $$ <br><br>Clearly, $\overrightarrow{q}=\hat{\mathbf{j}}$ <br><br>$$ \overrightarrow{u}=\hat{\mathbf{i}}, \overrightarrow{v}=\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}}{\sqrt{2}} $$ <br><br>Now, given, $\overrightarrow{q}=\alpha \overrightarrow{u}+\beta \overrightarrow{v}$ <br><br>$$ \begin{array}{ll} \Rightarrow &amp; \hat{\mathbf{j}}=\alpha(\hat{\mathbf{i}})+\beta\left(\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}}{\sqrt{2}}\right) \\\\ \Rightarrow &amp; \hat{\mathbf{j}}=\mathbf{i}\left(\alpha+\frac{\beta}{\sqrt{2}}\right)+\frac{\beta}{\sqrt{2}} \hat{\mathbf{j}} \end{array} $$ <br><br>On comparing both sides, we get <br><br>$$ \begin{array}{rlrl} \alpha+\frac{\beta}{\sqrt{2}} =0 \text { and } \frac{\beta}{\sqrt{2}}=1 \\\\ \Rightarrow \alpha =-\frac{\beta}{\sqrt{2}} \quad \therefore \beta =\sqrt{2} \\\\ \Rightarrow \alpha =-1, \beta^2=2 \end{array} $$ <br><br>Now, $\alpha$ and $\beta^2$ are roots of the quadratic equation is $x^2-x-2=0$
mcq
jee-main-2023-online-10th-april-morning-shift
1lgzzzo1k
maths
vector-algebra
algebra-and-modulus-of-vectors
<p>If the points with position vectors $$\alpha \hat{i}+10 \hat{j}+13 \hat{k}, 6 \hat{i}+11 \hat{j}+11 \hat{k}, \frac{9}{2} \hat{i}+\beta \hat{j}-8 \hat{k}$$ are collinear, then $$(19 \alpha-6 \beta)^{2}$$ is equal to :</p>
[{"identifier": "A", "content": "16"}, {"identifier": "B", "content": "49"}, {"identifier": "C", "content": "36"}, {"identifier": "D", "content": "25"}]
["C"]
null
Given : Points with position vectors <br/><br/>$$ \alpha \hat{i}+10 \hat{j}+13 \hat{k}, 6 \hat{i}+11 \hat{j}+11 \hat{k} $$ <br/><br/>and $\frac{9}{2} \hat{i}+\beta \hat{j}-8 \hat{k}$ are collinear. <br/><br/>So, $\frac{\alpha-6}{6-\frac{9}{2}}=\frac{10-11}{11-\beta}=\frac{13-11}{11+8}$ <br/><br/>$$ \begin{aligned} & \Rightarrow \frac{2(\alpha-6)}{3}=\frac{-1}{11-\beta}=\frac{2}{19} \\\\ & \Rightarrow \frac{2}{3}(\alpha-6)=\frac{2}{19} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow 19 \alpha-114=3 \Rightarrow 19 \alpha=117 \\\\ & \Rightarrow \alpha=\frac{117}{19} \end{aligned} $$ <br/><br/>And, $\frac{-1}{11-\beta}=\frac{2}{19}$ <br/><br/>$$ \begin{aligned} & \Rightarrow-19=22-2 \beta \\\\ & \Rightarrow 2 \beta=41 \\\\ & \Rightarrow \beta=\frac{41}{2} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \therefore(19 \alpha-6 \beta)^2=\left(19 \times \frac{117}{19}-\frac{6 \times 41}{2}\right)^2 \\\\ & =(117-123)^2=36 \end{aligned} $$
mcq
jee-main-2023-online-8th-april-morning-shift
jaoe38c1lsco116r
maths
vector-algebra
algebra-and-modulus-of-vectors
<p>The position vectors of the vertices $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$ of a triangle are $$2 \hat{i}-3 \hat{j}+3 \hat{k}, 2 \hat{i}+2 \hat{j}+3 \hat{k}$$ and $$-\hat{i}+\hat{j}+3 \hat{k}$$ respectively. Let $$l$$ denotes the length of the angle bisector $$\mathrm{AD}$$ of $$\angle \mathrm{BAC}$$ where $$\mathrm{D}$$ is on the line segment $$\mathrm{BC}$$, then $$2 l^2$$ equals :</p>
[{"identifier": "A", "content": "45"}, {"identifier": "B", "content": "50"}, {"identifier": "C", "content": "42"}, {"identifier": "D", "content": "49"}]
["A"]
null
<p>$$\begin{aligned} &amp; \mathrm{AB}=5 \\ &amp; \mathrm{AC}=5 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lt1v5c9e/0c2c210a-ab17-46c0-813d-6d826d2adf6f/7c1dc320-d40e-11ee-b9d5-0585032231f0/file-1lt1v5c9f.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lt1v5c9e/0c2c210a-ab17-46c0-813d-6d826d2adf6f/7c1dc320-d40e-11ee-b9d5-0585032231f0/file-1lt1v5c9f.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 27th January Evening Shift Mathematics - Vector Algebra Question 31 English Explanation"></p> <p>$$\therefore \mathrm{D}$$ is midpoint of $$\mathrm{BC}$$</p> <p>$$\begin{aligned} &amp; \mathrm{D}\left(\frac{1}{2}, \frac{3}{2}, 3\right) \\ &amp; \therefore l=\sqrt{\left(2-\frac{1}{2}\right)^2+\left(-3-\frac{3}{2}\right)^2+(3-3)^2} \\ &amp; l=\sqrt{\frac{45}{2}} \\ &amp; \therefore 2 l^2=45 \end{aligned}$$</p>
mcq
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lseyalpj
maths
vector-algebra
algebra-and-modulus-of-vectors
<p>Let $$\vec{a}, \vec{b}$$ and $$\vec{c}$$ be three non-zero vectors such that $$\vec{b}$$ and $$\vec{c}$$ are non-collinear. If $$\vec{a}+5 \vec{b}$$ is collinear with $$\vec{c}, \vec{b}+6 \vec{c}$$ is collinear with $$\vec{a}$$ and $$\vec{a}+\alpha \vec{b}+\beta \vec{c}=\overrightarrow{0}$$, then $$\alpha+\beta$$ is equal to</p>
[{"identifier": "A", "content": "30"}, {"identifier": "B", "content": "$$-$$30"}, {"identifier": "C", "content": "$$-$$25"}, {"identifier": "D", "content": "35"}]
["D"]
null
<p>$$\begin{aligned} & \vec{a}+5 \vec{b}=\lambda \vec{c} \\ & \vec{b}+6 \vec{c}=\mu \vec{a} \end{aligned}$$</p> <p>Eliminating $$\vec{a}$$</p> <p>$$\begin{aligned} & \lambda \overrightarrow{\mathrm{c}}-5 \overrightarrow{\mathrm{b}}=\frac{6}{\mu} \overrightarrow{\mathrm{c}}+\frac{1}{\mu} \overrightarrow{\mathrm{b}} \\ & \therefore \mu=\frac{-1}{5}, \lambda=-30 \\ & \alpha=5, \beta=30 \end{aligned}$$</p>
mcq
jee-main-2024-online-29th-january-morning-shift
sQ5ibg4HiGWlSCmT
maths
vector-algebra
scalar-and-vector-triple-product
If $$\overrightarrow a \,\,,\,\,\overrightarrow b \,\,,\,\,\overrightarrow c $$ are vectors such that $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] = 4$$ then $$\left[ {\overrightarrow a \, \times \overrightarrow b \,\,\overrightarrow b \times \,\overrightarrow c \,\,\overrightarrow c \, \times \overrightarrow a } \right] = $$
[{"identifier": "A", "content": "$$16$$ "}, {"identifier": "B", "content": "$$64$$ "}, {"identifier": "C", "content": "$$4$$ "}, {"identifier": "D", "content": "$$8$$ "}]
["A"]
null
We have, $$\left[ {\overrightarrow a \times \overrightarrow b \,\,\overrightarrow b \times \overrightarrow c \,\,\overrightarrow c \times \overrightarrow a } \right]$$ <br><br>$$ = \left( {\overrightarrow a \times \overrightarrow b } \right).\,\,\left\{ {\left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow c \times \overrightarrow a } \right)} \right\}$$ <br><br>$$ = \left( {\overrightarrow a \times \overrightarrow b } \right).\,\,\left\{ {\left( {\overrightarrow m \,.\,\overrightarrow a } \right)\overrightarrow c - \left( {\overrightarrow m \,.\,\overrightarrow c } \right)\overrightarrow a } \right\}$$ <br><br>( where $$\overrightarrow m = \overrightarrow b \times \overrightarrow c $$ ) <br><br>$$ = \left\{ {\left( {\overrightarrow a \times \overrightarrow b } \right).\overrightarrow c } \right\}.\,\left\{ {\overrightarrow a \,.\,\left( {\overrightarrow b \times \overrightarrow c } \right)} \right\}$$ <br><br>$$ = {\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]^2} = {4^2} = 16.$$
mcq
aieee-2002
D4Bcevo00Vrh7Gww
maths
vector-algebra
scalar-and-vector-triple-product
If $$\overrightarrow u \,,\overrightarrow v $$ and $$\overrightarrow w $$ are three non-coplanar vectors, then $$\,\left( {\overrightarrow u + \overrightarrow v - \overrightarrow w } \right).\left( {\overrightarrow u - \overrightarrow v } \right) \times \left( {\overrightarrow v - \overrightarrow w} \right)$$ equals :
[{"identifier": "A", "content": "$$3\\overrightarrow u .\\overrightarrow v \\times \\overrightarrow w $$ "}, {"identifier": "B", "content": "$$0$$"}, {"identifier": "C", "content": "$$\\overrightarrow u .\\overrightarrow v \\times \\overrightarrow w $$ "}, {"identifier": "D", "content": "$$\\overrightarrow u .\\overrightarrow w \\times \\overrightarrow v $$ "}]
["C"]
null
$$\left( {\overrightarrow u + \overrightarrow v - \overrightarrow w } \right).\left( {\overrightarrow u \times \overrightarrow v - \overrightarrow u \times \overrightarrow w - \overrightarrow v \times \overrightarrow v + \overrightarrow v \times \overrightarrow w } \right)$$ <br><br>$$ = \left( {\overrightarrow u + \overrightarrow v - \overrightarrow w } \right).\left( {\overrightarrow u \times \overrightarrow v - \overrightarrow u \times \overrightarrow w + \overrightarrow v \times \overrightarrow w } \right) = \overrightarrow u .\left( {\overrightarrow u \times \overrightarrow v } \right)$$ <br><br>$$ - \overrightarrow u .\left( {\overrightarrow u \times \overrightarrow w } \right) + \overrightarrow u .\left( {\overrightarrow v \times \overrightarrow w } \right) + \overrightarrow v .\left( {\overrightarrow u \times \overrightarrow v } \right) - \overrightarrow v .\left( {\overrightarrow u \times \overrightarrow w } \right)$$ <br><br>$$ + \overrightarrow v .\left( {\overrightarrow v \times \overrightarrow w } \right) - \overrightarrow w .\left( {\overrightarrow u \times \overrightarrow v } \right) + \overrightarrow w .\left( {\overrightarrow u \times \overrightarrow w } \right) - \overrightarrow w .\left( {\overrightarrow u \times \overrightarrow w } \right)$$ <br><br>$$ = \overrightarrow u .\left( {\overrightarrow v \times \overrightarrow w } \right) - \overrightarrow v .\left( {\overrightarrow u \times \overrightarrow w } \right) - \overrightarrow w .\left( {\overrightarrow u \times \overrightarrow v } \right)$$ <br><br>$$ = \left[ {\left. {\overrightarrow u \overrightarrow v \overrightarrow w } \right)} \right] + \left[ {\left. {\overrightarrow v \overrightarrow w \overrightarrow u } \right)} \right] - \left[ {\overrightarrow w \overrightarrow u \overrightarrow v } \right]$$ <br><br>$$ = \overrightarrow u .\left( {\overrightarrow v \times \overrightarrow w } \right)$$
mcq
aieee-2003
jZuo6aOIGIMwAj1z
maths
vector-algebra
scalar-and-vector-triple-product
If $${\overrightarrow a ,\overrightarrow b ,\overrightarrow c }$$ are non-coplanar vectors and $$\lambda $$ is a real number, then the vectors $${\overrightarrow a + 2\overrightarrow b + 3\overrightarrow c ,\,\,\lambda \overrightarrow b + 4\overrightarrow c }$$ and $$\left( {2\lambda - 1} \right)\overrightarrow c $$ are non coplanar for :
[{"identifier": "A", "content": "no value of $$\\lambda $$ "}, {"identifier": "B", "content": "all except one value of $$\\lambda $$ "}, {"identifier": "C", "content": "all except two values of $$\\lambda $$ "}, {"identifier": "D", "content": "all values of $$\\lambda $$ "}]
["C"]
null
Vectors $$\overrightarrow a + 2\overrightarrow b + 3\overrightarrow c ,\lambda \overrightarrow b + 4\overrightarrow c ,\,\,\,$$ <br><br>and $$\left( {2\lambda - 1} \right)\overrightarrow c $$ are <br><br>coplanar if $$\left| {\matrix{ 1 &amp; 2 &amp; 3 \cr 0 &amp; \lambda &amp; 4 \cr 0 &amp; 0 &amp; {2\lambda - 1} \cr } } \right| = 0$$ <br><br>$$ \Rightarrow \lambda \left( {2\lambda - 1} \right) = 0 \Rightarrow \lambda = 0$$ or $${1 \over 2}$$ <br><br>$$\therefore$$ Forces are noncoplanar for all $$\lambda ,$$ <br><br>except $$\lambda = 0,{1 \over 2}$$
mcq
aieee-2004
BRq9yBuutoyT3OZ3
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a \,\, = \,\,\widehat i - \widehat k,\,\,\,\,\,\overrightarrow b \,\,\, = \,\,\,x\widehat i + \widehat j\,\,\, + \,\,\,\left( {1 - x} \right)\widehat k$$ and $$\overrightarrow c \,\, = \,\,y\widehat i + x\widehat j + \left( {1 + x - y} \right)\widehat k.$$ Then $$\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]$$ depends on :
[{"identifier": "A", "content": "only $$y$$ "}, {"identifier": "B", "content": "only $$x$$ "}, {"identifier": "C", "content": "both $$x$$ and $$y$$ "}, {"identifier": "D", "content": "neither $$x$$ nor $$y$$ "}]
["D"]
null
$$\overrightarrow a = \widehat j - \widehat k,\overrightarrow b = x\widehat i + \overrightarrow j + \left( {1 - x} \right)\widehat k$$ <br><br>and $$\overrightarrow c = y\widehat i + x\widehat j + \left( {1 + x - y} \right)\widehat k$$ <br><br>$$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] = \overrightarrow a .\overrightarrow b \times \overrightarrow c = \left| {\matrix{ 1 &amp; 0 &amp; { - 1} \cr x &amp; 1 &amp; {1 - x} \cr y &amp; x &amp; {1 + x - y} \cr } } \right|$$ <br><br>$$ = 1\left[ {1 + x - y - x + {x^2}} \right] - \left[ { - {x^2} - y} \right]$$ <br><br>$$ = 1 - y + {x^2} - {x^2} + y = 1$$ <br><br>Hence $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$ is independent of $$x$$ and $$y$$ both.
mcq
aieee-2005
uM4lvmwUCURnQ18y
maths
vector-algebra
scalar-and-vector-triple-product
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are non coplanar vectors and $$\lambda $$ is a real number then <br/><br/>$$\left[ {\lambda \left( {\overrightarrow a + \overrightarrow b } \right)\,\,\,\,\,\,\,\,{\lambda ^2}\overrightarrow b \,\,\,\,\,\,\,\,\lambda \overrightarrow c } \right] = \left[ {\overrightarrow a \,\,\,\,\,\,\,\,\overrightarrow b + \overrightarrow c \,\,\,\,\,\,\,\,\overrightarrow b } \right]$$ for :
[{"identifier": "A", "content": "exactly one value of $$\\lambda $$ "}, {"identifier": "B", "content": "no value of $$\\lambda $$"}, {"identifier": "C", "content": "exactly three values of $$\\lambda $$"}, {"identifier": "D", "content": "exactly two values of $$\\lambda $$"}]
["B"]
null
$$\left[ {\lambda \left( {\overrightarrow a + \overrightarrow b } \right){\lambda ^2}\overrightarrow b \,\,\,\lambda \overrightarrow c } \right] = \left[ {\overrightarrow a \,\,\overrightarrow b + \overrightarrow c \,\,\overrightarrow b } \right]$$ <br><br>$$ \Rightarrow {\lambda ^4}\left[ {\overrightarrow a + \overrightarrow b \,\,\overrightarrow b \overrightarrow c } \right] = \left[ {\overrightarrow a \,\,\overrightarrow b + \overrightarrow c \,\,\overrightarrow b } \right]$$ <br><br>$$ \Rightarrow {\lambda ^4}\left\{ {\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] + \left[ {\overrightarrow b \,\overrightarrow b \,\overrightarrow c } \right]} \right\} = \left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow b } \right] + \left[ {\overrightarrow a \,\overrightarrow c \,\overrightarrow b } \right]$$ <br><br>$$ \Rightarrow {\lambda ^4}\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] = - \left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$ <br><br>$$ \Rightarrow {\lambda ^4} = - 1$$ <br><br>$$ \Rightarrow \lambda \,\,$$ has no real values.
mcq
aieee-2005
zsaWIZzGBykVkw8A
maths
vector-algebra
scalar-and-vector-triple-product
If $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ where $${\overrightarrow a ,\overrightarrow b }$$ and $${\overrightarrow c }$$ are any three vectors such that $$\overrightarrow a .\overrightarrow b \ne 0,\,\,\overrightarrow b .\overrightarrow c \ne 0$$ then $${\overrightarrow a }$$ and $${\overrightarrow c }$$ are :
[{"identifier": "A", "content": "inclined at an angle of $${\\pi \\over 3}$$ between them "}, {"identifier": "B", "content": "inclined at an angle of $${\\pi \\over 6}$$ between them "}, {"identifier": "C", "content": "perpendicular "}, {"identifier": "D", "content": "parallel "}]
["D"]
null
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right),\overrightarrow a .\overrightarrow b \ne 0,\,\,\overrightarrow b .\overrightarrow c \ne 0$$ <br><br>$$ \Rightarrow \left( {\overrightarrow a .\overrightarrow c } \right).\overrightarrow b - \left( {\overrightarrow b .\overrightarrow c } \right)\overrightarrow a $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\overrightarrow a .\overrightarrow c } \right).\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right).\overrightarrow c $$ <br><br>$$ \Rightarrow \left( {\overrightarrow a .\overrightarrow b } \right).\overrightarrow c = \left( {\overrightarrow b .\overrightarrow c } \right)\overrightarrow a $$ <br><br>$$ \Rightarrow \overrightarrow a ||\overrightarrow c .$$
mcq
aieee-2006
lWNMlgYnWH2QteNt
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\overrightarrow b = \widehat i - \widehat j + 2\widehat k$$ and $$\overrightarrow c = x\widehat i + \left( {x - 2} \right)\widehat j - \widehat k\,\,.$$ If the vectors $$\overrightarrow c $$ lies in the plane of $$\overrightarrow a $$ and $$\overrightarrow b $$, then $$x$$ equals :
[{"identifier": "A", "content": "$$-4$$ "}, {"identifier": "B", "content": "$$-2$$"}, {"identifier": "C", "content": "$$0$$ "}, {"identifier": "D", "content": "$$1.$$"}]
["B"]
null
Given $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\overrightarrow b = \widehat i - \widehat j + 2\widehat k$$ <br><br>and $$\overrightarrow c = x\widehat i + \left( {x - 2} \right)\widehat j - \widehat k$$ <br><br>If $$\overrightarrow c $$ lies in the plane of $$\overrightarrow a $$ and $$\overrightarrow b ,$$ <br><br>then $$\left[ {\overrightarrow a \,\overrightarrow {b\,} \overrightarrow c } \right] = 0$$ <br><br>i.e.$$\left| {\matrix{ 1 &amp; 1 &amp; 1 \cr 1 &amp; { - 1} &amp; 2 \cr x &amp; {\left( {x - 2} \right)} &amp; { - 1} \cr } } \right| = 0$$ <br><br>$$ \Rightarrow 1\left[ {1 - 2\left( {x - 2} \right)} \right] - 1\left[ { - 1 - 2x} \right]$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 1\left[ {x - 2 + x} \right] = 0$$ <br><br>$$ \Rightarrow 1 - 2x + 4 + 1 + 2x + 2x - 2 = 0$$ <br><br>$$ \Rightarrow 2x = - 4\,\,\,\,\,\,\,\,\, \Rightarrow x = - 2$$
mcq
aieee-2007
QgpDQ7Vm5ZN1ORQI
maths
vector-algebra
scalar-and-vector-triple-product
The vector $$\overrightarrow a = \alpha \widehat i + 2\widehat j + \beta \widehat k$$ lies in the plane of the vectors <br/>$$\overrightarrow b = \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat j + \widehat k$$ and bisects the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$.Then which one of the following gives possible values of $$\alpha $$ and $$\beta $$ ?
[{"identifier": "A", "content": "$$\\alpha = 2,\\,\\,\\beta = 2$$ "}, {"identifier": "B", "content": "$$\\alpha = 1,\\,\\,\\beta = 2$$"}, {"identifier": "C", "content": "$$\\alpha = 2,\\,\\,\\beta = 1$$"}, {"identifier": "D", "content": "$$\\alpha = 1,\\,\\,\\beta = 1$$"}]
["D"]
null
As $$\overrightarrow a $$ lies in the plane of $$\overrightarrow b $$ and $$\overrightarrow c $$ <br><br>$$\therefore$$ $$\overrightarrow a = \overrightarrow b + \lambda \overrightarrow c $$ <br><br>$$ \Rightarrow \alpha \widehat i + 2\widehat j + \beta \widehat k = \widehat i + \widehat j + \lambda \left( {\widehat j + \widehat k} \right)$$ <br><br>$$ \Rightarrow \alpha = 1,2 = 1 + \lambda ,\,\beta = \lambda \Rightarrow \alpha = 1,\beta = 1$$
mcq
aieee-2008
hZS5SQ5907JAkQoO
maths
vector-algebra
scalar-and-vector-triple-product
If $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w $$ are non-coplanar vectors and $$p,q$$ are real numbers, then the equality $$\left[ {3\overrightarrow u \,\,p\overrightarrow v \,\,p\overrightarrow w } \right] - \left[ {p\overrightarrow v \,\,\overrightarrow w \,\,q\overrightarrow u } \right] - \left[ {2\overrightarrow w \,\,q\overrightarrow v \,\,q\overrightarrow u } \right] = 0$$ holds for :
[{"identifier": "A", "content": "exactly two values of $$(p,q)$$"}, {"identifier": "B", "content": "more than two but not all values of $$(p,q)$$ "}, {"identifier": "C", "content": "all values of $$(p,q)$$ "}, {"identifier": "D", "content": "exactly one value of $$(p,q)$$"}]
["D"]
null
$$\left[ {3\overrightarrow u \,\,p\overrightarrow v \,\,p\overrightarrow \omega } \right] - \left[ {p\overrightarrow v \,\,\overrightarrow \omega \,\,q\overrightarrow u } \right] - \left[ {2\overrightarrow \omega \,\,q\overrightarrow v \,\,q\overrightarrow u } \right] = 0$$ <br><br>$$ \Rightarrow \left( {3{p^2} - pq + 2{q^2}} \right)\left[ {\overrightarrow u \,\,\overrightarrow v \,\,\overrightarrow \omega } \right] = 0$$ <br><br>$$ \Rightarrow 3{p^2} - pq + 2{q^2} = 0\,\,$$ $$\,\,\,\,\left( \, \right.$$ As $$\,\,\,\,\left[ {\overrightarrow u \,\,\overrightarrow v \,\,\overrightarrow \omega } \right] \ne 0$$ $$\left. {} \right)$$ <br><br>$$ \Rightarrow 2{p^2} + {p^2} - pq + {{{q^2}} \over 4} + {{7{q^2}} \over 4} = 0$$ <br><br>$$ \Rightarrow 2{p^2} + {\left( {p - {q \over 2}} \right)^2} + {7 \over 4}{q^2} = 0$$ <br><br>$$ \Rightarrow p = 0,q = 0,p = {q \over 2}$$ $$ \Rightarrow p = 0,q = 0$$ <br><br>$$\therefore$$ Exactly one value of $$\left( {p,q} \right)$$
mcq
aieee-2009
FVPtJqT2k8NUVozx
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a = \widehat j - \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j - \widehat k.$$ Then the vector $$\overrightarrow b $$ satisfying $$\overrightarrow a \times \overrightarrow b + \overrightarrow c = \overrightarrow 0 $$ and $$\overrightarrow a .\overrightarrow b = 3$$ :
[{"identifier": "A", "content": "$$2\\widehat i - \\widehat j + 2\\widehat k$$ "}, {"identifier": "B", "content": "$$\\widehat i - \\widehat j - 2\\widehat k$$"}, {"identifier": "C", "content": "$$\\widehat i + \\widehat j - 2\\widehat k$$"}, {"identifier": "D", "content": "$$-\\widehat i +\\widehat j - 2\\widehat k$$"}]
["D"]
null
$$\overrightarrow c = \overrightarrow b \times \overrightarrow a $$ <br><br>$$ \Rightarrow \overrightarrow b .\overrightarrow c = \overrightarrow b .\left( {\overrightarrow b \times \overrightarrow a } \right) \Rightarrow \overrightarrow b .\overrightarrow c = 0$$ <br><br>$$ \Rightarrow \left( {{b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k} \right).\left( {\widehat i - \widehat j - \widehat k} \right) = 0,$$ <br><br>where $$\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k$$ <br><br>$${b_1} - {b_2} - {b_3} = 0\,\,\,\,\,\,\,\,\,\,\,....\left( i \right)$$ <br><br>and $$\,\,\,\,\overrightarrow a .\overrightarrow b = 3$$ <br><br>$$ \Rightarrow \left( {\widehat j - \widehat k} \right).\left( {{b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k} \right) = 3$$ <br><br>$$ \Rightarrow {b_2} - {b_3} = 3$$ <br><br>From equation $$(i)$$ <br><br>$${b_1} = {b_2} + {b_3} = \left( {3 + {b_3}} \right) + {b_3} = 3 + 2{b_3}$$ <br><br>$$\overrightarrow b = \left( {3 + 2{b_3}} \right)\widehat i + \left( {3 + {b_3}} \right)\widehat j + {b_3}\widehat k$$ <br><br>From the option given, it is clear that $${b_3}$$ equal to either $$2$$ or $$-2.$$ <br><br>$${b_3} = 2$$ <br><br>then $$\overrightarrow b = 7\widehat i + 5\widehat j + 2\widehat k$$ which is not possible <br><br>If $${b_3} = - 2,$$ then $$\overrightarrow b = - \widehat i + \widehat j - 2\widehat k$$
mcq
aieee-2010
tPY4NnwJZCoCQIE5
maths
vector-algebra
scalar-and-vector-triple-product
If $$\overrightarrow a = {1 \over {\sqrt {10} }}\left( {3\widehat i + \widehat k} \right)$$ and $$\overrightarrow b = {1 \over 7}\left( {2\widehat i + 3\widehat j - 6\widehat k} \right),$$ then the value <br/><br>of $$\left( {2\overrightarrow a - \overrightarrow b } \right)\left[ {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a + 2\overrightarrow b } \right)} \right]$$ is :</br>
[{"identifier": "A", "content": "$$-3$$ "}, {"identifier": "B", "content": "$$5$$ "}, {"identifier": "C", "content": "$$3$$ "}, {"identifier": "D", "content": "$$-5$$ "}]
["D"]
null
We have $$\overrightarrow a .\overrightarrow b = 0,\,\,\overrightarrow a .\overrightarrow a = 1,\,\,\overrightarrow b .\overrightarrow b = 1$$ <br><br>$$\left( {2\overrightarrow a - \overrightarrow b } \right).\left[ {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a + 2\overrightarrow b } \right)} \right]$$ <br><br>$$ = \left( {2\overrightarrow a - \overrightarrow b } \right).\left[ {\left\{ {\overrightarrow a .\left( {\overrightarrow a + 2\overrightarrow b } \right)} \right\}\overrightarrow b - \left\{ {\overrightarrow b .\left( {\overrightarrow a + 2\overrightarrow b } \right)\overrightarrow a } \right\}} \right]$$ <br><br>$$ = \left( {2\overrightarrow a - \overrightarrow b } \right).\left[ {\left( {\overrightarrow a .\overrightarrow a + 2\overrightarrow a .\overrightarrow b } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b + 2\overrightarrow b .\overrightarrow b } \right)\overrightarrow a } \right]$$ <br><br>$$ = \left( {2\overrightarrow a - \overrightarrow b } \right).\left[ {\overrightarrow b - 2\overrightarrow a } \right]$$ <br><br>$$ = 4\overrightarrow a .\overrightarrow b - \overrightarrow b .\overrightarrow b - 4\overrightarrow a .\overrightarrow a $$ <br><br>$$ = - 5$$
mcq
aieee-2011
fnnbNmLCR5jL4JWe
maths
vector-algebra
scalar-and-vector-triple-product
If $$\left[ {\overrightarrow a \times \overrightarrow b \,\,\,\,\overrightarrow b \times \overrightarrow c \,\,\,\,\overrightarrow c \times \overrightarrow a } \right] = \lambda {\left[ {\overrightarrow a\,\,\,\,\,\,\,\, \overrightarrow b \,\,\,\,\,\,\,\,\overrightarrow c } \right]^2}$$ then $$\lambda $$ is equal to :
[{"identifier": "A", "content": "$$0$$ "}, {"identifier": "B", "content": "$$1$$"}, {"identifier": "C", "content": "$$2$$"}, {"identifier": "D", "content": "$$3$$"}]
["B"]
null
$$L.H.S$$ $$ = \left( {\overrightarrow a \times \overrightarrow b } \right).\left[ {\left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow c \times \overrightarrow a } \right)} \right]$$ <br><br>$$ = \left( {\overrightarrow a \times \overrightarrow b } \right).\left[ {\left( {\overrightarrow b \times \overrightarrow c .\overrightarrow a } \right)} \right]\overrightarrow c - \left( {\overrightarrow b \times \overrightarrow c .\overrightarrow c } \right)\left. {\overrightarrow a } \right]$$ <br><br>$$ = \left( {\overrightarrow a \times \overrightarrow b } \right).\left[ {\left[ {\overrightarrow b \,\overrightarrow c \,\overrightarrow a } \right]\overrightarrow c } \right]$$ $$\,\,\,\,\,\,\left[ \, \right.$$As $$\overrightarrow b \times \overrightarrow c .\overrightarrow c = 0$$ $$\left. \, \right]$$ <br><br>$$ = \left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right].\left( {\overrightarrow a \times \overrightarrow b .\overrightarrow c } \right) = {\left[ {\overrightarrow a \,\,\,\,\,\overrightarrow b \,\,\,\,\,\overrightarrow c } \right]^2}$$ <br><br>$$\left[ {\overrightarrow a \times \overrightarrow b \,\,\,\overrightarrow b \times \overrightarrow c \,\,\,\overrightarrow c \times \overrightarrow a } \right] = {\left[ {\overrightarrow a \,\,\,\,\,\overrightarrow b \,\,\,\,\,\overrightarrow c } \right]^2}$$ <br><br>So $$\,\,\,\,\,\lambda = 1$$
mcq
jee-main-2014-offline
GHozmbvUXpiFybyD
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of them are collinear and <br/><br/>$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a .$$ If $$\theta $$ is the angle between vectors $$\overrightarrow b $$ and $${\overrightarrow c }$$ , then a value of sin $$\theta $$ is :
[{"identifier": "A", "content": "$${2 \\over 3}$$"}, {"identifier": "B", "content": "$${{ - 2\\sqrt 3 } \\over 3}$$ "}, {"identifier": "C", "content": "$${{ 2\\sqrt 2 } \\over 3}$$"}, {"identifier": "D", "content": "$${{ - \\sqrt 2 } \\over 3}$$ "}]
["C"]
null
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a $$ <br><br>$$ \Rightarrow - \overrightarrow c \times \left( {\overrightarrow a \times \overrightarrow b } \right) = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a $$ <br><br>$$ \Rightarrow - \left( {\overrightarrow c .\overrightarrow b } \right)\overrightarrow a + \left( {\overrightarrow c .\overrightarrow a } \right)\overrightarrow b = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a $$ <br><br>$$ \Rightarrow - \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\cos \theta \overrightarrow a + \left( {\overrightarrow c .\overrightarrow a } \right)\overrightarrow b = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a $$ <br><br>$$\therefore$$ $$\,\,\,\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are non collinear, the above equation is possible only when <br><br>$$ - \cos \theta = {1 \over 3}$$ and $$\overrightarrow c .\overrightarrow a = 0$$ <br><br>$$ \Rightarrow \cos \theta = - {1 \over 3}$$ <br><br>$$ \Rightarrow \sin \theta = {{2\sqrt 2 } \over 3};\theta \in \,{\rm I}{\rm I}$$ quad
mcq
jee-main-2015-offline
6uIl4ZYYXZz8Y3pd
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors such that $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = {{\sqrt 3 } \over 2}\left( {\overrightarrow b + \overrightarrow c } \right).$$ If $${\overrightarrow b }$$ is not parallel to $${\overrightarrow c },$$ then the angle between $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is:
[{"identifier": "A", "content": "$${{2\\pi } \\over 3}$$ "}, {"identifier": "B", "content": "$${{5\\pi } \\over 6}$$"}, {"identifier": "C", "content": "$${{3\\pi } \\over 4}$$"}, {"identifier": "D", "content": "$${{\\pi } \\over 2}$$"}]
["B"]
null
$$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = {{\sqrt 3 } \over 2}\left( {\overrightarrow b + \overrightarrow c } \right)$$ <br><br>$$ \Rightarrow \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = {{\sqrt 3 } \over 2}\overrightarrow b + {{\sqrt 3 } \over 2}\overrightarrow c $$ <br><br>On comparing both sides <br><br>$$\overrightarrow a .\overrightarrow b = - {{\sqrt 3 } \over 2} \Rightarrow \cos \theta = - {{\sqrt 3 } \over 2}$$ <br><br>$$\left[ \, \right.$$ As $$\overrightarrow a $$ and $$\overrightarrow b $$ are unit vectors $$\left. \, \right]$$ <br><br>where $$\theta $$ is the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ <br><br>$$\theta = {{5\pi } \over 6}$$
mcq
jee-main-2016-offline
EtDY30nGqeWkJ7RGPLaJz
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors, out of which vectors $$\overrightarrow b $$ and $$\overrightarrow c $$ are non-parallel. If $$\alpha $$ and $$\beta $$ are the angles which vector $$\overrightarrow a $$ makes with vectors $$\overrightarrow b $$ and $$\overrightarrow c $$ respectively and $$\overrightarrow a $$ $$ \times $$ ($$\overrightarrow b $$ $$ \times $$ $$\overrightarrow c $$) = $${1 \over 2}\overrightarrow b $$, then $$\left| {\alpha - \beta } \right|$$ is equal to :
[{"identifier": "A", "content": "90<sup>o</sup>"}, {"identifier": "B", "content": "30<sup>o</sup>"}, {"identifier": "C", "content": "45<sup>o</sup>"}, {"identifier": "D", "content": "60<sup>o</sup>"}]
["B"]
null
$$\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right).\overrightarrow c = {1 \over 2}\overrightarrow b $$ <br><br>$$ \because $$&nbsp;&nbsp;$$\overrightarrow b \,\,$$ &amp; $$\overrightarrow c \,\,$$ are linearly independent <br><br>$$ \therefore $$&nbsp;&nbsp;$$\overrightarrow a \,$$.$$\overrightarrow c \,$$ = $${1 \over 2}$$ &amp; $$\overrightarrow a .\overrightarrow b $$ = 0 <br><br>(All given vectors are unit vectors) <br><br>$$ \therefore $$&nbsp;&nbsp;$$\overrightarrow a $$^$$\overrightarrow c $$ = 60<sup>o</sup> &amp; $$\overrightarrow a $$^$$\overrightarrow b $$ = 90<sup>o</sup> <br><br>$$ \therefore $$&nbsp;&nbsp;$$\left| {\alpha - \beta } \right| = {30^o}$$
mcq
jee-main-2019-online-12th-january-evening-slot
K0mbLDiKg5frblM18B3rsa0w2w9jxaz0egd
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\alpha $$ $$ \in $$ R and the three vectors <br/><br/>$$\overrightarrow a = \alpha \widehat i + \widehat j + 3\widehat k$$, $$\overrightarrow b = 2\widehat i + \widehat j - \alpha \widehat k$$ <br/><br/>and $$\overrightarrow c = \alpha \widehat i - 2\widehat j + 3\widehat k$$. <br/><br/>Then the set S = {$$\alpha $$ : $$\overrightarrow a $$ , $$\overrightarrow b $$ and $$\overrightarrow c $$ are coplanar} :
[{"identifier": "A", "content": "contains exactly two numbers only one of which is positive"}, {"identifier": "B", "content": "is singleton"}, {"identifier": "C", "content": "contains exactly two positive numbers"}, {"identifier": "D", "content": "is empty"}]
["D"]
null
Since these vectors are coplanar then,<br><br> $$\left| {\matrix{ \alpha &amp; 1 &amp; 3 \cr 2 &amp; 1 &amp; { - \alpha } \cr \alpha &amp; { - 2} &amp; 3 \cr } } \right| = 0$$<br><br> Now, $$\alpha (3 - 2\alpha ) - 1\left( {6 + {\alpha ^2}} \right) + 3\left( { - 4 - \alpha } \right) = 0$$<br><br> $$ - 3{\alpha ^2} - 18 = 0$$ $$ \Rightarrow $$ $${\alpha ^2}$$ = -6
mcq
jee-main-2019-online-12th-april-evening-slot
0v0x2Efs8pBEclG5EP3rsa0w2w9jx6glnbj
maths
vector-algebra
scalar-and-vector-triple-product
If the volume of parallelopiped formed by the vectors $$\widehat i + \lambda \widehat j + \widehat k$$, $$\widehat j + \lambda \widehat k$$ and $$\lambda \widehat i + \widehat k$$ is minimum, then $$\lambda $$ is equal to :
[{"identifier": "A", "content": "$$ - {1 \\over {\\sqrt 3 }}$$"}, {"identifier": "B", "content": "$${\\sqrt 3 }$$"}, {"identifier": "C", "content": "$$-{\\sqrt 3 }$$"}, {"identifier": "D", "content": "$$ {1 \\over {\\sqrt 3 }}$$"}]
["D"]
null
$$V = \left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] = \left| {\matrix{ 1 &amp; \lambda &amp; 1 \cr 0 &amp; 1 &amp; \lambda \cr \lambda &amp; 0 &amp; 1 \cr } } \right|$$<br><br> $$ \Rightarrow 1 - \lambda \left( { - {\lambda ^2}} \right) + 1.\left( {0 - \lambda } \right) = {\lambda ^3} - \lambda + 1$$<br><br> Whose minimum value occur at $$\lambda $$ = $${1 \over {\sqrt 3 }}$$
mcq
jee-main-2019-online-12th-april-morning-slot
XR9wDoMoZhk3UqVQLWL6Q
maths
vector-algebra
scalar-and-vector-triple-product
The sum of the distinct real values of $$\mu $$, for which the vectors, $$\mu \widehat i + \widehat j + \widehat k,$$   $$\widehat i + \mu \widehat j + \widehat k,$$   $$\widehat i + \widehat j + \mu \widehat k$$  are co-planar, is :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "$$-$$1"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "1"}]
["B"]
null
$$\left| {\matrix{ \mu &amp; 1 &amp; 1 \cr 1 &amp; \mu &amp; 1 \cr 1 &amp; 1 &amp; \mu \cr } } \right| = 0$$ <br><br>$$\mu \left( {{\mu ^2} - 1} \right) - 1\left( {\mu - 1} \right) + 1\left( {1 - \mu } \right) = 0$$ <br><br>$${\mu ^3} - \mu - \mu + 1 + 1\mu = 0$$ <br><br>$${\mu ^3} - 3\mu + 2 = 0$$ <br><br>$${\mu ^3} - 1 - 3\left( {\mu - 1} \right) = 0$$ <br><br>$$u = 1,\,\,{\mu ^2} + \mu - 2 = 0$$ <br><br>$$\mu = 1,\,\,\mu = - 2$$ <br><br>sum of distinct solutions $$=$$ $$-$$ 1
mcq
jee-main-2019-online-12th-january-morning-slot
NaM2UpfKHhYSEwnbzsWn0
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a $$ = $$\widehat i - \widehat j$$, $$\overrightarrow b $$ = $$\widehat i + \widehat j + \widehat k$$ and $$\overrightarrow c $$ <br/><br/>be a vector such that $$\overrightarrow a $$ × $$\overrightarrow c $$ + $$\overrightarrow b $$ = $$\overrightarrow 0 $$ <br/><br/>and $$\overrightarrow a $$ . $$\overrightarrow c $$ = 4, then |$$\overrightarrow c $$|<sup>2</sup> is equal to :
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "$$19 \\over 2$$"}, {"identifier": "C", "content": "9"}, {"identifier": "D", "content": "$$17 \\over 2$$"}]
["B"]
null
Given that, <br><br>$$\overrightarrow a \times \overrightarrow c + \overrightarrow b = \overrightarrow 0 $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow c } \right) + \overrightarrow a \times \overrightarrow b = \overrightarrow 0 $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow a - \left( {\overrightarrow a \cdot \overrightarrow a } \right)\overrightarrow c + \overrightarrow a \times \overrightarrow b = \overrightarrow 0 $$ <br><br>given that <br><br>$$\overrightarrow a \cdot \overrightarrow c = 4$$ <br><br>and $$\overrightarrow a \cdot \overrightarrow a = {\left| {\overrightarrow a } \right|^2} = {\left( {\sqrt 2 } \right)^2} = 2$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$4\overrightarrow a - 2\overrightarrow c + \overrightarrow a \times \overrightarrow b = 0$$ <br><br>Now&nbsp;&nbsp;$$\overrightarrow a \times \overrightarrow b $$ <br><br>$$ = \left| {\matrix{ i &amp; j &amp; k \cr 1 &amp; { - 1} &amp; 0 \cr 1 &amp; 1 &amp; 1 \cr } } \right|$$ <br><br>$$ = - \widehat i - \widehat j + 2\widehat k$$ <br><br>$$ \therefore $$&nbsp;&nbsp;$$2\overrightarrow c = 4\left( {\widehat i - \widehat j} \right) + \left( { - \widehat i - \widehat j + \widehat k} \right)$$ <br><br>$$ = 4\widehat i - 4\widehat j - \widehat i - \widehat j + \widehat k$$ <br><br>$$ = 3\widehat i - 5\widehat j + \widehat k$$ <br><br>$$ \therefore $$&nbsp;&nbsp;$$\overrightarrow c = {3 \over 2}\widehat i - {5 \over 2}\widehat j + \widehat k$$ <br><br>$$ \therefore $$&nbsp;&nbsp;$$\left| {\overrightarrow c } \right| = \sqrt {{9 \over 4} + {{25} \over 4} + 1} $$ <br><br>$$ = \sqrt {{{38} \over 4}} $$ <br><br>$$ = \sqrt {{{19} \over 2}} $$ <br><br>$$ \therefore $$&nbsp;&nbsp;$${\left| {\overrightarrow c } \right|^2} = {{19} \over 2}$$
mcq
jee-main-2019-online-9th-january-morning-slot
l8CGSsy1iXuyJWw16U7k9k2k5gpqnac
maths
vector-algebra
scalar-and-vector-triple-product
Let the volume of a parallelopiped whose coterminous edges are given by <br/><br>$$\overrightarrow u = \widehat i + \widehat j + \lambda \widehat k$$, $$\overrightarrow v = \widehat i + \widehat j + 3\widehat k$$ and <br/><br>$$\overrightarrow w = 2\widehat i + \widehat j + \widehat k$$ be 1 cu. unit. If $$\theta $$ be the angle between the edges $$\overrightarrow u $$ and $$\overrightarrow w $$ , then cos$$\theta $$ can be :</br></br>
[{"identifier": "A", "content": "$${7 \\over {6\\sqrt 3 }}$$"}, {"identifier": "B", "content": "$${7 \\over {6\\sqrt 6 }}$$"}, {"identifier": "C", "content": "$${5 \\over 7}$$"}, {"identifier": "D", "content": "$${5 \\over {3\\sqrt 3 }}$$"}]
["A"]
null
Volume of parallelopiped = 1 <br><br>$$\left| {\left[ {\matrix{ {\overrightarrow u } &amp; {\overrightarrow v } &amp; {\overrightarrow w } \cr } } \right]} \right|$$ = 1 <br><br>$$ \Rightarrow $$ $$\left| {\matrix{ 1 &amp; 1 &amp; \lambda \cr 1 &amp; 1 &amp; 3 \cr 2 &amp; 1 &amp; 1 \cr } } \right|$$ = $$ \pm $$1 <br><br>$$ \Rightarrow $$ $$\lambda $$ = 2, 4 <br><br>$$\overrightarrow u = \widehat i + \widehat j + 2 \widehat k$$ or <br>$$\overrightarrow u = \widehat i + \widehat j + 4 \widehat k$$ <br><br>$$ \therefore $$ cos $$\theta $$ = $${{{\overrightarrow u .\overrightarrow w } \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow w } \right|}}}$$ <br><br>= $${{2 + 1 + 4} \over {\sqrt {18} \sqrt 6 }}$$ or $${{2 + 1 + 2} \over {\sqrt 6 \sqrt 6 }}$$ <br><br>= $${7 \over {6\sqrt 3 }}$$ or $${5 \over 6}$$
mcq
jee-main-2020-online-8th-january-morning-slot
uH7b90Y6mDcfmjaFSn7k9k2k5iu6y6w
maths
vector-algebra
scalar-and-vector-triple-product
If the vectors, $$\overrightarrow p = \left( {a + 1} \right)\widehat i + a\widehat j + a\widehat k$$, <br/><br> $$\overrightarrow q = a\widehat i + \left( {a + 1} \right)\widehat j + a\widehat k$$ and <br/><br> $$\overrightarrow r = a\widehat i + a\widehat j + \left( {a + 1} \right)\widehat k\left( {a \in R} \right)$$ <br/><br/>are coplanar and $$3{\left( {\overrightarrow p .\overrightarrow q } \right)^2} - \lambda \left| {\overrightarrow r \times \overrightarrow q } \right|^2 = 0$$, then the value of $$\lambda $$ is ______.</br></br>
[]
null
1
$$ \because $$ $$\overrightarrow p$$, $$\overrightarrow q$$, $$\overrightarrow r$$ are coplanar <br><br>$$ \therefore $$ $$\left[ {\matrix{ {\overrightarrow p } &amp; {\overrightarrow q } &amp; {\overrightarrow r } \cr } } \right]$$ = 0 <br><br>$$ \Rightarrow $$ $$\left| {\matrix{ {a + 1} &amp; a &amp; a \cr a &amp; {a + 1} &amp; a \cr a &amp; a &amp; {a + 1} \cr } } \right|$$ = 0 <br><br>$$ \Rightarrow $$ (a + 1) + a + a = 0 <br><br>$$ \Rightarrow $$ a = $$ - {1 \over 3}$$ <br><br>$$\overrightarrow p .\overrightarrow q $$ = $${1 \over 9}\left( { - 2 - 2 + 1} \right)$$ = $$ - {1 \over 3}$$ <br><br>$$\overrightarrow r \times \overrightarrow q $$ = $${1 \over 9}\left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr { - 1} &amp; 2 &amp; { - 1} \cr { - 1} &amp; { - 1} &amp; 2 \cr } } \right|$$ <br><br>= $${1 \over 9}\left( {3\widehat i + 3\widehat j + 3\widehat k} \right)$$ <br><br>= $${{\widehat i + \widehat j + \widehat k} \over 3}$$ <br><br>$$ \Rightarrow $$ $${\left| {\overrightarrow r \times \overrightarrow q } \right|^2} = {1 \over 3}$$ <br><br>Also $$3{\left( {\overrightarrow p .\overrightarrow q } \right)^2} - \lambda \left| {\overrightarrow r \times \overrightarrow q } \right|^2 = 0$$ <br><br>$$ \Rightarrow $$ $$3\left( {{1 \over 9}} \right) - \lambda \left( {{1 \over 3}} \right)$$ = 0 <br><br> $$ \Rightarrow $$ $$\lambda $$ = 1
integer
jee-main-2020-online-9th-january-morning-slot
9QNY5X8lrChVbAhY95jgy2xukf7gthwr
maths
vector-algebra
scalar-and-vector-triple-product
Let x<sub>0</sub> be the point of Local maxima of $$f(x) = \overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)$$, where <br/>$$\overrightarrow a = x\widehat i - 2\widehat j + 3\widehat k$$, $$\overrightarrow b = - 2\widehat i + x\widehat j - \widehat k$$, $$\overrightarrow c = 7\widehat i - 2\widehat j + x\widehat k$$. Then the value of <br/>$$\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a $$ at x = x<sub>0</sub> is :
[{"identifier": "A", "content": "14"}, {"identifier": "B", "content": "-30"}, {"identifier": "C", "content": "-4"}, {"identifier": "D", "content": "-22"}]
["D"]
null
$$f(x) = \overrightarrow a \,.\,(\overrightarrow b \times \overrightarrow c )$$<br><br>$$ = \left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$<br><br>$$ = \left| {\matrix{ x &amp; { - 2} &amp; 3 \cr { - 2} &amp; x &amp; { - 1} \cr 7 &amp; { - 2} &amp; x \cr } } \right|$$<br><br>$$ = x({x^2} + 2) + 2( - 2a + 7) + 3(4 - 7x)$$<br><br>$$ \Rightarrow f(x) = {x^3} - 27x + 26$$<br><br>$$f'(x) = 3{x^2} - 27$$<br><br>For maxima or minima $$f'(x) = 0$$<br><br>$$ \therefore $$ $$3{x^2} - 27 = 0$$<br><br>$$ \Rightarrow x = \pm \,3$$<br><br>Now, $$f''(x) = 6x$$<br><br>f''(x) at x = $$-$$3 is 6($$-$$3) = $$-$$18 &lt; 0<br><br>$$ \therefore $$ At x = $$-$$3 f(x) is maximum.<br><br>So, x<sub>0</sub> = $$-$$3<br><br>$$ \therefore $$ $$\overrightarrow a = - 3\widehat i - 2\widehat j + 3\widehat k$$<br><br>$$\overrightarrow b = - 2\widehat i - 3\widehat j - \widehat k$$<br><br>$$\overrightarrow c = 7\widehat i - 2\widehat j - 3\widehat k$$<br><br>Now, $$\overrightarrow a \,.\,\overrightarrow b \, + \,\overrightarrow b \,.\,\overrightarrow c \, + \,\overrightarrow c \,.\,\overrightarrow a $$<br><br>$$ = (6 + 6 - 3) + ( - 14 + 6 + 3) + ( - 21 + 4 - 9)$$<br><br>$$ = 9 - 5 - 26$$<br><br>$$ = - 22$$
mcq
jee-main-2020-online-4th-september-morning-slot
WGSrrJfn4qBtQkI2kKjgy2xukfg6dkb0
maths
vector-algebra
scalar-and-vector-triple-product
If the volume of a parallelopiped, whose<br/> coterminus edges are given by the <br/>vectors $$\overrightarrow a = \widehat i + \widehat j + n\widehat k$$, <br/>$$\overrightarrow b = 2\widehat i + 4\widehat j - n\widehat k$$ and <br/>$$\overrightarrow c = \widehat i + n\widehat j + 3\widehat k$$ ($$n \ge 0$$), is 158 cu. units, then :
[{"identifier": "A", "content": "n = 7"}, {"identifier": "B", "content": "$$\\overrightarrow b .\\overrightarrow c = 10$$"}, {"identifier": "C", "content": "$$\\overrightarrow a .\\overrightarrow c = 17$$"}, {"identifier": "D", "content": "n = 9"}]
["B"]
null
We know, Volume(V) = $$\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]$$ <br><br>$$ \Rightarrow $$ 158 = $$\left| {\matrix{ 1 &amp; 1 &amp; n \cr 2 &amp; 4 &amp; { - n} \cr 1 &amp; n &amp; 3 \cr } } \right|$$ <br><br>$$ \Rightarrow $$ (12 + n<sup>2</sup>) – (6 + n) + n(2n–4)=158 <br><br>$$ \Rightarrow $$ 3n<sup>2</sup> –5n + 6 –158 = 0 <br><br>$$ \Rightarrow $$ 3n<sup>2</sup> – 5n – 152 = 0 <br><br>$$ \Rightarrow $$ 3n<sup>2</sup> – 24n + 19n – 152 = 0 <br><br>$$ \Rightarrow $$ (3n + 19) (n–8) = 0 <br><br>$$ \Rightarrow $$ n = 8, $$ - {{19} \over 3}$$ (rejected) <br><br>$$ \therefore $$ $$\overrightarrow a = \widehat i + \widehat j + 8\widehat k$$, <br><br>$$\overrightarrow b = 2\widehat i + 4\widehat j - 8\widehat k$$ and <br><br>$$\overrightarrow c = \widehat i + 8\widehat j + 3\widehat k$$ <br><br>Now $${\overrightarrow a .\overrightarrow c }$$ = 1 + 8 + 24 = 33 <br><br>$${\overrightarrow b .\overrightarrow c }$$ = 2 + 32 - 24 = 10
mcq
jee-main-2020-online-5th-september-morning-slot
MgYtxj9nMPDMzcRPl01klrie7jw
maths
vector-algebra
scalar-and-vector-triple-product
Let three vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be such that $$\overrightarrow c $$ is coplanar <br/>with $$\overrightarrow a $$ and $$\overrightarrow b $$, $$\overrightarrow a .\overrightarrow c $$ = 7 and $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$, where <br/>$$\overrightarrow a = - \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow b = 2\widehat i + \widehat k$$ , then the <br/>value of $$2{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2}$$ is _____.
[]
null
75
$$\overrightarrow c = \lambda (\overrightarrow b \times (\overrightarrow a \times \overrightarrow b ))$$<br><br>$$ = \lambda ((\overrightarrow b \,.\,\overrightarrow b )\overrightarrow a - (\overrightarrow b \,.\,\overrightarrow a )\overrightarrow b )$$<br><br>$$ = \lambda (5( - \widehat i + \widehat j + \widehat k) + 2\widehat i + \widehat k)$$<br><br>$$ = \lambda ( - 3\widehat i + 5\widehat j + 6\widehat k)$$<br><br>$$\overrightarrow c \,.\,\overrightarrow a = 7 $$ <br/><br/>$$\Rightarrow 3\lambda + 5\lambda + 6\lambda = 7$$<br><br>$$ \Rightarrow $$ $$\lambda = {1 \over 2}$$<br><br>$$ \therefore $$ $$2{\left| {\left( {{{ - 3} \over 2} - 1 + 2} \right)\widehat i + \left( {{5 \over 2} + 1} \right)\widehat j + (3 + 1 + 1)\widehat k} \right|^2}$$<br><br>$$ = 2\left( {{1 \over 4} + {{49} \over 4} + 25} \right) = 25 + 50 = 75$$
integer
jee-main-2021-online-24th-february-morning-slot
obXnX2oiZZRcp8NgLj1klugp3ss
maths
vector-algebra
scalar-and-vector-triple-product
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are perpendicular, then <br/>$$\overrightarrow a \times \left( {\overrightarrow a \times \left( {\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right)} \right)$$ is equal to :
[{"identifier": "A", "content": "$${1 \\over 2}|\\overrightarrow a {|^4}\\overrightarrow b $$"}, {"identifier": "B", "content": "$$\\overrightarrow 0 $$"}, {"identifier": "C", "content": "$$\\overrightarrow a \\times \\overrightarrow b $$"}, {"identifier": "D", "content": "$$|\\overrightarrow a {|^4}\\overrightarrow b $$"}]
["D"]
null
$$\overrightarrow a \,.\,\overrightarrow b = 0$$<br><br>$$\overrightarrow a \times (\overrightarrow a \times \overrightarrow b ) = (\overrightarrow a \,.\,\overrightarrow b )\overrightarrow a - (\overrightarrow a \,.\,\overrightarrow a )\overrightarrow b = - |\overrightarrow a {|^2}\overrightarrow b $$<br><br>Now, $$\overrightarrow a \times (\overrightarrow a \times ( - |\overrightarrow a {|^2}\overrightarrow b ))$$<br><br>$$ = - |\overrightarrow a {|^2}(\overrightarrow a \times (\overrightarrow a \times \overrightarrow b ))$$<br><br>$$ = - |\overrightarrow a {|^2}( - |\overrightarrow a {|^2}\overrightarrow b ) = |\overrightarrow a {|^4}\overrightarrow b $$
mcq
jee-main-2021-online-26th-february-morning-slot
XOTDvrbroQnWGWAp5G1kmizgckj
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow c $$ be a vector perpendicular to the vectors, $$\overrightarrow a $$ = $$\widehat i$$ + $$\widehat j$$ $$-$$ $$\widehat k$$ and <br/>$$\overrightarrow b $$ = $$\widehat i$$ + 2$$\widehat j$$ + $$\widehat k$$. If $$\overrightarrow c \,.\,\left( {\widehat i + \widehat j + 3\widehat k} \right)$$ = 8 then the value of <br/>$$\overrightarrow c $$ . $$\left( {\overrightarrow a \times \overrightarrow b } \right)$$ is equal to __________.
[]
null
28
$$\overrightarrow a \times \overrightarrow b = \left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr 1 &amp; 1 &amp; { - 1} \cr 1 &amp; 2 &amp; 1 \cr } } \right| = (3, - 2,1)$$<br><br>$$\overrightarrow c \bot \overrightarrow a ,\overrightarrow c \bot \overrightarrow b \Rightarrow C||\overrightarrow a \times \overrightarrow b $$<br><br>$$\overrightarrow c = \lambda (\overrightarrow a \times \overrightarrow b )$$<br><br>$$ \Rightarrow \overrightarrow c = \lambda (3\widehat i - 2\widehat j + \widehat k)$$<br><br>Given, $$\overrightarrow c .(\widehat i + \widehat j + 3\widehat k) = 8$$<br><br>$$ \Rightarrow 3\lambda - 2\lambda + 3\lambda = 8$$<br><br>$$ \Rightarrow 4\lambda = 8 \Rightarrow \lambda = 2$$<br><br>$$ \therefore $$ $$\overrightarrow c = 6\widehat i - 4\widehat j + 2\widehat k$$<br><br>$$\overrightarrow c \,.\,(\overrightarrow a \times \overrightarrow b ) = [\overrightarrow c \overrightarrow a \overrightarrow b ] = \left| {\matrix{ 6 &amp; { - 4} &amp; 2 \cr 1 &amp; 1 &amp; { - 1} \cr 1 &amp; 2 &amp; 1 \cr } } \right|$$<br><br>$$ \Rightarrow $$ 18 + 8 + 2 = 28
integer
jee-main-2021-online-16th-march-evening-shift
Z7BG0LplvDpHW9S7EN1kmjafjsy
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a $$ = 2$$\widehat i$$ $$-$$ 3$$\widehat j$$ + 4$$\widehat k$$ and $$\overrightarrow b $$ = 7$$\widehat i$$ + $$\widehat j$$ $$-$$ 6$$\widehat k$$.<br/><br/>If $$\overrightarrow r $$ $$\times$$ $$\overrightarrow a $$ = $$\overrightarrow r $$ $$\times$$ $$\overrightarrow b $$, $$\overrightarrow r $$ . ($$\widehat i$$ + 2$$\widehat j$$ + $$\widehat k$$) = $$-$$3, then $$\overrightarrow r $$ . (2$$\widehat i$$ $$-$$ 3$$\widehat j$$ + $$\widehat k$$) is equal to :
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "13"}, {"identifier": "D", "content": "12"}]
["D"]
null
$$\overrightarrow a = (2, - 3,4)$$, $$\overrightarrow b = (7,1, - 6)$$<br><br>$$\overrightarrow r \times \overrightarrow a - \overrightarrow r \times \overrightarrow b = 0$$<br><br>$$\overrightarrow r \times (\overrightarrow a - \overrightarrow b ) = 0$$<br><br>$$\overrightarrow r = \lambda (\overrightarrow a - \overrightarrow b )$$<br><br>$$\overrightarrow r = \lambda ( - 5\widehat i - 4\widehat j + 10\widehat k)$$<br><br>$$\overrightarrow r \,.\,(2, - 3,1) = ?$$<br><br>Given $$\overrightarrow r \,.\,(1,2,1) = - 3$$<br><br>$$\lambda ( - 5 - 8 + 10) = - 3 \Rightarrow \lambda = 1$$<br><br>$$ \therefore $$ $$( - 5, - 4,10)\,.\,(2, - 3,1)$$<br><br>= - 10 + 12 + 10 = 12
mcq
jee-main-2021-online-17th-march-morning-shift
ALfCwHSHBoNiDqWmYY1kmjckog0
maths
vector-algebra
scalar-and-vector-triple-product
If $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + 3\widehat k$$,<br/><br/>$$\overrightarrow b = - \beta \widehat i - \alpha \widehat j - \widehat k$$ and <br/><br/>$$\overrightarrow c = \widehat i - 2\widehat j - \widehat k$$<br/><br/>such that $$\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow b \,.\,\overrightarrow c = - 3$$, then $${1 \over 3}\left( {\left( {\overrightarrow a \times \overrightarrow b } \right)\,.\,\overrightarrow c } \right)$$ is equal to _____________.
[]
null
2
$$\overrightarrow a .\overrightarrow b = 1 \Rightarrow - \alpha \beta - \alpha \beta - 3 = 1$$<br><br>$$ \Rightarrow \alpha \beta = - 2$$ .... (i)<br><br>$$\overrightarrow b .\overrightarrow c = - 3 \Rightarrow - \beta + 2\alpha + 1 = - 3$$<br><br>$$2\alpha - \beta = - 4$$ ..... (ii)<br><br>Solving (i) &amp; (ii) $$\alpha$$ = $$-$$1, $$\beta$$ = 2,<br><br>$${1 \over 3}((\overrightarrow a \, \times \overrightarrow b )\,.\,\overrightarrow c ) = {1 \over 3}\left| {\matrix{ { - 1} &amp; 2 &amp; 3 \cr { - 2} &amp; 1 &amp; { - 1} \cr 1 &amp; { - 2} &amp; { - 1} \cr } } \right| = 2$$
integer
jee-main-2021-online-17th-march-morning-shift
7hj16RzMi655FEX1h41kmkmjktz
maths
vector-algebra
scalar-and-vector-triple-product
Let O be the origin. Let $$\overrightarrow {OP} = x\widehat i + y\widehat j - \widehat k$$ and $$\overrightarrow {OQ} = - \widehat i + 2\widehat j + 3x\widehat k$$, x, y$$\in$$R, x &gt; 0, be such that $$\left| {\overrightarrow {PQ} } \right| = \sqrt {20} $$ and the vector $$\overrightarrow {OP} $$ is perpendicular $$\overrightarrow {OQ} $$. If $$\overrightarrow {OR} $$ = $$3\widehat i + z\widehat j - 7\widehat k$$, z$$\in$$R, is coplanar with $$\overrightarrow {OP} $$ and $$\overrightarrow {OQ} $$, then the value of x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> is equal to :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "7"}, {"identifier": "D", "content": "1"}]
["B"]
null
$$\overrightarrow {OP} = x\widehat i + y\widehat j - \widehat k\,$$ <br/><br/>$$\overrightarrow {OP} \bot \overrightarrow {OQ} $$<br><br>$$\overrightarrow {OQ} = - \widehat i + 2\widehat j + 3x\widehat k$$<br><br>$$\overrightarrow {PQ} = \left( { - 1 - x} \right)\widehat i + \left( {2 - y} \right)\widehat j + \left( {3x + 1} \right)\widehat k$$<br><br>$$\left| {\overrightarrow {PQ} } \right| = \sqrt {{{\left( { - 1 - x} \right)}^2} + {{\left( {2 - y} \right)}^2} + {{\left( {3x + 1} \right)}^2}} $$ <br><br>$$\sqrt {20} = \sqrt {{{\left( { - 1 - x} \right)}^2} + {{\left( {2 - y} \right)}^2} + {{\left( {3x + 1} \right)}^2}} $$<br><br>20 = 1 + x<sup>2</sup> + 2x + 4 + y<sup>2</sup> $$-$$ 4y + 9x<sup>2</sup> + 1 + 6x<br><br>20 = 10x<sup>2</sup> + y<sup>2</sup> + 8x + 6 $$-$$ 4y<br><br>20 = 10x<sup>2</sup> + 4x<sup>2</sup> + 8x + 6 $$-$$ 8x<br><br>14 = 14x<sup>2</sup> $$ \Rightarrow $$ x<sup>2</sup> = 1 <br><br>Also, $$\overrightarrow {OP} .\,\overrightarrow {OQ} = 0$$<br><br>$$ - x + 2y - 3x = 0$$<br><br>$$4x = 2y$$<br><br>y = 2x <br><br>$$ \therefore $$ y<sup>2</sup> = 4x<sup>2</sup> $$ \Rightarrow $$ y<sup>2</sup> = 4<br><br>x = 1 as x &gt; 0 and y = 2<br><br>$$ \therefore $$ $$\left| {\matrix{ x &amp; y &amp; { - 1} \cr { - 1} &amp; 2 &amp; {3x} \cr 3 &amp; z &amp; { - 7} \cr } } \right| = 0$$<br><br>$$ \Rightarrow $$ $$\left| {\matrix{ 1 &amp; 2 &amp; { - 1} \cr { - 1} &amp; 2 &amp; 3 \cr 3 &amp; z &amp; { - 7} \cr } } \right|$$ = 0<br><br>$$ \Rightarrow $$ 1($$-$$14 $$-$$3z) $$-$$ 2(7 $$-$$ 9) $$-$$ 1($$-$$z $$-$$6) = 0<br><br>$$ \Rightarrow $$ $$-$$14 $$-$$3z + 4 + z + 6 = 0<br><br>$$ \Rightarrow $$ 2z = $$-$$4 $$ \Rightarrow $$ z = $$-$$2<br><br>$$ \therefore $$ x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = 9
mcq
jee-main-2021-online-17th-march-evening-shift
1krpwmm6x
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a = 2\widehat i + \widehat j - 2\widehat k$$ and $$\overrightarrow b = \widehat i + \widehat j$$. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow a .\,\overrightarrow c = \left| {\overrightarrow c } \right|,\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt 2 $$ and the angle between $$(\overrightarrow a \times \overrightarrow b )$$ and $$\overrightarrow c $$ is $${\pi \over 6}$$, then the value of $$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right|$$ is :
[{"identifier": "A", "content": "$${2 \\over 3}$$"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "$${3 \\over 2}$$"}]
["D"]
null
$$\left| {\overrightarrow a } \right| = 3 = a;\overrightarrow a \,.\,\overrightarrow c = c$$<br><br>Now, $$\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt 2 $$<br><br>$$ \Rightarrow {c^2} + {a^2} - 2\overrightarrow c \,.\,\overrightarrow a = 8$$<br><br>$$ \Rightarrow {c^2} + 9 - 2(c) = 8$$<br><br>$$ \Rightarrow {c^2} - 2c + 1 = 0 \Rightarrow c = 1 = \left| {\overrightarrow c } \right|$$<br><br>Also, $$\overrightarrow a \times \overrightarrow b = 2\widehat i - 2\widehat j + \widehat k$$<br><br>Given, $$(\overrightarrow a \times \overrightarrow b ) = \left| {\overrightarrow a \times \overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {\pi \over 6}$$<br><br>$$ = (3)(1)(1/2)$$<br><br>$$ = 3/2$$
mcq
jee-main-2021-online-20th-july-morning-shift
1krtcv0nx
maths
vector-algebra
scalar-and-vector-triple-product
Let a vector $${\overrightarrow a }$$ be coplanar with vectors $$\overrightarrow b = 2\widehat i + \widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j + \widehat k$$. If $${\overrightarrow a}$$ is perpendicular to $$\overrightarrow d = 3\widehat i + 2\widehat j + 6\widehat k$$, and $$\left| {\overrightarrow a } \right| = \sqrt {10} $$. Then a possible value of $$[\matrix{ {\overrightarrow a } &amp; {\overrightarrow b } &amp; {\overrightarrow c } \cr } ] + [\matrix{ {\overrightarrow a } &amp; {\overrightarrow b } &amp; {\overrightarrow d } \cr } ] + [\matrix{ {\overrightarrow a } &amp; {\overrightarrow c } &amp; {\overrightarrow d } \cr } ]$$ is equal to :
[{"identifier": "A", "content": "$$-$$42"}, {"identifier": "B", "content": "$$-$$40"}, {"identifier": "C", "content": "$$-$$29"}, {"identifier": "D", "content": "$$-$$38"}]
["A"]
null
$$\overrightarrow a = \lambda \overrightarrow b + \mu \overrightarrow c = \widehat i(2\lambda + \mu ) + \widehat j(\lambda - \mu ) + \widehat k(\lambda + \mu )$$<br><br>$$\overrightarrow a \,.\,\overrightarrow d = 0 = 3(2\lambda + \mu ) + 2(\lambda - \mu ) + 6(\lambda + \mu )$$<br><br>$$ \Rightarrow 14\lambda + 7\mu = 0 \Rightarrow \mu = - 2\lambda $$<br><br>$$ \Rightarrow \overrightarrow a = (0)\widehat i - 3\lambda \widehat j + ( - \lambda )\widehat k$$<br><br>$$ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {10} \left| \lambda \right| = \sqrt {10} \Rightarrow \left| \lambda \right| = 1$$<br><br>$$\lambda = 1$$ or $$ - 1$$<br><br>$$[\overrightarrow a \overrightarrow b \overrightarrow c ]$$ = 0<br><br>$$[\overrightarrow a \overrightarrow b \overrightarrow c ] + [\overrightarrow a \overrightarrow b \overrightarrow d ] + [\overrightarrow a \overrightarrow c \overrightarrow d ] = [\overrightarrow a \overrightarrow b + \overrightarrow c \overrightarrow d ]$$<br><br>$$ = \left| {\matrix{ 0 &amp; { - 3\lambda } &amp; \lambda \cr 3 &amp; 0 &amp; 2 \cr 3 &amp; 2 &amp; 6 \cr } } \right|$$<br><br>$$ = 3\lambda (12) + \lambda (6) = 42\lambda = - 42$$
mcq
jee-main-2021-online-22th-july-evening-shift
1krthnmq3
maths
vector-algebra
scalar-and-vector-triple-product
Let three vectors $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be such that $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$, $$\overrightarrow b \times \overrightarrow c = \overrightarrow a $$ and $$\left| {\overrightarrow a } \right| = 2$$. Then which one of the following is not true?
[{"identifier": "A", "content": "$$\\overrightarrow a \\times \\left( {(\\overrightarrow b + \\overrightarrow c ) \\times (\\overrightarrow b \\times \\overrightarrow c )} \\right) = \\overrightarrow 0 $$"}, {"identifier": "B", "content": "Projection of $$\\overrightarrow a $$ on $$(\\overrightarrow b \\times \\overrightarrow c )$$ is 2"}, {"identifier": "C", "content": "$$\\left[ {\\matrix{\n {\\overrightarrow a } &amp; {\\overrightarrow b } &amp; {\\overrightarrow c } \\cr \n\n } } \\right] + \\left[ {\\matrix{\n {\\overrightarrow c } &amp; {\\overrightarrow a } &amp; {\\overrightarrow b } \\cr \n\n } } \\right] = 8$$"}, {"identifier": "D", "content": "$${\\left| {3\\overrightarrow a + \\overrightarrow b - 2\\overrightarrow c } \\right|^2} = 51$$"}]
["D"]
null
(1) $$\overrightarrow a \times \left( {(\overrightarrow b + \overrightarrow c ) \times (\overrightarrow b \times \overrightarrow c )} \right)$$<br><br>$$ = \overrightarrow a ( - \overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow b ) = - 2\left( {\overrightarrow a \times (\overrightarrow b \times \overrightarrow c )} \right)$$<br><br>$$ = - 2(\overrightarrow a \times \overrightarrow a ) = \overrightarrow 0 $$<br><br>(2) Projection of $$\overrightarrow a $$ on $$\overrightarrow b \times \overrightarrow c $$<br><br>$$ = {{\overrightarrow a \,.\,(\overrightarrow b \times \overrightarrow c )} \over {\left| {\overrightarrow b \times \overrightarrow c } \right|}} = {{\overrightarrow a .\overrightarrow a } \over {\left| {\overrightarrow a } \right|}} = \left| {\overrightarrow a } \right| = 2$$<br><br>(3) $$\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] + \left[ {\overrightarrow c \overrightarrow a \overrightarrow b } \right] = 2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] = 2\overrightarrow a .(\overrightarrow b \times \overrightarrow c )$$<br><br>$$ = 2\overrightarrow a .\overrightarrow a = 2{\left| {\overrightarrow a } \right|^2} = 8$$<br><br>(4) $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$ and $$\overrightarrow b \times \overrightarrow c = \overrightarrow a $$<br><br>$$ \Rightarrow \overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are mutually $$ \bot $$ vectors.<br><br>$$\therefore$$ $$\left| {\overrightarrow a \times \overrightarrow b } \right| = \left| {\overrightarrow c } \right| \Rightarrow \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| \Rightarrow \left| {\overrightarrow b } \right| = {{\left| {\overrightarrow c } \right|} \over 2}$$<br><br>Also, $$\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow a } \right| \Rightarrow \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right| = 2 \Rightarrow \left| {\overrightarrow c } \right| = 2$$ &amp; $$\left| {\overrightarrow b } \right| = 1$$<br><br>$${\left| {3\overrightarrow a + \overrightarrow b - 2\overrightarrow c } \right|^2} = (3\overrightarrow a + \overrightarrow b - 2\overrightarrow c ).(3\overrightarrow a + \overrightarrow b - 2\overrightarrow c )$$<br><br>$$ = 9{\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 4{\left| {\overrightarrow c } \right|^2}$$<br><br>$$ = (9 \times 4) + 1 + (4 \times 4)$$<br><br>$$ = 36 + 1 + 16 = 53$$
mcq
jee-main-2021-online-22th-july-evening-shift
1krvuv970
maths
vector-algebra
scalar-and-vector-triple-product
Let the vectors<br/><br/>$$(2 + a + b)\widehat i + (a + 2b + c)\widehat j - (b + c)\widehat k,(1 + b)\widehat i + 2b\widehat j - b\widehat k$$ and $$(2 + b)\widehat i + 2b\widehat j + (1 - b)\widehat k$$, $$a,b,c, \in R$$<br><br/> be co-planar. Then which of the following is true?</br>
[{"identifier": "A", "content": "2b = a + c"}, {"identifier": "B", "content": "3c = a + b"}, {"identifier": "C", "content": "a = b + 2c"}, {"identifier": "D", "content": "2a = b + c"}]
["A"]
null
If the vectors are co-planar,<br><br>$$\left| {\matrix{ {a + b + 2} &amp; {a + 2b + c} &amp; { - b - c} \cr {b + 1} &amp; {2b} &amp; { - b} \cr {b + 2} &amp; {2b} &amp; {1 - b} \cr } } \right| = 0$$<br><br>Now, $${R_3} \to {R_3} - {R_2},{R_1} \to {R_1} - {R_2}$$<br><br>So, $$\left| {\matrix{ {a + 1} &amp; {a + c} &amp; { - c} \cr {b + 1} &amp; {2b} &amp; { - b} \cr 1 &amp; 0 &amp; 1 \cr } } \right| = 0$$<br><br>$$ = (a + 1)2b - (a + c)(2b + 1) - c( - 2b)$$<br><br>$$ = 2ab + 2b - 2ab - a - 2bc - c + 2bc$$<br><br>$$ = 2b - a - c = 0$$
mcq
jee-main-2021-online-25th-july-morning-shift
1kryf0e1y
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three vectors such that $$\overrightarrow a $$ = $$\overrightarrow b $$ $$\times$$ ($$\overrightarrow b $$ $$\times$$ $$\overrightarrow c $$). If magnitudes of the vectors $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ are $$\sqrt 2 $$, 1 and 2 respectively and the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ is $$\theta \left( {0 &lt; \theta &lt; {\pi \over 2}} \right)$$, then the value of 1 + tan$$\theta$$ is equal to :
[{"identifier": "A", "content": "$$\\sqrt 3 + 1$$"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "$${{\\sqrt 3 + 1} \\over {\\sqrt 3 }}$$"}]
["B"]
null
$$\overrightarrow a = \left( {\overrightarrow b .\,\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \,.\,\overrightarrow b } \right)\overrightarrow c $$<br><br>$$ = 1.2\cos \theta \overrightarrow b - \overrightarrow c $$<br><br>$$ \Rightarrow \overrightarrow a = 2\cos \theta \overrightarrow b - \overrightarrow c $$<br><br>$${\left| {\overrightarrow a } \right|^2} = {(2\cos \theta )^2} + {2^2} - 2.2\cos \theta \overrightarrow b \,.\,\overrightarrow c $$<br><br>$$ \Rightarrow 2 = 4{\cos ^2}\theta + 4 - 4\cos \theta .2\cos \theta $$<br><br>$$ \Rightarrow - 2 = - 4{\cos ^2}\theta $$<br><br>$$ \Rightarrow {\cos ^2}\theta = {1 \over 2}$$<br><br>$$ \Rightarrow {\sec ^2}\theta = 2$$<br><br>$$ \Rightarrow {\tan ^2}\theta = 1$$<br><br>$$ \Rightarrow \theta = {\pi \over 4}$$<br><br>$$ \therefore $$ $$1 + \tan \theta = 2$$
mcq
jee-main-2021-online-27th-july-evening-shift
1kryfi5s7
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a = \widehat i - \alpha \widehat j + \beta \widehat k$$,   $$\overrightarrow b = 3\widehat i + \beta \widehat j - \alpha \widehat k$$ and $$\overrightarrow c = -\alpha \widehat i - 2\widehat j + \widehat k$$, where $$\alpha$$ and $$\beta$$ are integers. If $$\overrightarrow a \,.\,\overrightarrow b = - 1$$ and $$\overrightarrow b \,.\,\overrightarrow c = 10$$, then $$\left( {\overrightarrow a \, \times \overrightarrow b } \right).\,\overrightarrow c $$ is equal to ___________.
[]
null
9
$$\overrightarrow a = (1, - \alpha ,\beta )$$<br><br>$$\overrightarrow b = (3,\beta , - \alpha )$$<br><br>$$\overrightarrow c = ( - \alpha , - 2,1);\alpha ,\beta \in I$$<br><br>$$\overrightarrow a \,.\,\overrightarrow b = - 1 \Rightarrow 3 - \alpha \beta - \alpha \beta = - 1$$<br><br>$$ \Rightarrow \alpha \beta = 2$$ <br><br>Possible value of <br>$$\alpha $$ and $$\beta $$ <br><br>$$\matrix{ 1 &amp; 2 \cr 2 &amp; 1 \cr { - 1} &amp; { - 2} \cr { - 2} &amp; { - 1} \cr } $$<br><br>$$\overrightarrow b \,.\,\overrightarrow c = 10$$<br><br>$$ \Rightarrow - 3\alpha - 2\beta - \alpha = 10$$<br><br>$$ \Rightarrow 2\alpha + \beta + 5 = 0$$<br><br>$$\therefore$$ $$\alpha$$ = $$-$$2; $$\beta$$ = $$-$$1<br><br>$$[\overrightarrow a \,\overrightarrow b \,\overrightarrow c ] = \left| {\matrix{ 1 &amp; 2 &amp; { - 1} \cr 3 &amp; { - 1} &amp; 2 \cr 2 &amp; { - 2} &amp; 1 \cr } } \right|$$<br><br>$$ = 1( - 1 + 4) - 2(3 - 4) - 1( - 6 + 2)$$<br><br>$$ = 3 + 2 + 4 = 9$$
integer
jee-main-2021-online-27th-july-evening-shift
1ktbebrpm
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow b = \widehat j - \widehat k$$. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow a \times \overrightarrow c = \overrightarrow b $$ and $$\overrightarrow a .\overrightarrow c = 3$$, then $$\overrightarrow a .(\overrightarrow b \times \overrightarrow c )$$ is equal to :
[{"identifier": "A", "content": "$$-$$2"}, {"identifier": "B", "content": "$$-$$6"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "2"}]
["A"]
null
$$\left| {\overrightarrow a } \right| = \sqrt 3 $$; $$\overrightarrow a .\overrightarrow c = 3$$; $$\overrightarrow a \times \overrightarrow b = - 2\widehat i + \widehat j + \widehat k$$, $$\overrightarrow a \times \overrightarrow c = \overrightarrow b $$<br><br>Cross with $$\overrightarrow a $$,<br><br>$$\overrightarrow a \times (\overrightarrow a \times \overrightarrow c ) = \overrightarrow a \times \overrightarrow b $$<br><br>$$ \Rightarrow (\overrightarrow a .\overrightarrow c )\overrightarrow a - {a^2}\overrightarrow c = \overrightarrow a \times \overrightarrow b $$<br><br>$$ \Rightarrow 3\overrightarrow a - 3\overrightarrow c = - 2\widehat i + \widehat j + \widehat k$$<br><br>$$ \Rightarrow 3\widehat i + 3\widehat j + 3\widehat k - 3\overrightarrow c = - 2\widehat i + \widehat j + \widehat k$$<br><br>$$ \Rightarrow \overrightarrow c = {{5\widehat i} \over 3} + {{2\widehat j} \over 3} + {{2\widehat k} \over 3}$$<br><br>$$\therefore$$ $$\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = (\overrightarrow a \times \overrightarrow b ).\overrightarrow c = {{ - 10} \over 3} + {2 \over 3} + {2 \over 3} = - 2$$
mcq
jee-main-2021-online-26th-august-morning-shift
1ktk3sgt1
maths
vector-algebra
scalar-and-vector-triple-product
Let $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ three vectors mutually perpendicular to each other and have same magnitude. If a vector $${ \overrightarrow r } $$ satisfies. <br/><br/>$$\overrightarrow a \times \{ (\overrightarrow r - \overrightarrow b ) \times \overrightarrow a \} + \overrightarrow b \times \{ (\overrightarrow r - \overrightarrow c ) \times \overrightarrow b \} + \overrightarrow c \times \{ (\overrightarrow r - \overrightarrow a ) \times \overrightarrow c \} = \overrightarrow 0 $$, then $$\overrightarrow r $$ is equal to :
[{"identifier": "A", "content": "$${1 \\over 3}(\\overrightarrow a + \\overrightarrow b + \\overrightarrow c )$$"}, {"identifier": "B", "content": "$${1 \\over 3}(2\\overrightarrow a + \\overrightarrow b - \\overrightarrow c )$$"}, {"identifier": "C", "content": "$${1 \\over 2}(\\overrightarrow a + \\overrightarrow b + \\overrightarrow c )$$"}, {"identifier": "D", "content": "$${1 \\over 2}(\\overrightarrow a + \\overrightarrow b + 2\\overrightarrow c )$$"}]
["C"]
null
Suppose $$\overrightarrow r = x\overrightarrow a + y\overrightarrow b + 2\overrightarrow c $$<br><br>and $$\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| = k$$<br><br>$$\overrightarrow a \times \{ (\overrightarrow r - \overrightarrow b ) \times \overrightarrow a \} + \overrightarrow b \times \{ (\overrightarrow r - \overrightarrow c ) \times \overrightarrow b \} + \overrightarrow c \times \{ (\overrightarrow r - \overrightarrow a ) \times \overrightarrow c \} = \overrightarrow 0 $$<br><br>$$ \Rightarrow {k^2}(\overrightarrow r - \overrightarrow b ) - {k^2}x\overrightarrow a + {k^2}(\overrightarrow r - \overrightarrow c ) - {k^2}y\overrightarrow b + {k^2}(\overrightarrow r - \overrightarrow a ) - {k^2}z\overrightarrow c = \overrightarrow 0 $$<br><br>$$ \Rightarrow 3\overrightarrow r -(\overrightarrow a + \overrightarrow b + \overrightarrow c ) - \overrightarrow r = \overrightarrow 0 $$<br><br>$$ \Rightarrow \overrightarrow r = {{\overrightarrow a + \overrightarrow b + \overrightarrow c } \over 2}$$
mcq
jee-main-2021-online-31st-august-evening-shift
1l58a2gs8
maths
vector-algebra
scalar-and-vector-triple-product
<p>If $$\overrightarrow a \,.\,\overrightarrow b = 1,\,\overrightarrow b \,.\,\overrightarrow c = 2$$ and $$\overrightarrow c \,.\,\overrightarrow a = 3$$, then the value of $$\left[ {\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right),\,\overrightarrow b \times \left( {\overrightarrow c \times \overrightarrow a } \right),\,\overrightarrow c \times \left( {\overrightarrow b \times \overrightarrow a } \right)} \right]$$ is :</p>
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "$$ - 6\\overrightarrow a \\,.\\,\\left( {\\overrightarrow b \\times \\overrightarrow c } \\right)$$"}, {"identifier": "C", "content": "$$ - 12\\overrightarrow c \\,.\\,\\left( {\\overrightarrow a \\times \\overrightarrow b } \\right)$$"}, {"identifier": "D", "content": "$$ - 12\\overrightarrow b \\,.\\,\\left( {\\overrightarrow c \\times \\overrightarrow a } \\right)$$"}]
["A"]
null
<p>$$\because$$ $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = 3\overrightarrow b - \overrightarrow c = \overrightarrow u $$</p> <p>$$\overrightarrow b \times \left( {\overrightarrow c \times \overrightarrow a } \right) = \overrightarrow c - 2\overrightarrow a = \overrightarrow v $$</p> <p>$$\overrightarrow c \times \left( {\overrightarrow b \times \overrightarrow a } \right) = 3\overrightarrow b - 2\overrightarrow a = \overrightarrow w $$</p> <p>$$\therefore$$ $$\overrightarrow u + \overrightarrow v = \overrightarrow w $$</p> <p>So, vectors $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$ are coplanar, hence their Scalar triple product will be zero.</p>
mcq
jee-main-2022-online-26th-june-morning-shift
1l5w0bd5u
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let a vector $$\overrightarrow c $$ be coplanar with the vectors $$\overrightarrow a = - \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow b = 2\widehat i + \widehat j - \widehat k$$. If the vector $$\overrightarrow c $$ also satisfies the conditions $$\overrightarrow c \,.\,\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right] = - 42$$ and $$\left( {\overrightarrow c \times \left( {\overrightarrow a - \overrightarrow b } \right)} \right)\,.\,\widehat k = 3$$, then the value of $$|\overrightarrow c {|^2}$$ is equal to :</p>
[{"identifier": "A", "content": "24"}, {"identifier": "B", "content": "29"}, {"identifier": "C", "content": "35"}, {"identifier": "D", "content": "42"}]
["C"]
null
<p>Given,</p> <p>$$\overrightarrow a = - \widehat i + \widehat j + \widehat k$$</p> <p>$$\overrightarrow b = 2\widehat i + \widehat j - \widehat k$$</p> <p>and let $$\overrightarrow c = x\widehat i + y\widehat j + z\widehat k$$</p> <p>Now, $$\overrightarrow a + \overrightarrow b = \widehat i + 2\widehat j$$</p> <p>and $$\overrightarrow a \times \overrightarrow b = \left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr { - 1} & 1 & 1 \cr 2 & 1 & { - 1} \cr } } \right| = - 2\widehat i + \widehat j - 3\widehat k$$</p> <p>$$\overrightarrow c $$ is coplanar with $$\overrightarrow a $$ and $$\overrightarrow b $$</p> <p>$$\therefore$$ $$\left[ {\overrightarrow c \,\overrightarrow a \,\overrightarrow b } \right] = 0$$</p> <p>$$ \Rightarrow \left| {\matrix{ x & y & z \cr { - 1} & 1 & 1 \cr 2 & 1 & { - 1} \cr } } \right| = 0$$</p> <p>$$ \Rightarrow x( - 2) - y( - 1) + z( - 3) = 0$$</p> <p>$$ \Rightarrow - 2x + y - 3z = 0$$ ..... (1)</p> <p>Now, $$\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow b } \right)$$</p> <p>$$ = \left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr 1 & 2 & 0 \cr { - 2} & 1 & { - 3} \cr } } \right|$$</p> <p>$$ = - 6\widehat i + 3\widehat j + 5\widehat k$$</p> <p>Given, $$\overrightarrow c \,.\,\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right] = - 42$$</p> <p>$$ \Rightarrow \left( {x\widehat i + y\widehat j + z\widehat k} \right)\,.\,\left( { - 6\widehat i + 3\widehat j + 5\widehat k} \right) = - 42$$</p> <p>$$ \Rightarrow - 6x + 3y + 5z = - 42$$ ...... (2)</p> <p>Now, $$\overrightarrow a - \overrightarrow b = \left( { - \widehat i + \widehat j + \widehat k} \right) - \left( {2\widehat i + \widehat j - \widehat k} \right)$$</p> <p>$$ = - 3\widehat i + 0\widehat j + 2\widehat k$$</p> <p>$$\therefore$$ $$\overrightarrow c \times \left( {\overrightarrow a - \overrightarrow b } \right)$$</p> <p>$$ = \left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr x & y & z \cr { - 3} & 0 & 2 \cr } } \right|$$</p> <p>$$ = 2y\widehat i - \widehat j(2x + 3z) + 3y\widehat k$$</p> <p>Given,</p> <p>$$\left( {\overrightarrow c \times \left( {\overrightarrow a - \overrightarrow b } \right)} \right)\,.\,\widehat k = 3$$</p> <p>$$ \Rightarrow \left( {2y\widehat i - \widehat j(2x + 3z) + 3y\widehat k} \right)\,.\,\widehat k = 3$$</p> <p>$$ \Rightarrow 3y = 3$$</p> <p>$$ \Rightarrow y = 1$$</p> <p>Putting value of $$y = 1$$ in equation (1) and (2) we get,</p> <p>$$ - 2x + 1 - 3z = 0$$ ..... (3)</p> <p>and $$ - 6x + 3 + 5z = - 42$$</p> <p>$$ \Rightarrow - 6x + 5z = - 45$$ ..... (4)</p> <p>Solving (3) and (4), we get</p> <p>$$x = 5$$ and $$z = - 3$$</p> <p>$$\therefore$$ $$\overrightarrow c = 5\widehat i + \widehat j - 3\widehat k$$</p> <p>$$ \Rightarrow {\left| {\overrightarrow c } \right|^2} = {5^2} + {1^2} + {( - 3)^2} = 35$$</p>
mcq
jee-main-2022-online-30th-june-morning-shift
1l6jc594i
maths
vector-algebra
scalar-and-vector-triple-product
<p>$$ \text { Let } \vec{a}=2 \hat{i}-\hat{j}+5 \hat{k} \text { and } \vec{b}=\alpha \hat{i}+\beta \hat{j}+2 \hat{k} \text {. If }((\vec{a} \times \vec{b}) \times \hat{i}) \cdot \hat{k}=\frac{23}{2} \text {, then }|\vec{b} \times 2 \hat{j}| $$ is equal to :</p>
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "$$\\sqrt{21}$$"}, {"identifier": "D", "content": "$$\\sqrt{17}$$"}]
["B"]
null
<p>Given, $$\overrightarrow a = 2\widehat i - \widehat j + 5\widehat k$$ and $$\overrightarrow b = \alpha \widehat i + \beta \widehat j + 2\widehat k$$</p> <p>Also, $$\left( {\left( {\overrightarrow a \times \overrightarrow b } \right) \times i} \right)\,.\,\widehat k = {{23} \over 2}$$</p> <p>$$ \Rightarrow \left( {\left( {\overrightarrow a \,.\,\widehat i} \right)\overrightarrow b - \left( {\overrightarrow b \,.\,\widehat i} \right)\,.\,\overline a } \right)\,.\,\widehat k = {{23} \over 2}$$</p> <p>$$ \Rightarrow \left( {2\,.\,\overrightarrow b - \alpha \,.\,\overrightarrow a } \right)\,.\,\widehat k = {{23} \over 2}$$</p> <p>$$ \Rightarrow 2\,.\,2 - 5\alpha = {{23} \over 2} \Rightarrow \alpha = {{ - 3} \over 2}$$</p> <p>Now, $$\left| {\overrightarrow b \times 2j} \right| = \left| {\left( {\alpha \widehat i + \beta \widehat j + 2\widehat k} \right) \times 2\widehat j} \right|$$</p> <p>$$ = \left| {2\alpha \widehat k + 0 - 4\widehat i} \right|$$</p> <p>$$ = \sqrt {4{\alpha ^2} + 16} $$</p> <p>$$ = \sqrt {4{{\left( {{{ - 3} \over 2}} \right)}^2} + 16} = 5$$</p>
mcq
jee-main-2022-online-27th-july-morning-shift
1l6p23cfm
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let $$\overrightarrow{\mathrm{a}}=3 \hat{i}+\hat{j}$$ and $$\overrightarrow{\mathrm{b}}=\hat{i}+2 \hat{j}+\hat{k}$$. Let $$\overrightarrow{\mathrm{c}}$$ be a vector satisfying $$\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{b}}+\lambda \overrightarrow{\mathrm{c}}$$. If $$\overrightarrow{\mathrm{b}}$$ and $$\overrightarrow{\mathrm{c}}$$ are non-parallel, then the value of $$\lambda$$ is :</p>
[{"identifier": "A", "content": "$$-$$5"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "$$-$$1"}]
["A"]
null
<p>$$\overrightarrow a = 3\widehat i + \widehat j$$ & $$\overrightarrow b = \widehat i + 2\widehat j + \widehat k$$</p> <p>$$\overrightarrow a \times (\overrightarrow b \times \overrightarrow c ) = (\overrightarrow a \,.\,\overrightarrow c )\overrightarrow b - (\overrightarrow a \,.\,\overrightarrow b )\overrightarrow c = \overrightarrow b + \lambda \overrightarrow c $$</p> <p>If $$\overrightarrow b $$ & $$\overrightarrow c $$ are non-parallel</p> <p>then $$\overrightarrow a \,.\,\overrightarrow c = 1$$ & $$\overrightarrow a \,.\,\overrightarrow b = - \lambda $$</p> <p>but $$\overrightarrow a \,.\,\overrightarrow b = 5 \Rightarrow \lambda = - 5$$</p>
mcq
jee-main-2022-online-29th-july-morning-shift
1ldoob9wo
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let $$\vec{v}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{w}=2 \alpha \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{u}$$ be a vector such that $$|\vec{u}|=\alpha&gt;0$$. If the minimum value of the scalar triple product $$\left[ {\matrix{ {\overrightarrow u } &amp; {\overrightarrow v } &amp; {\overrightarrow w } \cr } } \right]$$ is $$-\alpha \sqrt{3401}$$, and $$|\vec{u} \cdot \hat{i}|^{2}=\frac{m}{n}$$ where $$m$$ and $$n$$ are coprime natural numbers, then $$m+n$$ is equal to ____________.</p>
[]
null
3501
$\vec{v} \times \vec{w}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \alpha & 2 & -3 \\ 2 \alpha & 1 & -1\end{array}\right|=\hat{i}-5 \alpha \hat{j}-3 \alpha \hat{k}$ <br/><br/>$$\left[ {\matrix{ {\overrightarrow u } & {\overrightarrow v } & {\overrightarrow w } \cr } } \right] = \overrightarrow u .\left( {\overrightarrow v \times \overrightarrow w } \right)$$ <br/><br/>$=|\vec{u}||\vec{v} \times \vec{w}| \times \cos \theta$ <br/><br/>$=\alpha \sqrt{34 \alpha^{2}+1} \cos \theta$ <br/><br/>$[\vec{u} \vec{v} \vec{w}]_{\min }=-\alpha \sqrt{3401}$ <br/><br/>$\alpha \sqrt{34 \alpha^{2}+1} \times(-1)=-\alpha \sqrt{3401}$ <br/><br/>(taking $\cos \theta=1$ ) <br/><br/>$\Rightarrow \alpha=10$ <br/><br/>$\vec{v} \times \vec{w}=\hat{i}-50 \hat{j}-30 \hat{k}$ <br/><br/>$\cos \theta=-1 \Rightarrow \vec{u}$ is antiparallel to $\vec{v} \times \vec{w}$ <br/><br/>$\vec{u}=-|\vec{u}| \cdot \frac{\vec{v} \times \vec{w}}{|\vec{v} \times \vec{w}|}=\frac{-10(\hat{i}-50 \hat{j}-30 \hat{k})}{\sqrt{3401}}$ <br/><br/>$|\vec{u} \cdot \hat{i}|^{2}=\left|\frac{-10}{\sqrt{3401}}\right|^{2}=\frac{100}{3401}=\frac{m}{n}$ <br/><br/>$m+n=3501$
integer
jee-main-2023-online-1st-february-morning-shift
ldqwqsa2
maths
vector-algebra
scalar-and-vector-triple-product
Let $\lambda \in \mathbb{R}, \vec{a}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}-\lambda \hat{j}+2 \hat{k}$. <br/><br/>If $((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}$,<br/><br/> then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^2$ is equal to :
[{"identifier": "A", "content": "136"}, {"identifier": "B", "content": "140"}, {"identifier": "C", "content": "144"}, {"identifier": "D", "content": "132"}]
["B"]
null
<p>$$\left( {\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow b } \right) + \overrightarrow b \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right) \times \left( {\overrightarrow a - \overrightarrow b } \right)$$</p> <p>$$ = \left( {\overrightarrow a \left( {\overrightarrow a .\,\overrightarrow b } \right) - \overrightarrow b \left( {\overrightarrow a .\,\overrightarrow a } \right) + \overrightarrow a \left( {\overrightarrow b .\,\overrightarrow b } \right) - \overrightarrow b \left( {\overrightarrow a .\,\overrightarrow b } \right)} \right) \times \left( {\overrightarrow a - \overrightarrow b } \right)$$</p> <p>$$ = \left( {\overrightarrow a .\,\overrightarrow b } \right)\left( {\overrightarrow a \times \overrightarrow a - \overrightarrow a \times \overrightarrow b } \right) - \left( {\overrightarrow a .\,\overrightarrow a } \right)\left( {\overrightarrow b \times \overrightarrow a - \overrightarrow b \times \overrightarrow b } \right) + \left( {\overrightarrow b .\,\overrightarrow b } \right)\left( {\overrightarrow a \times \overrightarrow a - \overrightarrow a \times \overrightarrow b } \right) - \left( {\overrightarrow a .\,\overrightarrow b } \right)\left( {\overrightarrow b \times \overrightarrow a - \overrightarrow b \times \overrightarrow b } \right)$$</p> <p>$$ = \left( {\overrightarrow a .\,\overrightarrow b } \right)\left( {\overrightarrow b \times \overrightarrow a } \right) - \left( {\overrightarrow a .\,\overrightarrow a } \right)\left( {\overrightarrow b \times \overrightarrow a } \right) + \left( {\overrightarrow b .\,\overrightarrow b } \right)\left( {\overrightarrow b \times \overrightarrow a } \right) - \left( {\overrightarrow a .\,\overrightarrow b } \right)\left( {\overrightarrow b \times \overrightarrow a } \right)$$</p> <p>$$ = \left( {\overrightarrow b \times \overrightarrow a } \right)\left( {\overrightarrow b .\,\overrightarrow b - \overrightarrow a .\,\overrightarrow a } \right)$$</p> <p>$$ = \left( {5\overrightarrow b \times \overrightarrow a } \right)\left( {5 + {\lambda ^2} - 13 - {\lambda ^2}} \right)$$</p> <p>$$ = 8\left( {\overrightarrow a \times \overrightarrow b } \right)$$</p> <p>$$\overrightarrow a \times \overrightarrow b = \left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr \lambda & 2 & { - 3} \cr 1 & { - \lambda } & 2 \cr } } \right|$$</p> <p>$$ = \widehat i(4 - 3\lambda ) - \widehat j(2\lambda + 3) + \widehat k( - {\lambda ^2} - 2)$$</p> <p>$$ \Rightarrow \lambda = 1$$</p> <p>$${\left| {\overrightarrow a \times \left( {\overrightarrow a - \overrightarrow b } \right) + \overrightarrow b \times \left( {\overrightarrow a - \overrightarrow b } \right)} \right|^2}$$</p> <p>$$ = {\left| {2\left( {\overrightarrow a \times \overrightarrow b } \right)} \right|^2} = 4\,.\,35 = 140$$</p>
mcq
jee-main-2023-online-30th-january-evening-shift
1ldr70m58
maths
vector-algebra
scalar-and-vector-triple-product
<p>If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are three non-zero vectors and $$\widehat n$$ is a unit vector perpendicular to $$\overrightarrow c $$ such that $$\overrightarrow a = \alpha \overrightarrow b - \widehat n,(\alpha \ne 0)$$ and $$\overrightarrow b \,.\overrightarrow c = 12$$, then $$\left| {\overrightarrow c \times (\overrightarrow a \times \overrightarrow b )} \right|$$ is equal to :</p>
[{"identifier": "A", "content": "15"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "12"}]
["D"]
null
<p>$$\widehat n = \alpha \overrightarrow b - \overrightarrow a $$</p> <p>$$\overrightarrow c \times \left( {\overrightarrow a \times \overrightarrow b } \right) = \left( {\overrightarrow c \,.\,\overrightarrow b } \right)\overrightarrow a - \left( {\overrightarrow c \,.\,\overrightarrow a } \right)\overrightarrow b $$</p> <p>$$ = 12\overrightarrow a - \left( {\overrightarrow c \,.\,\left( {\alpha \overrightarrow b - \widehat n} \right)} \right)\overrightarrow b $$</p> <p>$$ = 12\overrightarrow a - (12\alpha - 0)\overrightarrow b $$</p> <p>$$ = 12\left( {\overrightarrow a - \alpha \overrightarrow b } \right)$$</p> <p>$$\therefore$$ $$\left| {\overrightarrow c \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right| = 12$$</p>
mcq
jee-main-2023-online-30th-january-morning-shift
1ldsx2tkq
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero non-coplanar vectors. Let the position vectors of four points $$A,B,C$$ and $$D$$ be $$\overrightarrow a - \overrightarrow b + \overrightarrow c ,\lambda \overrightarrow a - 3\overrightarrow b + 4\overrightarrow c , - \overrightarrow a + 2\overrightarrow b - 3\overrightarrow c $$ and $$2\overrightarrow a - 4\overrightarrow b + 6\overrightarrow c $$ respectively. If $$\overrightarrow {AB} ,\overrightarrow {AC} $$ and $$\overrightarrow {AD} $$ are coplanar, then $$\lambda$$ is equal to __________.</p>
[]
null
2
$\overline{A B}=(\lambda-1) \bar{a}-2 \bar{b}+3 \bar{c}$ <br/><br/> $$ \overline{A C}=2 \bar{a}+3 \bar{b}-4 \bar{c} $$<br/><br/>$$ \overline{A D}=\bar{a}-3 \bar{b}+5 \bar{c} $$<br/><br/>$$ \left|\begin{array}{ccc} \lambda-1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{array}\right|=0 $$<br/><br/>$$ \Rightarrow(\lambda-1)(15-12)+2(-10+4)+3(6-3)=0 $$<br/><br/>$$ \Rightarrow(\lambda-1)=1 \Rightarrow \lambda=2 $$
integer
jee-main-2023-online-29th-january-morning-shift
1ldu5mzow
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let $$\overrightarrow a = - \widehat i - \widehat j + \widehat k,\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow a \times \overrightarrow b = \widehat i - \widehat j$$. Then $$\overrightarrow a - 6\overrightarrow b $$ is equal to :</p>
[{"identifier": "A", "content": "$$3\\left( {\\widehat i + \\widehat j + \\widehat k} \\right)$$"}, {"identifier": "B", "content": "$$3\\left( {\\widehat i - \\widehat j - \\widehat k} \\right)$$"}, {"identifier": "C", "content": "$$3\\left( {\\widehat i + \\widehat j - \\widehat k} \\right)$$"}, {"identifier": "D", "content": "$$3\\left( {\\widehat i - \\widehat j + \\widehat k} \\right)$$"}]
["A"]
null
$$ \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}) $$<br/><br/> Taking cross product with $\vec{a}$<br/><br/> $$ \begin{aligned} & \Rightarrow \vec{a} \times(\vec{a} \times \vec{b})=\vec{a} \times(\hat{i}-\hat{j}) \\\\ & \Rightarrow (\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}=\hat{i}+\hat{j}+2 \hat{k} \\\\ & \Rightarrow \vec{a}-3 \vec{b}=\hat{i}+\hat{j}+2 \hat{k} \\\\ & \Rightarrow 2 \vec{a}-6 \vec{b}=2 \hat{i}+2 \hat{j}+4 \hat{k} \\\\ & \Rightarrow \vec{a}-6 \vec{b}=3 \hat{i}+3 \hat{j}+3 \hat{k} \end{aligned} $$
mcq
jee-main-2023-online-25th-january-evening-shift
1ldu5p9lo
maths
vector-algebra
scalar-and-vector-triple-product
<p>If the four points, whose position vectors are $$3\widehat i - 4\widehat j + 2\widehat k,\widehat i + 2\widehat j - \widehat k, - 2\widehat i - \widehat j + 3\widehat k$$ and $$5\widehat i - 2\alpha \widehat j + 4\widehat k$$ are coplanar, then $$\alpha$$ is equal to :</p>
[{"identifier": "A", "content": "$${{73} \\over {17}}$$"}, {"identifier": "B", "content": "$$ - {{73} \\over {17}}$$"}, {"identifier": "C", "content": "$$ - {{107} \\over {17}}$$"}, {"identifier": "D", "content": "$${{107} \\over {17}}$$"}]
["A"]
null
Let $\mathrm{A}:(3,-4,2) \quad \mathrm{C}:(-2,-1,3)$<br/><br/> $$ \text { B : }(1,2,-1) \quad \text { D: }(5,-2 \alpha, 4) $$<br/><br/> A, B, C, D are coplanar points, then<br/><br/> $$ \begin{aligned} & \Rightarrow\left|\begin{array}{ccc} 1-3 & 2+4 & -1-2 \\ -2-3 & -1+4 & 3-2 \\ 5-3 & -2 \alpha+4 & 4-2 \end{array}\right|=0 \\\\ & \Rightarrow \alpha=\frac{73}{17} \end{aligned} $$
mcq
jee-main-2023-online-25th-january-evening-shift
1ldv26m8w
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three non zero vectors such that $$\overrightarrow b $$ . $$\overrightarrow c $$ = 0 and $$\overrightarrow a \times (\overrightarrow b \times \overrightarrow c ) = {{\overrightarrow b - \overrightarrow c } \over 2}$$. If $$\overrightarrow d $$ be a vector such that $$\overrightarrow b \,.\,\overrightarrow d = \overrightarrow a \,.\,\overrightarrow b $$, then $$(\overrightarrow a \times \overrightarrow b )\,.\,(\overrightarrow c \times \overrightarrow d )$$ is equal to</p>
[{"identifier": "A", "content": "$$\\frac{1}{2}$$"}, {"identifier": "B", "content": "$$-\\frac{1}{4}$$"}, {"identifier": "C", "content": "$$\\frac{1}{4}$$"}, {"identifier": "D", "content": "$$\\frac{3}{4}$$"}]
["C"]
null
$\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})=\frac{\vec{b}-\vec{c}}{2}$ $\vec{a} \cdot \vec{c}=\frac{1}{2}, \quad \vec{a} \cdot \vec{b}=\frac{1}{2}$ <br/><br/> $$ \begin{aligned} (\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d}) & =(\vec{b} \cdot \vec{d})(\vec{a} \cdot \vec{c})-(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c}) \\\\ & =(\vec{a} \cdot \vec{b})(\vec{a} \cdot \vec{c}) \\\\ & =\frac{1}{4} \end{aligned} $$
mcq
jee-main-2023-online-25th-january-morning-shift
1ldybqbds
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let $$\overrightarrow u = \widehat i - \widehat j - 2\widehat k,\overrightarrow v = 2\widehat i + \widehat j - \widehat k,\overrightarrow v .\,\overrightarrow w = 2$$ and $$\overrightarrow v \times \overrightarrow w = \overrightarrow u + \lambda \overrightarrow v $$. Then $$\overrightarrow u .\,\overrightarrow w $$ is equal to :</p>
[{"identifier": "A", "content": "$$ - {2 \\over 3}$$"}, {"identifier": "B", "content": "$${3 \\over 2}$$"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "1"}]
["D"]
null
$$ \begin{aligned} &\begin{aligned} & \vec{v} \times \vec{w}=(\vec{u}+\lambda \vec{v})=\hat{i}-\hat{j}-2 \hat{k}+\lambda(2 \hat{i}+\hat{j}-\hat{k}) \\\\ & =(2 \lambda+1) \hat{i}+(\lambda-1) \hat{j}-(2+\lambda) \hat{k} \\ & \end{aligned}\\ &\begin{aligned} & \text { Now, } \vec{v} \cdot(\vec{v} \times \vec{w})=0 \\\\ & \Rightarrow(2 \hat{i}+\hat{j}-\hat{k}) \cdot((2 \lambda+1) \hat{i}+(\lambda-1) \hat{j}-(\lambda+2) \hat{k})=0 \\\\ & \Rightarrow2(2 \lambda+1)+\lambda-1+\lambda+2=0 \Rightarrow 6 \lambda+3=0 \\\\ & \Rightarrow \lambda=-\frac{1}{2} \\\\ & \vec{w} \cdot(\vec{v} \times \vec{w})=\vec{w} \cdot(\vec{u}+\lambda \vec{v})=\vec{u} \cdot \vec{w}+\lambda \vec{v} \cdot \vec{w}=0 \\\\ & \vec{u} \cdot \vec{w}=-\lambda \vec{v} \cdot \vec{w} \\\\ & \vec{u} \cdot \vec{w}=\frac{1}{2} \times 2=1 \end{aligned} \end{aligned} $$
mcq
jee-main-2023-online-24th-january-morning-shift
lgnw7ha3
maths
vector-algebra
scalar-and-vector-triple-product
Let $S$ be the set of all $(\lambda, \mu)$ for which the vectors $\lambda \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+\mu \hat{k}$ and $3 \hat{i}-4 \hat{j}+5 \hat{k}$, where $\lambda-\mu=5$, are coplanar, then $\sum\limits_{(\lambda, \mu) \in S} 80\left(\lambda^2+\mu^2\right)$ is equal to :
[{"identifier": "A", "content": "2370"}, {"identifier": "B", "content": "2130"}, {"identifier": "C", "content": "2210"}, {"identifier": "D", "content": "2290"}]
["D"]
null
Step 1: Given condition for coplanarity <br/><br/>For three vectors to be coplanar, their scalar triple product must be zero. We have the vectors A, B, and C, and we know the given relation between λ and μ: <br/><br/>$$A = \lambda \hat{i} - \hat{j} + \hat{k}$$ <br/><br/>$$B = \hat{i} + 2 \hat{j} + \mu \hat{k}$$ <br/><br/>$$C = 3 \hat{i} - 4 \hat{j} + 5 \hat{k}$$ <br/><br/>Scalar triple product condition: <br/><br/>$$[A, B, C] = A \cdot (B \times C) = 0$$ <br/><br/>Step 2: Calculate the cross product of B and C <br/><br/>$$B \times C = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & \mu \\ 3 & -4 & 5 \\ \end{vmatrix}$$ <br/><br/>$$B \times C = (10 + 4 \mu) \hat{i} - (5 - 3 \mu) \hat{j} - 10 \hat{k}$$ <br/><br/>Step 3: Calculate the scalar triple product and apply the coplanarity condition <br/><br/>$$[A, B, C] = A \cdot (B \times C) = \lambda(10 + 4 \mu) - 1(5 - 3 \mu) + 1(-10) = 0$$ <br/><br/>Step 4: Substitute the given relation between λ and μ Given that: <br/><br/>$$\lambda - \mu = 5$$ <br/><br/>From the coplanarity condition, we have: <br/><br/>$$4 \lambda \mu + 10 \lambda - 3 \mu = 5$$ <br/><br/>Now, substitute λ in terms of μ: <br/><br/>$$4(5 + \mu) \mu + 10(5 + \mu) - 3 \mu = 5$$ <br/><br/>Step 5: Solve for μ and λ <br/><br/>Simplify the equation and solve for μ: <br/><br/>$$4 \mu^2 + 27 \mu + 45 = 0$$ <br/><br/>Factor the equation: <br/><br/>$$(4 \mu + 15)(\mu + 3) = 0$$ <br/><br/>So, the two possible values for μ are: <br/><br/>$$\mu = -3, \frac{-15}{4}$$ <br/><br/>For each value of μ, find the corresponding value of λ using the given relation: <br/><br/>$$\lambda = \mu + 5$$ <br/><br/>So, we get the values for λ: <br/><br/>$$\lambda = 2, \frac{5}{4}$$ <br/><br/>Step 6: Calculate the sum <br/><br/>Now, we need to find the sum: <br/><br/>$$\sum\limits_{(\lambda, \mu) \in S} 80\left(\lambda^2 + \mu^2\right)$$ <br/><br/>Substitute the values of λ and μ, and simplify: <br/><br/>$$80\left[(2^2 + (-3)^2) + \left(\frac{5}{4}\right)^2 + \left(\frac{-15}{4}\right)^2\right] = 80\left[13 + \frac{25}{16} + \frac{225}{16}\right]$$ <br/><br/>$$= 80\left[13 + \frac{250}{16}\right] = 10 \times 229$$ <br/><br/>$$= 2290$$ <br/><br/>So, the correct answer is 2290 (Option D).
mcq
jee-main-2023-online-15th-april-morning-shift
1lgrellln
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let $$a, b, c$$ be three distinct real numbers, none equal to one. If the vectors $$a \hat{i}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+b \hat{j}+\hat{\mathrm{k}}$$ and $$\hat{\mathrm{i}}+\hat{\mathrm{j}}+c \hat{\mathrm{k}}$$ are coplanar, then $$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$$ is equal to :</p>
[{"identifier": "A", "content": "$$-$$2"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "$$-$$1"}, {"identifier": "D", "content": "2"}]
["B"]
null
$$ \left|\begin{array}{lll} a & 1 & 1 \\\\ 1 & \mathrm{~b} & 1 \\\\ 1 & 1 & \mathrm{c} \end{array}\right|=0 $$ <br/><br/>$$ \mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_1, \mathrm{C}_3 \rightarrow \mathrm{C}_3-\mathrm{C}_1 $$ <br/><br/>$$ \begin{aligned} & \left|\begin{array}{lll} a & 1-a & 1-a \\ 1 & b-1 & 0 \\ 1 & 0 & c-1 \end{array}\right|=0 \\\\ & a(b-1)(c-1)-(1-a)(c-1)+(1-a)(1-b)=0 \\\\ & a(1-b)(1-c)+(1-a)(1-c)+(1-a)(1-b)=0 \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \frac{\mathrm{a}}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=0 \\\\ & \Rightarrow-1+\frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=0 \\\\ & \Rightarrow \frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=1 \end{aligned} $$
mcq
jee-main-2023-online-12th-april-morning-shift
1lgremt4q
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let $$\lambda \in \mathbb{Z}, \vec{a}=\lambda \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$$. Let $$\vec{c}$$ be a vector such that $$(\vec{a}+\vec{b}+\vec{c}) \times \vec{c}=\overrightarrow{0}, \vec{a} \cdot \vec{c}=-17$$ and $$\vec{b} \cdot \vec{c}=-20$$. Then $$|\vec{c} \times(\lambda \hat{i}+\hat{j}+\hat{k})|^{2}$$ is equal to :</p>
[{"identifier": "A", "content": "53"}, {"identifier": "B", "content": "62"}, {"identifier": "C", "content": "49"}, {"identifier": "D", "content": "46"}]
["D"]
null
The given vectors are : <br/><br/>$$\vec{a} = \lambda \hat{i} + \hat{j} - \hat{k}$$ <br/><br/>$$\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$$ <br/><br/>We are given that $(\vec{a} + \vec{b} + \vec{c}) \times \vec{c} = 0$ which implies $(\vec{a} + \vec{b}) \times \vec{c} = 0$. So, $\vec{c}$ is in the direction of $\vec{a} + \vec{b}$. <br/><br/>Let's denote $\vec{c} = \alpha (\vec{a} + \vec{b})$. <br/><br/>Substituting values for $\vec{a}$ and $\vec{b}$, we get : <br/><br/>$$\vec{c} = \alpha((\lambda + 3) \hat{i} + \hat{k})$$ <br/><br/>From the conditions $\vec{a} \cdot \vec{c} = -17$ and $\vec{b} \cdot \vec{c} = -20$, we can form two equations : <br/><br/>$$\alpha \lambda(\lambda + 3) - \alpha = -17 \quad \text{and} \quad \alpha(3\lambda + 9 + 2) = -20.$$ <br/><br/>By solving the above equations, we find $\alpha = -1$ and $\lambda = 3$. <br/><br/>Substituting these values back into $\vec{c}$ gives $\vec{c} = -6 \hat{i} - \hat{k}$. <br/><br/>Next, we need to find $|\vec{c} \times (\lambda \hat{i} + \hat{j} + \hat{k})|^2$. <br/><br/>This simplifies to : <br/><br/>$$|\vec{c} \times (3\hat{i} + \hat{j} + \hat{k})|^2$$ <br/><br/>Calculate the cross product $\vec{c} \times (3\hat{i} + \hat{j} + \hat{k})$ which gives : <br/><br/>$$ =\left|\begin{array}{lll} \hat{i} & \hat{j} & \hat{k} \\ -6 & 0 & -1 \\ 3 & 1 & 1 \end{array}\right|=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}} $$ <br/><br/>Finally, the square of the magnitude of this vector is: <br/><br/>$$|\vec{c} \times (3\hat{i} + \hat{j} + \hat{k})|^2 = (1)^2 + 3^2 + (-6)^2 = 1 + 9 + 36 = 46.$$
mcq
jee-main-2023-online-12th-april-morning-shift
1lgsujylg
maths
vector-algebra
scalar-and-vector-triple-product
<p>If four distinct points with position vectors $$\vec{a}, \vec{b}, \vec{c}$$ and $$\vec{d}$$ are coplanar, then $$[\vec{a} \,\,\vec{b} \,\,\vec{c}]$$ is equal to :</p>
[{"identifier": "A", "content": "$$[\\vec{d} \\,\\,\\,\\,\\,\\vec{b} \\,\\,\\,\\,\\,\\vec{a}]+[\\vec{a} \\,\\,\\,\\,\\,\\vec{c} \\,\\,\\,\\,\\,\\vec{d}]+[\\vec{d} \\,\\,\\,\\,\\,\\vec{b} \\,\\,\\,\\,\\,\\vec{c}]$$"}, {"identifier": "B", "content": "$$[\\vec{b} \\,\\,\\,\\,\\,\\vec{c} \\,\\,\\,\\,\\,\\vec{d}]+[\\vec{d} \\,\\,\\,\\,\\,\\vec{a} \\,\\,\\,\\,\\,\\vec{c}]+[\\vec{d} \\,\\,\\,\\,\\,\\vec{b} \\,\\,\\,\\,\\,\\vec{a}]$$"}, {"identifier": "C", "content": "$$[\\vec{a} \\,\\,\\,\\,\\,\\vec{d} \\,\\,\\,\\,\\,\\vec{b}]+[\\vec{d} \\,\\,\\,\\,\\,\\vec{c} \\,\\,\\,\\,\\,\\vec{a}]+[\\vec{d} \\,\\,\\,\\,\\,\\vec{b} \\,\\,\\,\\,\\,\\vec{c}]$$"}, {"identifier": "D", "content": "$$[\\vec{d} \\,\\,\\,\\,\\,\\vec{c} \\,\\,\\,\\,\\,\\vec{a}]+[\\vec{b} \\,\\,\\,\\,\\,\\vec{d} \\,\\,\\,\\,\\,\\vec{a}]+[\\vec{c} \\,\\,\\,\\,\\,\\vec{d} \\,\\,\\,\\,\\,\\vec{b}]$$"}]
["D"]
null
$$ \begin{aligned} & {[\vec{b}-\vec{a} \,\,\,\,\,\vec{c}-\vec{a} \,\,\,\,\,\vec{d}-\vec{a}]=0} \\\\ & (\vec{b}-\vec{a}) \cdot[(\vec{c}-\vec{a}) \times(\vec{d}-\vec{a})]=0 \\\\ & (\vec{b}-\vec{a}) \cdot(\vec{c} \times \vec{d}-\vec{c} \times \vec{a}-\vec{a} \times \vec{d})=0 \\\\ & {[\vec{b}\,\,\,\,\, \vec{c} \,\,\,\,\,\vec{d}]-[\vec{b} \,\,\,\,\,\vec{c} \,\,\,\,\,\vec{a}]-[\vec{b} \,\,\,\,\,\vec{a} \,\,\,\,\,\vec{d}]-[\vec{a} \,\,\,\,\,\vec{c} \,\,\,\,\,\vec{d}]=0} \\\\ & \therefore [\vec{a} \,\,\,\,\,\vec{b} \,\,\,\,\,\vec{c}]=[\vec{b} \,\,\,\,\,\vec{c} \,\,\,\,\,\vec{d}]+[\vec{a} \,\,\,\,\,\vec{b} \,\,\,\,\,\vec{d}]+[\vec{a} \,\,\,\,\,\vec{d} \,\,\,\,\,\vec{c}] \\\\ & \quad=[\vec{d} \,\,\,\,\,\vec{c} \,\,\,\,\,\vec{a}]+[\vec{b} \,\,\,\,\,\vec{d} \,\,\,\,\,\vec{a}]+[\vec{c} \,\,\,\,\,\vec{d} \,\,\,\,\,\vec{b}] \end{aligned} $$
mcq
jee-main-2023-online-11th-april-evening-shift
1lgyl6v9x
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let the vectors $$\vec{u}_{1}=\hat{i}+\hat{j}+a \hat{k}, \vec{u}_{2}=\hat{i}+b \hat{j}+\hat{k}$$ and $$\vec{u}_{3}=c \hat{i}+\hat{j}+\hat{k}$$ be coplanar. If the vectors $$\vec{v}_{1}=(a+b) \hat{i}+c \hat{j}+c \hat{k}, \vec{v}_{2}=a \hat{i}+(b+c) \hat{j}+a \hat{k}$$ and $$\vec{v}_{3}=b \hat{i}+b \hat{j}+(c+a) \hat{k}$$ are also coplanar, then $$6(\mathrm{a}+\mathrm{b}+\mathrm{c})$$ is equal to :</p>
[{"identifier": "A", "content": "12"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "4"}]
["A"]
null
Since, $\vec{u}_1, \vec{u}_2, \vec{u}_3$ are coplanar. <br/><br/>So, $\left[\begin{array}{lll}\vec{u}_1 & \vec{u}_2 & \vec{u}_3\end{array}\right]=0$ <br/><br/>$$ \begin{aligned} & \Rightarrow\left|\begin{array}{lll} 1 & 1 & a \\ 1 & b & 1 \\ c & 1 & 1 \end{array}\right|=0 \\\\ & \Rightarrow 1(b-1)-1(1-c)+a(1-b c)=0 \\\\ & \Rightarrow b-1-1+c+a-a b c=0 \\\\ & \Rightarrow a+b+c-2=a b c ........... (i) \end{aligned} $$ <br/><br/>Also, $\left[\begin{array}{lll}\vec{v}_1 & \vec{v}_2 & \vec{v}_3\end{array}\right]=0$ <br/><br/>$$ \begin{aligned} & \Rightarrow\left|\begin{array}{ccc} a+b & c & c \\ a & b+c & a \\ b & b & c+a \end{array}\right|=0 \\ & \Rightarrow(a+b)\left[b c+b a+c^2+c a-a b\right]-c\left[a c+a^2-a b\right] \\\\ & \quad+c\left[a b-b^2-b c\right]=0 \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow a b c+a c^2+a^2 c+b^2 c+b c^2+a b c-a c^2-a^2 c \\\\ & +a b c+a b c-b^2 c-b c^2=0 \\\\ & \Rightarrow 4 a b c=0 \Rightarrow a b c=0 \\\\ & \begin{array}{lr} \text { So, } a+b+c-2=0 [from (i)]\\\\ \Rightarrow a+b+c=2 \end{array} \\\\ & \Rightarrow 6(a+b+c)=12 \end{aligned} $$
mcq
jee-main-2023-online-8th-april-evening-shift
1lh21ilhv
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let the position vectors of the points A, B, C and D be $$5 \hat{i}+5 \hat{j}+2 \lambda \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}+\lambda \hat{j}+4 \hat{k}$$ and $$-\hat{i}+5 \hat{j}+6 \hat{k}$$. Let the set $$S=\{\lambda \in \mathbb{R}$$ : the points A, B, C and D are coplanar $$\}$$. <br/><br/>Then $$\sum_\limits{\lambda \in S}(\lambda+2)^{2}$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{37}{2}$$"}, {"identifier": "B", "content": "25"}, {"identifier": "C", "content": "13"}, {"identifier": "D", "content": "41"}]
["D"]
null
Given, position vectors of the points $A, B, C$ and $D$ be <br/><br/>$5 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+2 \lambda \hat{\mathbf{k}}, \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}},-2 \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $-\hat{\mathbf{i}}+5 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ <br/><br/>$$ \begin{aligned} \overrightarrow{A B} & =(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})-(5 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+2 \lambda \hat{\mathbf{k}})=-4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+(3-2 \lambda) \hat{\mathbf{k}} \\\\ \overrightarrow{A C} & =(-2 \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+4 \hat{\mathbf{k}})-(5 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+2 \lambda \hat{\mathbf{k}}) \\\\ & =-7 \hat{\mathbf{i}}+(\lambda-5) \hat{\mathbf{j}}+(4-2 \lambda) \hat{\mathbf{k}} \end{aligned} $$ <br/><br/>$$ \begin{aligned} \text { and } \overrightarrow{A D} & =(-\hat{\mathbf{i}}+5 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})-(5 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+2 \lambda \hat{\mathbf{k}}) \\\\ & =-6 \hat{\mathbf{i}}+(6-2 \lambda) \hat{\mathbf{k}} \end{aligned} $$ <br/><br/>Since, points $A, B, C$ and $D$ are coplanar <br/><br/>$$ \begin{aligned} & \therefore [ { \overrightarrow{AB}~ \overrightarrow{AC}~ \overrightarrow{AD}] }=0 \\\\ & \Rightarrow \left|\begin{array}{ccc} -4 & -3 & (3-2 \lambda) \\ -7 & (\lambda-5) & (4-2 \lambda) \\ -6 & 0 & 6-2 \lambda \end{array}\right|=0 \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow -6\left\{(-12+6 \lambda)-\left(13 \lambda-15-2 \lambda^2\right)\right\} \\\\ & +(6-2 \lambda)\{-4 \lambda+20-21\} =0 \\\\ & \Rightarrow -6\left(2 \lambda^2-7 \lambda+3\right)+(6-2 \lambda)(-4 \lambda-1) =0 \\\\ & \Rightarrow -12 \lambda^2+42 \lambda-18+8 \lambda^2-22 \lambda-6 =0 \\\\ & \Rightarrow -4 \lambda^2+20 \lambda-24 =0 \\\\ & \Rightarrow \lambda^2-5 \lambda+6 =0 \\\\ & \Rightarrow (\lambda-2)(\lambda-3) =0 \\\\ & \Rightarrow \lambda =2,3 \end{aligned} $$ <br/><br/>$$ \therefore \sum\limits_{\lambda \varepsilon S}(\lambda+2)^2=(2+2)^2+(3+2)^2=16+25=41 $$
mcq
jee-main-2023-online-6th-april-morning-shift
1lh2y5tet
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let the vectors $$\vec{a}, \vec{b}, \vec{c}$$ represent three coterminous edges of a parallelopiped of volume V. Then the volume of the parallelopiped, whose coterminous edges are represented by $$\vec{a}, \vec{b}+\vec{c}$$ and $$\vec{a}+2 \vec{b}+3 \vec{c}$$ is equal to :</p>
[{"identifier": "A", "content": "3 V"}, {"identifier": "B", "content": "2 V"}, {"identifier": "C", "content": "6 V"}, {"identifier": "D", "content": "V"}]
["D"]
null
Given that the volume $V$ of the parallelepiped formed by the vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$ is represented by the scalar triple product $[\vec{a},\vec{b},\vec{c}]$, which is the determinant of the 3 x 3 matrix with vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$ as its rows (or columns). <br/><br/>When the vectors representing the coterminous edges of the parallelepiped are $\vec{a}$, $\vec{b} + \vec{c}$, and $\vec{a} + 2\vec{b} + 3\vec{c}$, the volume $V$ of the parallelepiped is represented by : <br/><br/>$\begin{aligned} & V=[\vec{a}, \vec{b}+\vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}] \\\\ & =\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 3\end{array}\right|\left[\begin{array}{ll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \\\\ & =1(3-2)[\vec{a}, \vec{b}, \vec{c}] \\\\ & =\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=V \\\\ & \end{aligned}$
mcq
jee-main-2023-online-6th-april-evening-shift
1lh2yfbhy
maths
vector-algebra
scalar-and-vector-triple-product
<p>The sum of all values of $$\alpha$$, for which the points whose position vectors are $$\hat{i}-2 \hat{j}+3 \hat{k}, 2 \hat{i}-3 \hat{j}+4 \hat{k},(\alpha+1) \hat{i}+2 \hat{k}$$ and $$9 \hat{i}+(\alpha-8) \hat{j}+6 \hat{k}$$ are coplanar, is equal to :</p>
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "$$-$$2"}, {"identifier": "D", "content": "2"}]
["D"]
null
Let $\overrightarrow{O A}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ <br/><br/>$$ \begin{aligned} & \overrightarrow{O B}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}} \\\\ & \overrightarrow{O C}=(a+1) \hat{\mathbf{i}}+2 \hat{\mathbf{k}} \end{aligned} $$ <br/><br/>and $ \overrightarrow{O D}=9 \hat{\mathbf{i}}+(a-8) \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ <br/><br/>$$ \begin{array}{ll} &\therefore \overrightarrow{A B}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}} \\\\ & \overrightarrow{A C}=a \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}} \\\\ &\text { and } \overrightarrow{A D}=8 \hat{\mathbf{i}}+(a-6) \hat{\mathbf{j}}+3 \hat{\mathbf{k}} \end{array} $$ <br/><br/>Since, given point are coplanar <br/><br/>$$ \begin{aligned} & \therefore \quad[\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}]=0 \\\\ & \Rightarrow\left|\begin{array}{ccr} 1 & -1 & 1 \\ a & 2 & -1 \\ 8 & a-6 & 3 \end{array}\right|=0 \\\\ & \Rightarrow 1(6+a-6)+1(3 a+8)+1\left(a^2-6 a-16\right)=0 \\\\ & \Rightarrow a+3 a+8+a^2-6 a-16=0 \Rightarrow a^2-2 a-8=0 \\\\ & \Rightarrow a^2-4 a+2 a-8=0 \Rightarrow a(a-4)+2(a-4)=0 \\\\ & \Rightarrow(a-4)(a+2)=0 \Rightarrow a=4,-2 \\\\ & \therefore \text { Sum of all values of } a=4-2=2 \end{aligned} $$
mcq
jee-main-2023-online-6th-april-evening-shift
lsbl7k96
maths
vector-algebra
scalar-and-vector-triple-product
Let $\overrightarrow{\mathrm{a}}=\hat{i}+2 \hat{j}+\hat{k}, $ <br/>$\overrightarrow{\mathrm{b}}=3(\hat{i}-\hat{j}+\hat{k})$. <br/>Let $\overrightarrow{\mathrm{c}}$ be the vector such that $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}}$ and $\vec{a} \cdot \vec{c}=3$. <br/> Then $\vec{a} \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c})$ is equal to :
[{"identifier": "A", "content": "32"}, {"identifier": "B", "content": "36"}, {"identifier": "C", "content": "24"}, {"identifier": "D", "content": "20"}]
["C"]
null
<p>$$\begin{aligned} & \vec{a} \cdot[(\vec{c} \times \vec{b})-\vec{b}-\vec{c}] \\ & \vec{a} \cdot(\vec{c} \times \vec{b})-\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c} \quad \text{..... (i)} \end{aligned}$$</p> <p>$$\begin{aligned} & \text { given } \vec{a} \times \vec{c}=\vec{b} \\ & \Rightarrow(\vec{a} \times \vec{c}) \cdot \vec{b}=\vec{b} \cdot \vec{b}=|\vec{b}|^2=27 \\ & \Rightarrow \vec{a} \cdot(\vec{c} \times \vec{b})=[\vec{a} \quad \vec{c} \quad \vec{b}]=(\vec{a} \times \vec{c}) \cdot \vec{b}=27 \quad \text{.... (ii)} \end{aligned}$$</p> <p>$$\begin{aligned} & \text { Now } \vec{a} \cdot \vec{b}=3-6+3=0 \quad \text{.... (iii)}\\ & \vec{a} \cdot \vec{c}=3 \quad \text{.... (iv) (given)} \end{aligned}$$</p> <p>$$\begin{gathered} \text { By (i), (ii), (iii) & (iv) } \\ 27-0-3=24 \end{gathered}$$</p>
mcq
jee-main-2024-online-27th-january-morning-shift
lv2er3tg
maths
vector-algebra
scalar-and-vector-triple-product
<p>Let $$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$$ and $$\vec{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in \mathbb{R}$$. If $$\vec{d}$$ is the unit vector in the direction of $$\vec{b}+\vec{c}$$ such that $$\vec{a} \cdot \vec{d}=1$$, then $$(\vec{a} \times \vec{b}) \cdot \vec{c}$$ is equal to</p>
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "11"}, {"identifier": "D", "content": "6"}]
["C"]
null
<p>$$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}, \vec{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in R$$<?p> <p>$$\text { also, } \vec{b}+\vec{c}=(x+2) \hat{i}+6 \hat{j}-2 \hat{k}$$</p> <p>$$\vec{d} \text { is the unit vector in the direction of } \vec{b}+\vec{c}$$</p> <p>$$\begin{aligned} & |\vec{b}+\vec{c}|=\sqrt{(x+2)^2+6^2+2^2} \\ & =\sqrt{40+(x+2)^2} \\ & \vec{d}=\frac{x+2}{\sqrt{40+(x+2)^2}} \hat{i}+\frac{6}{\sqrt{40+(x+2)^2}} \hat{j} -\frac{2}{\sqrt{40+(x+2)^2}} \hat{k} \\ \end{aligned}$$</p> <p>$$\begin{aligned} & \vec{a} \cdot \vec{d}=1 \\ & \frac{x+2+6-2}{\sqrt{40+(x+2)^2}}=1 \\ & x+6=\sqrt{40+(x+2)^2} \end{aligned}$$</p> <p>$$\begin{aligned} &(x+6)^2=40+(x+2)^2 \\ & x^2+36+ 12 x=40+x^2+4+4 x \\ & 8 x=8 \\ & \Rightarrow x=1 \\ &(\vec{a} \times \vec{b}) \cdot \vec{c}=[\vec{a} \vec{b} \vec{c}] \\ &=\left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 4 & -5 \\ 1 & 2 & 3 \end{array}\right] \\ &=1(12+10)-1(6+5)+1(4-4) \\ &=22-11=11 \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-evening-shift
ntSo8ltNI3kPao4H
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
If $$\left| {\overrightarrow a } \right| = 5,\left| {\overrightarrow b } \right| = 4,\left| {\overrightarrow c } \right| = 3$$ thus what will be the value of $$\left| {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right|,$$ given that $$\overrightarrow a + \overrightarrow b + \overrightarrow c = 0$$ :
[{"identifier": "A", "content": "$$25$$"}, {"identifier": "B", "content": "$$50$$ "}, {"identifier": "C", "content": "$$-25$$"}, {"identifier": "D", "content": "$$-50$$"}]
["A"]
null
We have, $$\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0 $$ <br><br>$$ \Rightarrow {\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)^2} = 0$$ <br><br>$$ \Rightarrow {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\, + 2\left( {\overrightarrow a \,.\,\overrightarrow b + \overrightarrow b \,.\,\overrightarrow c + \overrightarrow c \,.\,\overrightarrow a } \right) = 0$$ <br><br>$$ \Rightarrow 25 + 16 + 9 + 2\left( {\overrightarrow a \,.\,\overrightarrow b + \overrightarrow b \,.\,\overrightarrow c + \overrightarrow c \,.\,\overrightarrow a } \right) = 0$$ <br><br>$$ \Rightarrow \left( {\overrightarrow a \,.\,\overrightarrow b + \overrightarrow b \,.\,\overrightarrow c + \overrightarrow c \,.\,\overrightarrow a } \right) = - 25.$$ <br><br>$$\therefore$$ $$\left| {\overrightarrow a \,.\,\overrightarrow b + \overrightarrow b \,.\,\overrightarrow c + \overrightarrow c \,.\,\overrightarrow a } \right| = 25.$$
mcq
aieee-2002
LrCwfitL3Reaie1v
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
$$\overrightarrow a \,,\overrightarrow b \,,\overrightarrow c $$ are $$3$$ vectors, such that <br/><br/>$$\overrightarrow a + \overrightarrow b + \overrightarrow c = 0$$ , $$\left| {\overrightarrow a } \right| = 1\,\,\,\left| {\overrightarrow b } \right| = 2,\,\,\,\left| {\overrightarrow c } \right| = 3,$$, <br/><br/> then $${\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a }$$ is equal to :
[{"identifier": "A", "content": "$$1$$"}, {"identifier": "B", "content": "$$0$$"}, {"identifier": "C", "content": "$$-7$$ "}, {"identifier": "D", "content": "$$7$$"}]
["C"]
null
$$\overrightarrow a + \overrightarrow b + \overrightarrow c = 0$$ <br><br>$$ \Rightarrow \left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right) = 0$$ <br><br>$${\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2\left( {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right) = 0$$ <br><br>$$\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a = {{ - 1 - 4 - 9} \over 2}$$ <br><br>$$ = - 7$$
mcq
aieee-2003
WBKKBa1dT8vFmppP
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
A particle acted on by constant forces $$4\widehat i + \widehat j - 3\widehat k$$ and $$3\widehat i + \widehat j - \widehat k$$ is displaced from the point $$\widehat i + 2\widehat j + 3\widehat k$$ to the point $$\,5\widehat i + 4\widehat j + \widehat k.$$ The total work done by the forces is :
[{"identifier": "A", "content": "$$50$$ units "}, {"identifier": "B", "content": "$$20$$ units "}, {"identifier": "C", "content": "$$30$$ units "}, {"identifier": "D", "content": "$$40$$ units "}]
["D"]
null
The work done by a force on a particle is given by the dot product of the force and the displacement vector of the particle. The displacement vector can be found by subtracting the initial position from the final position: <br/><br/> $$\mathbf{displacement} = \mathbf{final\ position} - \mathbf{initial\ position} = (5\widehat i + 4\widehat j + \widehat k) - (\widehat i + 2\widehat j + 3\widehat k) = 4\widehat i + 2\widehat j - 2\widehat k$$ <br/><br/> The total work done by the two forces is equal to the sum of the work done by each force. The work done by each force can be calculated as the dot product of the force and the displacement: <br/><br/> $$\mathbf{work\ done\ by\ force\ 1} = (4\widehat i + \widehat j - 3\widehat k) \cdot (4\widehat i + 2\widehat j - 2\widehat k) = 4 \cdot 4 + 1 \cdot 2 - 3 \cdot -2 = 16 + 2 + 6 = 24$$ <br/><br/> $$\mathbf{work\ done\ by\ force\ 2} = (3\widehat i + \widehat j - \widehat k) \cdot (4\widehat i + 2\widehat j - 2\widehat k) = 3 \cdot 4 + 1 \cdot 2 - 1 \cdot -2 = 12 + 2 + 2 = 16$$ <br/><br/> The total work done by the forces is the sum of the work done by each force: <br/><br/> $$\mathbf{total\ work\ done} = 24 + 16 = 40$$ <br/><br/> Therefore, the total work done by the forces is 40 J (joules) or 40 units.
mcq
aieee-2004
3XEW0uiZJ9xlVtmR
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w $$ be such that $$\left| {\overrightarrow u } \right| = 1,\,\,\,\left| {\overrightarrow v } \right|2,\,\,\,\left| {\overrightarrow w } \right|3.$$ If the projection $${\overrightarrow v }$$ along $${\overrightarrow u }$$ is equal to that of $${\overrightarrow w }$$ along $${\overrightarrow u }$$ and $${\overrightarrow v },$$ $${\overrightarrow w }$$ are perpendicular to each other then $$\left| {\overrightarrow u - \overrightarrow v + \overrightarrow w } \right|$$ equals :
[{"identifier": "A", "content": "$$14$$ "}, {"identifier": "B", "content": "$${\\sqrt {7} }$$"}, {"identifier": "C", "content": "$${\\sqrt {14} }$$ "}, {"identifier": "D", "content": "$$2$$"}]
["C"]
null
Projection of $$\overrightarrow v $$ along $$\overrightarrow u = {{\overrightarrow v .\overrightarrow u } \over {\left| {\overrightarrow u } \right|}} = {{\overrightarrow v .\overrightarrow u } \over 2}$$ <br><br>projection of $$\overrightarrow w $$ along $$\overrightarrow u = {{\overrightarrow w .\overrightarrow u } \over {\left| {\overrightarrow u } \right|}} = {{\overrightarrow w .\overrightarrow u } \over 2}$$ <br><br>Given $${{\overrightarrow v .\overrightarrow u } \over 2} = {{\overrightarrow w .\overrightarrow u } \over 2}\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>Also, $$\overrightarrow v .\overrightarrow w = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 2 \right)$$ <br><br>Now $${\left| {\overrightarrow u - \overrightarrow v + \overrightarrow w } \right|^2}$$ <br><br>$$ = {\left| {\overrightarrow u } \right|^2} + {\left| {\overrightarrow v } \right|^2} + {\left| {\overrightarrow w } \right|^2} - $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,2\overrightarrow u .\overrightarrow v - 2\overrightarrow v .\overrightarrow w + 2\overrightarrow u .\overrightarrow w $$ <br><br>$$ = 1 + 4 + 9 + 0$$ [ From $$(1)$$ and $$(2)$$ ] $$=14$$ <br><br>$$\therefore$$ $$\left| {\overrightarrow u - \overrightarrow v + \overrightarrow w } \right| = \sqrt {14} $$
mcq
aieee-2004
R1ZCf7lzVetrtUe4
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
The values of a, for which the points $$A, B, C$$ with position vectors $$2\widehat i - \widehat j + \widehat k,\,\,\widehat i - 3\widehat j - 5\widehat k$$ and $$a\widehat i - 3\widehat j + \widehat k$$ respectively are the vertices of a right angled triangle with $$C = {\pi \over 2}$$ are :
[{"identifier": "A", "content": "$$2$$ and $$1$$ "}, {"identifier": "B", "content": "$$-2$$ and $$-1$$ "}, {"identifier": "C", "content": "$$-2$$ and $$1$$ "}, {"identifier": "D", "content": "$$2$$ and $$-1$$ "}]
["A"]
null
$$\overrightarrow {CA} = \left( {2 - a} \right)\widehat i + 2\widehat j;$$ <br><br>$$\overrightarrow {CB} = \left( {1 - a} \right)\widehat i - 6\widehat k$$ <br><br>$$\overrightarrow {CA} .\overrightarrow {CB} = 0$$ <br><br>$$\,\,\,\,\,\,\,\, \Rightarrow \left( {2 - a} \right)\left( {1 - a} \right) = 0$$ <br><br>$$ \Rightarrow a = 2,1$$
mcq
aieee-2006
DRDbNWOhlsTgTTBc
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
If the vectors $$\overrightarrow a = \widehat i - \widehat j + 2\widehat k,\,\,\,\,\,\overrightarrow b = 2\widehat i + 4\widehat j + \widehat k\,\,\,$$ and $$\,\overrightarrow c = \lambda \widehat i + \widehat j + \mu \widehat k$$ are mutually orthogonal, then $$\,\left( {\lambda ,\mu } \right)$$ is equal to :
[{"identifier": "A", "content": "$$(2, -3)$$"}, {"identifier": "B", "content": "$$(-2, 3)$$"}, {"identifier": "C", "content": "$$(3, -2)$$"}, {"identifier": "D", "content": "$$(-3, 2)$$"}]
["D"]
null
Since, $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ are mutually orthogonal <br><br> $$\overrightarrow a .\overrightarrow b = 0,\,\,\overrightarrow b .\overrightarrow c = 0,\,\,\overrightarrow c .\overrightarrow a = 0$$ <br><br>$$ \Rightarrow 2\lambda + 4 + \mu = 0\,\,\,\,\,\,\,\,\,\,\,...\left( i \right)$$ <br><br>$$ \Rightarrow \lambda - 1 + 2\mu = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$$ <br><br>On solving $$(i)$$ and $$(ii)$$, we get $$\lambda = - 3,\mu = 2$$
mcq
aieee-2010
LYE5VbPrgMavFhGX
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two unit vectors. If the vectors $$\,\overrightarrow c = \widehat a + 2\widehat b$$ and $$\overrightarrow d = 5\widehat a - 4\widehat b$$ are perpendicular to each other, then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is :
[{"identifier": "A", "content": "$${\\pi \\over 6}$$ "}, {"identifier": "B", "content": "$${\\pi \\over 2}$$"}, {"identifier": "C", "content": "$${\\pi \\over 3}$$"}, {"identifier": "D", "content": "$${\\pi \\over 4}$$"}]
["C"]
null
Let $$\overrightarrow c = \widehat a + 2\widehat b$$ and $$\overrightarrow d = 5\widehat a - 4\widehat b$$ <br><br>Since $$\overrightarrow c $$ and $$\overrightarrow d $$ are perpendicular to each other <br><br>$$\therefore$$ $$\overrightarrow c .\overrightarrow d = 0 \Rightarrow \left( {\widehat a + 2\widehat b} \right).\left( {5\widehat a - 4\widehat b} \right) = 0$$ <br><br>$$ \Rightarrow 5 + 6\widehat a.\widehat b - 8 = 0$$ $$\,\,\,\,\,\,$$ (as $$\widehat a.\widehat a = 1$$) <br><br>$$ \Rightarrow \widehat a.\widehat b = {1 \over 2} \Rightarrow \theta = {\pi \over 3}$$
mcq
aieee-2012
J6fh5bJMpbtUOm1J
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$ABCD$$ be a parallelogram such that $$\overrightarrow {AB} = \overrightarrow q ,\overrightarrow {AD} = \overrightarrow p $$ and $$\angle BAD$$ be an acute angle. If $$\overrightarrow r $$ is the vector that coincide with the altitude directed from the vertex $$B$$ to the side $$AD,$$ then $$\overrightarrow r $$ is given by :
[{"identifier": "A", "content": "$$\\overrightarrow r = 3\\overrightarrow q - {{3\\left( {\\overrightarrow p .\\overrightarrow q } \\right)} \\over {\\left( {\\overrightarrow p .\\overrightarrow p } \\right)}}\\overrightarrow p $$ "}, {"identifier": "B", "content": "$$\\overrightarrow r = - \\overrightarrow q + {{\\left( {\\overrightarrow p .\\overrightarrow q } \\right)} \\over {\\left( {\\overrightarrow p .\\overrightarrow p } \\right)}}\\overrightarrow p $$ "}, {"identifier": "C", "content": "$$\\vec r = \\vec q - {{\\left( {\\vec p.\\vec q} \\right)} \\over {\\left( {\\vec p.\\vec p} \\right)}}\\vec p$$ "}, {"identifier": "D", "content": "$$\\overrightarrow r = - 3\\overrightarrow q - {{3\\left( {\\overrightarrow p .\\overrightarrow q } \\right)} \\over {\\left( {\\overrightarrow p .\\overrightarrow p } \\right)}}$$ "}]
["B"]
null
Let $$ABCD$$ be a parallelogram such that <br><br>$$\overrightarrow {AB} = \overrightarrow q ,\overrightarrow {AD} = \overrightarrow p $$ and $$\angle BAD$$ be an acute angle. <br><br>We have <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263647/exam_images/vxui8byefbrtoqgpopbv.webp" loading="lazy" alt="AIEEE 2012 Mathematics - Vector Algebra Question 196 English Explanation"> <br><br>$$\overrightarrow {AX} = \left( {{{\overrightarrow p .\overrightarrow q } \over {\left| {\overrightarrow p } \right|}}} \right)\left( {{{\overrightarrow p } \over {\left| {\overrightarrow p } \right|}}} \right) = {{\overrightarrow p .\overrightarrow q } \over {{{\left| {\overrightarrow p } \right|}^2}}}\overrightarrow p $$ <br><br>Let $$\overrightarrow r = \overrightarrow {BX} = \overrightarrow {BA} + \overrightarrow {AX} $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - \overrightarrow q + {{\overrightarrow p .\overrightarrow q } \over {{{\left| {\overrightarrow p } \right|}^2}}}\overrightarrow p $$
mcq
aieee-2012
MyLIse0cRI3zW4o3T2Zji
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
In a triangle ABC, right angled at the vertex A, if the position vectors of A, B and C are respectively 3$$\widehat i$$ + $$\widehat j$$ $$-$$ $$\widehat k$$,   $$-$$$$\widehat i$$ + 3$$\widehat j$$ + p$$\widehat k$$ and 5$$\widehat i$$ + q$$\widehat j$$ $$-$$ 4$$\widehat k$$, then the point (p, q) lies on a line :
[{"identifier": "A", "content": "parallel to x-axis. "}, {"identifier": "B", "content": "parallel to y-axis."}, {"identifier": "C", "content": "making an acute angle with the positive direction of x-axis."}, {"identifier": "D", "content": "making an obtuse angle with the positive direction of x-axis. "}]
["C"]
null
Given, <br><br>$$\overrightarrow A = 3\widehat i + \widehat j - \widehat k$$ <br><br>$$\overrightarrow B = - \widehat i + 3\widehat j - p\widehat k$$ <br><br>$$\overrightarrow C = 5\widehat i + 9\widehat j - 4\widehat k$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$$\overrightarrow {AB} = - 4\widehat i + 2\widehat j + \left( {p + 1} \right)\widehat k$$ <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$\overrightarrow {AC} = 2\widehat i + \left( {q - 1} \right)\widehat j - 3\widehat k$$ <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265163/exam_images/odwfpjssxxiwn1znqs07.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2016 (Online) 9th April Morning Slot Mathematics - Vector Algebra Question 184 English Explanation"> <br><br>$$\Delta $$ABC is a right angle triangle. <br><br>Here $$\overrightarrow {AB} $$ perpendicular to $$\overrightarrow {AC} $$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$$\overrightarrow {AB} $$&nbsp;&nbsp;.&nbsp;&nbsp;$$\overrightarrow {AC} $$&nbsp;&nbsp;=&nbsp;&nbsp;0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$-$$ 8 + 2(q $$-$$ 1) $$-$$ 3(p + 1) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;3p $$-$$ 2q + 13 = 0 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;(p, q) lies on the line <br><br>3x $$-$$ 2y + 13 = 0 <br><br>And slope of the line = $${3 \over 2}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;line makes an angle less than 90<sup>o</sup> or acute angle with the positive direction of x-axis.
mcq
jee-main-2016-online-9th-april-morning-slot
CknOj9CXeWNGkcOX
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$\overrightarrow u $$ be a vector coplanar with the vectors $$\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$$ and $$\overrightarrow b = \widehat j + \widehat k$$. If $$\overrightarrow u $$ is perpendicular to $$\overrightarrow a $$ and $$\overrightarrow u .\overrightarrow b = 24$$, then $${\left| {\overrightarrow u } \right|^2}$$ is equal to
[{"identifier": "A", "content": "336"}, {"identifier": "B", "content": "315"}, {"identifier": "C", "content": "256"}, {"identifier": "D", "content": "84"}]
["A"]
null
You should know that, when $$\overrightarrow u $$ is coplanar with $$\overrightarrow a $$ and $$\overrightarrow b $$ then we can write $$\overrightarrow u = x\overrightarrow a + y\overrightarrow b $$ <br><br>Here, $$\overrightarrow u $$ is perpendicular with $$\overrightarrow a $$ then, <br><br>$$\overrightarrow u .\overrightarrow a = 0$$ <br><br>$$ \Rightarrow \,\,\,\,\left( {x\,\overrightarrow a + y\overrightarrow b } \right)\,.\overrightarrow a = 0$$ <br><br>$$ \Rightarrow \,\,\,\,x\,.\overrightarrow {\,a} \,.\,\overrightarrow a \, + \,y\,.\,\overrightarrow a \,.\,\overrightarrow b = 0$$ <br><br>$$ \Rightarrow \,\,\,\,x\,.\,{\left| {\overrightarrow a } \right|^2} + \,y\overrightarrow a \,.\,\overrightarrow b = 0$$ <br><br>[ As $$\left| {\overrightarrow a } \right| = \sqrt {{2^2} + {3^2} + {{\left( { - 1} \right)}^2}} = \sqrt {14} $$ <br><br>and $$\overrightarrow a .\overrightarrow b = \left( {2\widehat i + 3\widehat j - \widehat k} \right).\left( {\widehat j + \widehat k} \right)$$ <br><br>$$ = \,\,\,\,\left( {2.0 + 3.1 + \left( { - 1} \right).1} \right)$$ <br><br>$$ = \,\,\,\,2$$ ] <br><br>$$ \Rightarrow \,\,\,\,x\,.\,\left( {14} \right) + y\,.\,2 = 0$$ <br><br>$$ \Rightarrow \,\,\,\,7x\, + \,y\, = 0........\left( 1 \right)$$ <br><br>Given, $$\overrightarrow u \,.\,\overrightarrow b = 24$$ <br><br>$$ \Rightarrow \,\,\,\,\,\left( {x\overrightarrow a + y\overrightarrow b } \right).\overrightarrow b = 24$$ <br><br>$$ \Rightarrow \,\,\,\,x\left( {\overrightarrow a .\overrightarrow b } \right) + y{\left| {\overrightarrow b } \right|^2} = 24$$ <br><br>$$ \Rightarrow \,\,\,\,x.2 + y.{\left( {\sqrt {{1^2} + {1^2}} } \right)^2} = 24$$ <br><br>$$ \Rightarrow \,\,\,\,2x + 2y = 24$$ <br><br>$$ \Rightarrow \,\,\,\,x + y = 12.......\left( 2 \right)$$ <br><br>By solvig (1) and (2) we get, <br><br>x = - 2 and y = 14 <br><br>Now, $${\left| {\overrightarrow u } \right|^2} = \overrightarrow u .\overrightarrow u $$ <br><br>$$ = \,\,\,\,\left( {x\overrightarrow a + y\overrightarrow b } \right).\overrightarrow u $$ <br><br>$$ = \,\,\,\,x\overrightarrow a .\overrightarrow u + y\overrightarrow b .\overrightarrow u $$ <br><br>$$ = \,\,\,\,x\overrightarrow a .\overrightarrow u + y\overrightarrow b .\overrightarrow u $$ <br><br>$$ = \,\,\,\,0 + 14 \times 24$$ [as $$\overrightarrow a .\overrightarrow u = 0$$ and $$\overrightarrow u .\overrightarrow b = 24]$$ <br><br>$$=\,\,\,\,$$ 336
mcq
jee-main-2018-offline
U1UOPS1llBEOw9OxMNW7E
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$\sqrt 3 \widehat i + \widehat j,$$    $$\widehat i + \sqrt 3 \widehat j$$  and   $$\beta \widehat i + \left( {1 - \beta } \right)\widehat j$$ respectively be the position vectors of the points A, B and C with respect to the origin O. If the distance of C from the bisector of the acute angle between OA and OB is $${3 \over {\sqrt 2 }}$$, then the sum of all possible values of $$\beta $$ is :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "3"}]
["B"]
null
Angle bisector is x $$-$$ y = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${{\left| {\beta - \left( {1 - \beta } \right)} \right|} \over {\sqrt 2 }} = {3 \over {\sqrt 2 }}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\left| {2\beta - 1} \right| = 3$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\beta $$ = 2 or $$-$$ 1
mcq
jee-main-2019-online-11th-january-evening-slot
wXePTqL6zttwwsSMnl3rsa0w2w9jwy0f6ft
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let A (3, 0, –1), B(2, 10, 6) and C(1, 2, 1) be the vertices of a triangle and M be the midpoint of AC. If G divides BM in the ratio, 2 : 1, then cos ($$\angle $$GOA) (O being the origin) is equal to :
[{"identifier": "A", "content": "$${1 \\over {\\sqrt {15} }}$$"}, {"identifier": "B", "content": "$${1 \\over {6\\sqrt {10} }}$$"}, {"identifier": "C", "content": "$${1 \\over {\\sqrt {30} }}$$"}, {"identifier": "D", "content": "$${1 \\over {2\\sqrt {15} }}$$"}]
["A"]
null
G is the centroid of $$\Delta $$ABC<br><br> <picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266720/exam_images/loddnxhki4jx9azlbmpr.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265343/exam_images/jmidgraxtr6s8vtd6inv.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265158/exam_images/zxjfdnwd3egwntp3eayb.webp"><source media="(max-width: 860px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266855/exam_images/lhy81ppnjqc6maus8j7k.webp"><source media="(max-width: 1040px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264469/exam_images/wc2vniyerbsrv1ihactm.webp"><source media="(max-width: 1220px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265983/exam_images/roek14f6jydhrinxpgwx.webp"><source media="(max-width: 1400px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264933/exam_images/jnj8x9uncciwtqldtb9p.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266031/exam_images/ube74chtyryryxq4ef6j.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th April Morning Slot Mathematics - Vector Algebra Question 171 English Explanation"></picture><br><br> $$OG = \sqrt {4 + 16 + 4} $$, OA = $$\sqrt {9 + 1} $$<br><br> $$AG = \sqrt {1 + 16 + 9} $$<br><br> $$\cos \theta = {{24 + 10 - 26} \over {2\sqrt {24} \sqrt {10} }}$$<br><br> $$ \Rightarrow {8 \over {2\sqrt {8 \times 3 \times 2 \times 5} }}$$<br><br> $$ \Rightarrow {4 \over {4\sqrt {15} }} = {1 \over {\sqrt {15} }}$$
mcq
jee-main-2019-online-10th-april-morning-slot
5UABRSZyRW07gN53tq18hoxe66ijvww95a3
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
If a unit vector $$\overrightarrow a $$ makes angles $$\pi $$/3 with $$\widehat i$$ , $$\pi $$/ 4 with $$\widehat j$$ and $$\theta $$$$ \in $$(0, $$\pi $$) with $$\widehat k$$, then a value of $$\theta $$ is :-
[{"identifier": "A", "content": "$${{5\\pi } \\over {6}}$$"}, {"identifier": "B", "content": "$${{5\\pi } \\over {12}}$$"}, {"identifier": "C", "content": "$${{2\\pi } \\over {3}}$$"}, {"identifier": "D", "content": "$${{\\pi } \\over {4}}$$"}]
["C"]
null
A unit vector $$\overrightarrow a $$ makes angles $$\pi $$/3 with $$\widehat i$$ <br><br>$$ \therefore $$ $$\alpha $$ = $$\pi $$/3 <br><br> and $$\pi $$/ 4 with $$\widehat j$$ <br><br>$$ \therefore $$ $$\beta $$ = $$\pi $$/ 4 <br><br>and $$\theta $$$$ \in $$(0, $$\pi $$) with $$\widehat k$$ <br><br>$$ \therefore $$ $$\gamma $$ = $$\theta $$ <br><br>We also know, <br><br>$${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma $$ = 1 <br><br>$$ \Rightarrow $$ $${\cos ^2}{\pi \over 3} + {\cos ^2}{\pi \over 4} + {\cos ^2}\theta $$ = 1 <br><br>$$ \Rightarrow $$ $${1 \over 4} + {1 \over 2} + {\cos ^2}\theta $$ = 1 <br><br>$$ \Rightarrow $$ $${\cos ^2}\theta $$ = $$ \pm {1 \over 2}$$ <br><br>$$ \Rightarrow $$ $$\theta $$ = $${\pi \over 3}$$ or $${{2\pi } \over {3}}$$
mcq
jee-main-2019-online-9th-april-evening-slot
6C4xzfmrghEfZNGqxuFTE
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$\overrightarrow a = 2\widehat i + {\lambda _1}\widehat j + 3\widehat k,\,\,$$   $$\overrightarrow b = 4\widehat i + \left( {3 - {\lambda _2}} \right)\widehat j + 6\widehat k,$$  and  $$\overrightarrow c = 3\widehat i + 6\widehat j + \left( {{\lambda _3} - 1} \right)\widehat k$$  be three vectors such that $$\overrightarrow b = 2\overrightarrow a $$ and $$\overrightarrow a $$ is perpendicular to $$\overrightarrow c $$. Then a possible value of $$\left( {{\lambda _1},{\lambda _2},{\lambda _3}} \right)$$ is :
[{"identifier": "A", "content": "(1, 5, 1)"}, {"identifier": "B", "content": "(1, 3, 1)"}, {"identifier": "C", "content": "$$\\left( { - {1 \\over 2},4,0} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {{1 \\over 2},4, - 2} \\right)$$"}]
["C"]
null
Given $$\overrightarrow b = 2\overrightarrow a $$ <br><br>$$ \therefore $$ $$4\widehat i + \left( {3 - {\lambda _2}} \right)\widehat j + 6\widehat k = 4\widehat i + 2{\lambda _1}\widehat j + 6\widehat k$$ <br><br>$$ \Rightarrow 3 - {\lambda _2} = 2{\lambda _1} \Rightarrow 2{\lambda _1} + {\lambda _2} = 3\,\,...(1)$$ <br><br>Given $$\overrightarrow a $$ is perpendicular to $$\overrightarrow c $$ <br><br>$$ \therefore $$ $$\overrightarrow a .\overrightarrow c = 0$$ <br><br>$$ \Rightarrow 6 + 6{\lambda _1} + 3\left( {{\lambda _3} - 1} \right) = 0$$ <br><br>$$ \Rightarrow 2{\lambda _1} + {\lambda _3} = - 1\,\,\,\,\,\,\,\,\,\,...(2)$$ <br><br>Now $$\left( {{\lambda _1},{\lambda _2},{\lambda _3}} \right) = \left( {{\lambda _1},3 - 2{\lambda _1}, - 1 - 2{\lambda _1}} \right)$$ <br><br>By checking each option you can see, <br><br>when $${\lambda _1}$$ = $$ - {1 \over 2}$$ <br><br>then $${\lambda _2}$$ = $$3 - 2{\lambda _1}$$ = 3 + 1 = 4 <br><br>and $${\lambda _3}$$ = $$-1 - 2{\lambda _1}$$ = - 1 + 1 = 0
mcq
jee-main-2019-online-10th-january-morning-slot
fzUXOCvAXq7qZfRqzTtn7
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let  $$\overrightarrow a = \widehat i + \widehat j + \sqrt 2 \widehat k,$$   $$\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + \sqrt 2 \widehat k$$,    $$\overrightarrow c = 5\widehat i + \widehat j + \sqrt 2 \widehat k$$   be three vectors such that the projection vector of $$\overrightarrow b $$ on $$\overrightarrow a $$ is $$\overrightarrow a $$. <br/>If   $$\overrightarrow a + \overrightarrow b $$   is perpendicular to $$\overrightarrow c $$ , then $$\left| {\overrightarrow b } \right|$$ is equal to :
[{"identifier": "A", "content": "$$\\sqrt {32} $$"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "$$\\sqrt {22} $$"}, {"identifier": "D", "content": "4"}]
["B"]
null
Projection of $$\overrightarrow b $$ on $$\overrightarrow a $$ is $$\overrightarrow a $$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$${{\overrightarrow b \cdot \overrightarrow a } \over {\left| {\overrightarrow a } \right|}} = \left| {\overrightarrow a } \right|$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${{{b_1} + {b_2} + 2} \over 2} = 2$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${b_1} + {b_2} = 2\,\,\,\,\,\,\,\,\,\,\,....(1)$$ <br><br>and $$\overrightarrow a $$ + $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\left( {\overrightarrow a + \overrightarrow b } \right) \cdot \overrightarrow c = 0$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$5\left( {{b_1} + 1} \right) + \left( {{b_2} + 1} \right) + \sqrt 2 \left( {2\sqrt 2 } \right) = 0$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$5{b_1} + {b_2} + 10 = 0\,\,\,\,\,\,\,\,\,\,......(2)$$ <br><br>solving (1) &amp; (2) <br><br>b<sub>1</sub> $$=$$ $$-$$ 3 and b<sub>2</sub> $$=$$ 5 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\left| {\overrightarrow b } \right| = \sqrt {9 + 25 + 2} = 6$$
mcq
jee-main-2019-online-9th-january-evening-slot
gBxihkaJRK9XmHPQAQ7k9k2k5e2n780
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
A vector $$\overrightarrow a = \alpha \widehat i + 2\widehat j + \beta \widehat k\left( {\alpha ,\beta \in R} \right)$$ lies in the plane of the vectors, $$\overrightarrow b = \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat i - \widehat j + 4\widehat k$$. If $$\overrightarrow a $$ bisects the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$, then:
[{"identifier": "A", "content": "$$\\overrightarrow a .\\widehat i + 3 = 0$$"}, {"identifier": "B", "content": "$$\\overrightarrow a .\\widehat k - 4 = 0$$"}, {"identifier": "C", "content": "$$\\overrightarrow a .\\widehat i + 1 = 0$$"}, {"identifier": "D", "content": "$$\\overrightarrow a .\\widehat k + 2 = 0$$"}]
["B"]
null
Angle bisector $$\overrightarrow a = \lambda \left( {\widehat b + \widehat c} \right)$$ <br><br>= $$\lambda \left( {{{\widehat i + \widehat j} \over {\sqrt 2 }} + {{\widehat i - \widehat j + 4\widehat k} \over {3\sqrt 2 }}} \right)$$ <br><br>$$ \Rightarrow $$ $$\overrightarrow a = {\lambda \over {3\sqrt 2 }}\left( {4\widehat i + 2\widehat j + 4\widehat k} \right)$$ <br><br>comparing with $$\overrightarrow a = \alpha \widehat i + 2\widehat j + \beta \widehat k$$ <br><br>$${{2\lambda } \over {3\sqrt 2 }}$$ = 2 <br><br>$$ \Rightarrow $$ $$\lambda $$ = $${3\sqrt 2 }$$ <br><br>$$ \therefore $$ $$\overrightarrow a = \left( {4\widehat i + 2\widehat j + 4\widehat k} \right)$$ <br><br>Then $$\overrightarrow a .\widehat k - 4 $$ <br><br>= 4 - 4 = 0
mcq
jee-main-2020-online-7th-january-morning-slot
wxnynWl5nmUW9g7btjjgy2xukewt1roa
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors such that <br/>$${\left| {\overrightarrow a - \overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a - \overrightarrow c } \right|^2}$$ = 8. <br/><br/>Then $${\left| {\overrightarrow a + 2\overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a + 2\overrightarrow c } \right|^2}$$ is equal to ______.
[]
null
2
Given, $$\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| = 1$$ <br><br>$${\left| {\overrightarrow a - \overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a - \overrightarrow c } \right|^2}$$ = 8 <br><br>$$ \Rightarrow $$ $${\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} - 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow c } \right|^2} - 2\overrightarrow a .\overrightarrow c $$ = 8 <br><br>$$ \Rightarrow $$ $$\overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c $$ = -2 <br><br>Now, $${\left| {\overrightarrow a + 2\overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a + 2\overrightarrow c } \right|^2}$$ <br><br>= $${\left| {\overrightarrow a } \right|^2} + 4{\left| {\overrightarrow b } \right|^2} + 4\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow a } \right|^2} + 4{\left| {\overrightarrow c } \right|^2} + 4\overrightarrow a .\overrightarrow c $$ <br><br>= 10 + 4$$\left( {\overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c } \right)$$ <br><br>= 10 + 4(-2) <br><br>= 2
integer
jee-main-2020-online-2nd-september-morning-slot
qU27zRsydVCHN6lGyOjgy2xukf3zyzqz
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let a, b c $$ \in $$ R be such that a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup> = 1. If <br/>$$a\cos \theta = b\cos \left( {\theta + {{2\pi } \over 3}} \right) = c\cos \left( {\theta + {{4\pi } \over 3}} \right)$$, <br/>where $${\theta = {\pi \over 9}}$$, then the angle between the vectors $$a\widehat i + b\widehat j + c\widehat k$$ and $$b\widehat i + c\widehat j + a\widehat k$$ is :
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "$${{\\pi \\over 9}}$$"}, {"identifier": "C", "content": "$${{{2\\pi } \\over 3}}$$"}, {"identifier": "D", "content": "$${{\\pi \\over 2}}$$"}]
["D"]
null
Let, $$\overrightarrow {{a_1}} = a\widehat i + b\widehat j + c\widehat k$$<br><br>and $$\overrightarrow {{a_2}} = b\widehat i + c\widehat j + a\widehat k$$<br><br>We know, Angle between two vectors<br><br>$$\cos \alpha = {{\overrightarrow {{a_1}} \,.\,\overrightarrow {{a_2}} } \over {|\overrightarrow {{a_1}} \,|.|\,\overrightarrow {{a_2}} |}}$$<br><br>$$ = {{ab + bc + ac} \over {\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{a^2} + {b^2} + {c^2}} }}$$<br><br>$$ = {{ab + bc + ac} \over {({a^2} + {b^2} + {c^2})}}$$<br><br>Given, $${a^2} + {b^2} + {c^2} = 1$$<br><br>$$ \therefore $$ $$\cos \alpha = ab + bc + ac$$<br><br>$$ = ab\left( {{1 \over a} + {1 \over b} + {1 \over c}} \right)$$ .....(1)<br><br>Given, $$a\cos \theta = b\cos \left( {\theta + {{2\pi } \over 3}} \right) = c\cos \left( {\theta + {{4\pi } \over 3}} \right) = \lambda $$ (Assume)<br><br>$$ \therefore $$ $${1 \over a} = {{\cos \theta } \over \lambda }$$<br><br>$${1 \over b} = {{\cos \left( {\theta + {{2\pi } \over 3}} \right)} \over \lambda }$$<br><br>$${1 \over c} = {{\cos \left( {\theta + {{4\pi } \over 3}} \right)} \over \lambda }$$<br><br>$$ \therefore $$ $${1 \over a} + {1 \over b} + {1 \over c} = {1 \over \lambda }\left[ {\cos \theta + \cos \left( {\theta + {{2\pi } \over 3}} \right) + \cos \left( {\theta + {{4\pi } \over 3}} \right)} \right]$$<br><br>$$ = {1 \over \lambda }\left[ {\cos \theta + 2\cos \left( {{{2\theta + 2\pi } \over 2}} \right)\cos \left( {{{{{2\pi } \over 3}} \over 2}} \right)} \right]$$<br><br>$$ = {1 \over \lambda }\left[ {\cos \theta + 2\cos (\theta + \pi )\cos \left( {{\pi \over 3}} \right)} \right]$$<br><br>$$ = {1 \over \lambda }\left[ {\cos \theta + 2( - \cos \theta ) \times {1 \over 2}} \right]$$<br><br>$$ = {1 \over \lambda } \times 0$$<br><br>$$ = 0$$<br><br>Putting value of $$\lambda $$ in equation (1),<br><br>cos$$\alpha $$ = ab(0) = 0<br><br>$$ \Rightarrow $$ $$\alpha = {\pi \over 2}$$
mcq
jee-main-2020-online-3rd-september-evening-slot
IjCSOdBC2AtfLTHw6Cjgy2xukfqgbdp5
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let the vectors $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be such that <br/>$$\left| {\overrightarrow a } \right| = 2$$, $$\left| {\overrightarrow b } \right| = 4$$ and $$\left| {\overrightarrow c } \right| = 4$$. If the projection of <br/>$$\overrightarrow b $$ on $$\overrightarrow a $$ is equal to the projection of $$\overrightarrow c $$ on $$\overrightarrow a $$ <br/>and $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$, then the value of <br/>$$\left| {\overrightarrow a + \vec b - \overrightarrow c } \right|$$ is ___________.
[]
null
6
Projection of $$\overrightarrow b $$ on $$\overrightarrow a $$ = Projection of $$\overrightarrow c $$ on $$\overrightarrow a $$ <br><br>$$ \Rightarrow $$ $${{\overrightarrow b .\overrightarrow a } \over {\left| {\overrightarrow a } \right|}} = {{\overrightarrow c .\overrightarrow a } \over {\left| {\overrightarrow a } \right|}}$$ <br><br>$$ \Rightarrow $$ $$\overrightarrow b .\overrightarrow a = \overrightarrow c .\overrightarrow a $$ <br><br>$$ \because $$ $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$ <br><br>$$ \therefore $$ $$\overrightarrow b .\overrightarrow c = 0$$ <br><br>Let $$\left| {\overrightarrow a + \vec b - \overrightarrow c } \right|$$ = k <br><br>Square both sides <br><br>k<sup>2</sup> = $${{{\left( {\overrightarrow a } \right)}^2}}$$ + $${{{\left( {\overrightarrow b } \right)}^2}}$$ + $${{{\left( {\overrightarrow c } \right)}^2}}$$ + $$2\overrightarrow a .\overrightarrow b $$ - $$2\overrightarrow b .\overrightarrow c $$ - $$2\overrightarrow a .\overrightarrow c $$ <br><br>$$ \Rightarrow $$ k<sup>2</sup> = $${{{\left( {\overrightarrow a } \right)}^2}}$$ + $${{{\left( {\overrightarrow b } \right)}^2}}$$ + $${{{\left( {\overrightarrow c } \right)}^2}}$$ <br><br>$$ \Rightarrow $$ k<sup>2</sup> = 2<sup>2</sup> + 4<sup>2</sup> + 4<sup>2</sup> = 36 <br><br>$$ \Rightarrow $$ k = 6
integer
jee-main-2020-online-5th-september-evening-slot
oBUoyZ4YjQ6r5Z8sqVjgy2xukg4n5m60
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
If $$\overrightarrow x $$ and $$\overrightarrow y $$ be two non-zero vectors such that $$\left| {\overrightarrow x + \overrightarrow y } \right| = \left| {\overrightarrow x } \right|$$ and $${2\overrightarrow x + \lambda \overrightarrow y }$$ is perpendicular to $${\overrightarrow y }$$, then the value of $$\lambda $$ is _________ .
[]
null
1
$$\left| {\overrightarrow x + \overrightarrow y } \right| = \left| {\overrightarrow x } \right|$$ <br>Squaring both sides we get <br><br>$${\left| {\overrightarrow x } \right|^2} + 2\overrightarrow x .\overrightarrow y + {\left| {\overrightarrow y } \right|^2} = {\left| {\overrightarrow x } \right|^2}$$ <br><br>$$ \Rightarrow $$ $$2\overrightarrow x .\overrightarrow y + \overrightarrow y .\overrightarrow y $$ = 0 ....(1) <br><br>Given $${2\overrightarrow x + \lambda \overrightarrow y }$$ is perpendicular to $${\overrightarrow y }$$ <br><br>$$ \therefore $$ $$\left( {2\overrightarrow x + \lambda \overrightarrow y } \right).\overrightarrow y $$ = 0 <br><br>$$ \Rightarrow $$ $$2\overrightarrow x .\overrightarrow y + \lambda \overrightarrow y .\overrightarrow y $$ = 0 ....(2) <br><br>Comparing (1) &amp; (2) we get, $$\lambda $$ = 1
integer
jee-main-2020-online-6th-september-evening-slot
hnJwMJTUDbFeYVoTKR1kmknwag0
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$\overrightarrow x $$ be a vector in the plane containing vectors $$\overrightarrow a = 2\widehat i - \widehat j + \widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j - \widehat k$$. If the vector $$\overrightarrow x $$ is perpendicular to $$\left( {3\widehat i + 2\widehat j - \widehat k} \right)$$ and its projection on $$\overrightarrow a $$ is $${{17\sqrt 6 } \over 2}$$, then the value of $$|\overrightarrow x {|^2}$$ is equal to __________.
[]
null
486
Let, $$\overrightarrow x = k(\overrightarrow a + \lambda \overrightarrow b )$$<br><br>$$\overrightarrow x$$ is perpendicular to $$3\widehat i + 2\widehat j - \widehat k$$<br><br><b>I.</b> k{(2 + $$\lambda$$)3 + (2$$\lambda$$ $$-$$ 1)2 + (1 $$-$$ $$\lambda$$)($$-$$1) = 0<br><br>$$ \Rightarrow $$ 8$$\lambda$$ + 3 = 0<br><br>$$\lambda = {{ - 3} \over 8}$$<br><br><b>II.</b> Also projection of $$\overrightarrow x $$ on $$\overrightarrow a $$ is $${{17\sqrt 6 } \over 2}$$ therefore<br><br>$${{\overrightarrow x .\overrightarrow a } \over {|\overrightarrow a |}} = {{17\sqrt 6 } \over 2}$$<br><br>$$ \Rightarrow k\left\{ {{{(\overrightarrow a + \lambda \overrightarrow b ).\overrightarrow a } \over {\sqrt 6 }}} \right\} = {{17\sqrt 6 } \over 2}$$<br><br>$$ \Rightarrow k\left\{ {6 + \left( {{3 \over 8}} \right)} \right\} = {{17 \times 6} \over 2}$$<br><br>$$ \Rightarrow k = {{51} \over {51}} \times 8$$<br><br>k = 8<br><br>$$ \therefore $$ $$\overrightarrow x = 8\left( {{{13} \over 8}\widehat i - {{14} \over 8}\widehat j + {{11} \over 8}\widehat k} \right)$$<br><br>$$ = 13\widehat i - 14\widehat j + 11\widehat k$$<br><br>$$|\overrightarrow x {|^2} = 169 + 196 + 121 = 486$$
integer
jee-main-2021-online-17th-march-evening-shift
uSK38CUUVnLZXt4bdl1kmm3d8s3
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
In a triangle ABC, if $$|\overrightarrow {BC} | = 8,|\overrightarrow {CA} | = 7,|\overrightarrow {AB} | = 10$$, then the projection of the vector $$\overrightarrow {AB} $$ on $$\overrightarrow {AC} $$ is equal to :
[{"identifier": "A", "content": "$${{25} \\over 4}$$"}, {"identifier": "B", "content": "$${{127} \\over 20}$$"}, {"identifier": "C", "content": "$${{85} \\over 14}$$"}, {"identifier": "D", "content": "$${{115} \\over 16}$$"}]
["C"]
null
<picture><source media="(max-width: 1728px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266979/exam_images/tvnba426ygdio3l2ckwo.webp"><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264573/exam_images/vlfqrjsuvhpnf9m6eq5m.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263571/exam_images/xgrresfpuuu91hsf42u2.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263714/exam_images/pcdamphydbyvfwc6litj.webp"><source media="(max-width: 860px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265714/exam_images/qkbkis1tmtf62kwtxc59.webp"><source media="(max-width: 1040px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266498/exam_images/ejsakidefctwtpaxykbn.webp"><source media="(max-width: 1220px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266487/exam_images/hf9slgyute6ci2cnjkmc.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263298/exam_images/rovhevula1wlt2hu6mar.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 18th March Evening Shift Mathematics - Vector Algebra Question 137 English Explanation"></picture> <br>$$|\overrightarrow a | = 8,|\overrightarrow b | = 7,|\overrightarrow c | = 10$$<br><br>Projection of $$\overrightarrow {AB} $$ on $$\overrightarrow {AC} $$<br><br>= $$|\overrightarrow {AB} |cos\theta $$<br><br>$$ = 10\left( {{{|\overrightarrow {AB} {|^2} + |\overrightarrow {CA} {|^2} - |\overrightarrow {BC} {|^2}} \over {2.|\overrightarrow {CA} ||\overrightarrow {AB} {|}}}} \right)$$<br><br>$$ = 10\left( {{{{{10}^2} + {7^2} - {8^2}} \over {2(10)(7)}}} \right)$$<br><br>$$ = 10\left( {{{85} \over {140}}} \right)$$<br><br>$$ = {{85} \over {14}}$$
mcq
jee-main-2021-online-18th-march-evening-shift
1krq02yea
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle $$\theta$$, with the vector $$\overrightarrow a $$ + $$\overrightarrow b $$ + $$\overrightarrow c $$. Then 36cos<sup>2</sup>2$$\theta$$ is equal to ___________.
[]
null
4
$${\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \,.\,\overrightarrow b + \overrightarrow a \,.\,\overrightarrow c + \overrightarrow b \,.\,\overrightarrow c ) = 3$$<br><br>$$ \Rightarrow \left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 \overrightarrow a .(\overrightarrow a + \overrightarrow b + \overrightarrow c ) = \left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|\cos \theta $$<br><br>$$ \Rightarrow 1 = \sqrt 3 \cos \theta $$<br><br>$$ \Rightarrow \cos 2\theta = - {1 \over 3}$$<br><br>$$ \Rightarrow 36{\cos ^2}2\theta = 4$$
integer
jee-main-2021-online-20th-july-morning-shift
1krrv1lee
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
In a triangle ABC, if $$\left| {\overrightarrow {BC} } \right| = 3$$, $$\left| {\overrightarrow {CA} } \right| = 5$$ and $$\left| {\overrightarrow {BA} } \right| = 7$$, then the projection of the vector $$\overrightarrow {BA} $$ on $$\overrightarrow {BC} $$ is equal to :
[{"identifier": "A", "content": "$${{19} \\over 2}$$"}, {"identifier": "B", "content": "$${{13} \\over 2}$$"}, {"identifier": "C", "content": "$${{11} \\over 2}$$"}, {"identifier": "D", "content": "$${{15} \\over 2}$$"}]
["C"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264070/exam_images/ep6a24u2iigywhjyduzo.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 20th July Evening Shift Mathematics - Vector Algebra Question 131 English Explanation"> <br><br>Projection of $$\overrightarrow {BA} $$<br><br>on $${\overrightarrow {BC} }$$ is equal to <br><br>$$ = \left| {\overrightarrow {BA} } \right|\cos \angle ABC$$<br><br>$$ = 7\left| {{{{7^2} + {3^2} - {5^2}} \over {2 \times 7 \times 3}}} \right| = {{11} \over 2}$$
mcq
jee-main-2021-online-20th-july-evening-shift
1krrw91t0
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
For p &gt; 0, a vector $${\overrightarrow v _2} = 2\widehat i + (p + 1)\widehat j$$ is obtained by rotating the vector $${\overrightarrow v _1} = \sqrt 3 p\widehat i + \widehat j$$ by an angle $$\theta$$ about origin in counter clockwise direction. If $$\tan \theta = {{\left( {\alpha \sqrt 3 - 2} \right)} \over {\left( {4\sqrt 3 + 3} \right)}}$$, then the value of $$\alpha$$ is equal to _____________.
[]
null
6
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265929/exam_images/pfsd2oapdy3p6fqplgh1.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264150/exam_images/yosxjcnh7ins9tydvyvk.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263795/exam_images/vuqsv6zh5ecsiacx3auh.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 20th July Evening Shift Mathematics - Vector Algebra Question 132 English Explanation"></picture> <br><br>$$\left| {\overrightarrow {{V_1}} } \right| = \left| {\overrightarrow {{V_2}} } \right|$$<br><br>$$3{P^2} + 1 = 4 + {(P + 1)^2}$$<br><br>$$2{P^2} - 2P - 4 = 0 \Rightarrow {P^2} - P - 2 = 0$$<br><br>$$P = 2, - 1$$ (rejected)<br><br>$$\cos \theta = {{\overrightarrow {{V_1}} .\overrightarrow {{V_2}} } \over {\left| {\overrightarrow {{V_1}} } \right|\left| {\overrightarrow {{V_2}} } \right|}} = {{2\sqrt 3 P + (P + 1)} \over {\sqrt {{{(P + 1)}^2} + 4} \sqrt {3{P^2} + 1} }}$$<br><br>$$\cos \theta = {{4\sqrt 3 + 3} \over {\sqrt {13} \sqrt {13} }} = {{4\sqrt 3 + 3} \over {13}}$$<br><br>$$\tan \theta = {{\sqrt {112 - 24\sqrt 3 } } \over {4\sqrt 3 + 3}} = {{6\sqrt 3 - 2} \over {4\sqrt 3 + 3}} = {{\alpha \sqrt 3 - 2} \over {4\sqrt 3 + 3}}$$<br><br>$$ \Rightarrow \alpha = 6$$
integer
jee-main-2021-online-20th-july-evening-shift
1krzrafms
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
If $$\left( {\overrightarrow a + 3\overrightarrow b } \right)$$ is perpendicular to $$\left( {7\overrightarrow a - 5\overrightarrow b } \right)$$ and $$\left( {\overrightarrow a - 4\overrightarrow b } \right)$$ is perpendicular to $$\left( {7\overrightarrow a - 2\overrightarrow b } \right)$$, then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ (in degrees) is _______________.
[]
null
60
$$\left( {\overrightarrow a + 3\overrightarrow b } \right) \bot \left( {7\overrightarrow a - 5\overrightarrow b } \right)$$<br><br>$$ \therefore $$ $$\left( {\overrightarrow a + 3\overrightarrow b } \right)\,.\,\left( {7\overrightarrow a - 5\overrightarrow b } \right) = 0$$<br><br>$$ \Rightarrow $$ $$7{\left| {\overrightarrow a } \right|^2} - 15{\left| {\overrightarrow b } \right|^2} + 16\overrightarrow a \,.\,\overrightarrow b = 0$$ ....(1)<br><br>Also, $$\left( {\overrightarrow a - 4\overrightarrow b } \right)\,.\,\left( {7\overrightarrow a - 2\overrightarrow b } \right) = 0$$<br><br>$$ \Rightarrow $$ $$7{\left| {\overrightarrow a } \right|^2} + 8{\left| {\overrightarrow b } \right|^2} - 30\overrightarrow a \,.\,\overrightarrow b = 0$$ .....(2) <br><br>Equation (1) × 30 <br><br>$$210{\left| {\overrightarrow a } \right|^2} - 450{\left| {\overrightarrow b } \right|^2} + 480\overrightarrow a \,.\,\overrightarrow b = 0$$ ....(3) <br><br>Equation (2) × 16 <br><br>$$112{\left| {\overrightarrow a } \right|^2} + 128{\left| {\overrightarrow b } \right|^2} - 480\overrightarrow a \,.\,\overrightarrow b = 0$$ .....(4) <br><br>from (3) &amp; (4)<br><br>$$322{\left| {\overrightarrow a } \right|^2} = 322{\left| {\overrightarrow b } \right|^2}$$ <br><br>$$ \Rightarrow $$ $${\left| {\overrightarrow a } \right|^2} = {\left| {\overrightarrow b } \right|^2}$$ <br><br>$$ \Rightarrow $$ $$\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|$$ <br><br>From equation (2), <br><br>$$15\left| {\overrightarrow a } \right| = 30\overrightarrow a .\overrightarrow b $$ <br><br>$$ \Rightarrow $$ $$15{\left| {\overrightarrow a } \right|^2} = 30\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \theta $$ <br><br>$$\cos \theta = {{15} \over {30}} = {1 \over 2}$$<br><br>$$\therefore$$ $$\theta = 60^\circ $$
integer
jee-main-2021-online-25th-july-evening-shift
1ktd1se61
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
A hall has a square floor of dimension 10 m $$\times$$ 10 m (see the figure) and vertical walls. If the angle GPH between the diagonals AG and BH is $${\cos ^{ - 1}}{1 \over 5}$$, then the height of the hall (in meters) is :<br/><br/><img src=""/>
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "2$$\\sqrt {10} $$"}, {"identifier": "C", "content": "5$$\\sqrt {3} $$"}, {"identifier": "D", "content": "5$$\\sqrt {2} $$"}]
["D"]
null
$$A(\widehat j)\,.\,B(10\widehat i)$$<br><br>$$H(h\widehat j + 10\widehat k)$$<br><br>$$G(10\widehat i + h\widehat j + 10\widehat k)$$<br><br>$$\overrightarrow {AG} = 10\widehat i + h\widehat j + 10\widehat k$$<br><br>$$\overrightarrow {BH} = - 10\widehat i + h\widehat j + 10\widehat k$$<br><br>$$\cos \theta = {{\overrightarrow {AG} \overrightarrow {BH} } \over {\left| {\overrightarrow {AG} } \right|\left| {\overrightarrow {BH} } \right|}}$$<br><br>$${1 \over 5} = {{{h^2}} \over {{h^2} + 200}}$$<br><br>$$4{h^2} = 200 \Rightarrow h = 5\sqrt 2 $$
mcq
jee-main-2021-online-26th-august-evening-shift
1ktd3i9x4
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
If the projection of the vector $$\widehat i + 2\widehat j + \widehat k$$ on the sum of the two vectors $$2\widehat i + 4\widehat j - 5\widehat k$$ and $$ - \lambda \widehat i + 2\widehat j + 3\widehat k$$ is 1, then $$\lambda$$ is equal to __________.
[]
null
5
$$\overrightarrow a = \widehat i + 2\widehat j + \widehat k$$<br><br>$$\overrightarrow b = (2 - \lambda )\widehat i + 6\widehat j - 2\widehat k$$<br><br>$${{\overrightarrow a \,.\,\overrightarrow b } \over {|\overrightarrow b |}} = 1,\overrightarrow a \,.\,\overrightarrow b = 12 - \lambda $$<br><br>$$\left( {\overrightarrow a \,.\,\overrightarrow b } \right) = |\overrightarrow b {|^2}$$<br><br>$$\lambda$$<sup>2</sup> $$-$$ 24$$\lambda$$ + 144 = $$\lambda$$<sup>2</sup> $$-$$ 4$$\lambda$$ + 4 + 40<br><br>20$$\lambda$$ = 100 $$\Rightarrow$$ $$\lambda$$ = 5
integer
jee-main-2021-online-26th-august-evening-shift
1ktip5iva
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two vectors <br/>such that $$\left| {2\overrightarrow a + 3\overrightarrow b } \right| = \left| {3\overrightarrow a + \overrightarrow b } \right|$$ and the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is 60$$^\circ$$. If $${1 \over 8}\overrightarrow a $$ is a unit vector, then $$\left| {\overrightarrow b } \right|$$ is equal to :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "8"}]
["C"]
null
$${\left| {3\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {2\overrightarrow a + 3\overrightarrow b } \right|^2}$$<br><br>$$\left( {3\overrightarrow a + \overrightarrow b } \right).\left( {3\overrightarrow a + \overrightarrow b } \right) = \left( {2\overrightarrow a + 3\overrightarrow b } \right).\left( {2\overrightarrow a + 3\overrightarrow b } \right)$$<br><br>$$9\overrightarrow a .\,\overrightarrow a + 6\overrightarrow a \,.\,\overrightarrow b + \overrightarrow b \,.\,\overrightarrow b = 4\overrightarrow a \,.\,\overrightarrow a + 12\overrightarrow a \,.\,\overrightarrow b + 9\overrightarrow b \,.\,\overrightarrow b $$<br><br>$$5{\left| {\overrightarrow a } \right|^2} - 6\overrightarrow a \,.\,\overrightarrow b = 8{\left| {\overrightarrow b } \right|^2}$$<br><br>$$5{(8)^2} - 6.8\,.\,\left| {\overrightarrow b } \right|\cos 60^\circ = 8{\left| {\overrightarrow b } \right|^2}$$ $$\because$$ $$\left( \matrix{ {1 \over 8}\left| {\overrightarrow a } \right| = 1 \hfill \cr \Rightarrow \left| {\overrightarrow a } \right| = 8 \hfill \cr} \right)$$<br><br>$$40 - 3\left| {\overrightarrow b } \right| = {\left| {\overrightarrow b } \right|^2}$$<br><br>$$ \Rightarrow {\left| {\overrightarrow b } \right|^2} + 3\left| {\overrightarrow b } \right| - 40 = 0$$<br><br>$$\left| {\overrightarrow b } \right| = - 8$$, $$\left| {\overrightarrow b } \right| = 5$$<br><br>(rejected)
mcq
jee-main-2021-online-31st-august-morning-shift
1l5ainfwa
maths
vector-algebra
scalar-or-dot-product-of-two-vectors-and-its-applications
<p>Let $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$$ $${a_i} &gt; 0$$, $$i = 1,2,3$$ be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of $$\overrightarrow a $$ on the vector $$3\widehat i + 4\widehat j$$ be 7. Let $$\overrightarrow b $$ be a vector obtained by rotating $$\overrightarrow a $$ with 90$$^\circ$$. If $$\overrightarrow a $$, $$\overrightarrow b $$ and x-axis are coplanar, then projection of a vector $$\overrightarrow b $$ on $$3\widehat i + 4\widehat j$$ is equal to:</p>
[{"identifier": "A", "content": "$$\\sqrt 7 $$"}, {"identifier": "B", "content": "$$\\sqrt 2 $$"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "7"}]
["B"]
null
<p>$${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1 \Rightarrow {\cos ^2}\alpha = {1 \over 3} \Rightarrow \cos \alpha = {1 \over {\sqrt 3 }}$$</p> <p>$$\overrightarrow a = {\lambda \over 3}(\widehat i + \widehat j + \widehat k),\,\lambda > 0$$</p> <p>$${\lambda \over {\sqrt 3 }}{{(\widehat i + \widehat j + \widehat k)\,.\,(3\widehat i + 4\widehat j)} \over {\sqrt {{3^2} + {4^2}} }} = 7$$</p> <p>$$ \Rightarrow {\lambda \over {\sqrt 3 }}(3 + 4) = 7 \times 5$$</p> <p>$$\therefore$$ $$\lambda = 5\sqrt 3 $$</p> <p>$$\overrightarrow a = 5(\widehat i + \widehat j + \widehat k)$$</p> <p>Let $$\overrightarrow b = p\widehat i + q\widehat j + r\widehat k$$</p> <p>$$\overrightarrow a \,.\,\overrightarrow b = 0$$ and $$[\overrightarrow a \,\overrightarrow b \,\widehat i] = 0$$</p> <p>$$ \Rightarrow p + q + r = 0$$ ..... (i)</p> <p>& $$\left| {\matrix{ p & q & r \cr 1 & 1 & 1 \cr 1 & 0 & 0 \cr } } \right| = 0 \Rightarrow \matrix{ {q = r} \cr {p = - 2r} \cr } $$</p> <p>$$\overrightarrow b = - 2r\widehat i + r\widehat j + r\widehat k$$</p> <p>$$\overrightarrow b = r( - 2\widehat i + \widehat j + \widehat k)$$</p> <p>Now $$\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|$$</p> <p>$$5\sqrt 3 = \left| r \right|\sqrt b \Rightarrow \left| r \right| = {5 \over {\sqrt 2 }}$$</p> <p>$$\Rightarrow$$ Projection of $$\overrightarrow b $$ on $$3\widehat i + 4\widehat j = \left| {{{\overrightarrow b \,.\,\left( {3\widehat i + 4\widehat j} \right)} \over {\sqrt {{3^2} + {4^2}} }}} \right|$$</p> <p>$$ = \left| r \right|{{( - 6 + 4)} \over 5} = \left| {{{ - 2r} \over 5}} \right|$$</p> <p>Projection $$ = {2 \over 5} \times {5 \over {\sqrt 2 }} = \sqrt 2 $$</p> <p>$$\therefore$$ B is correct.</p>
mcq
jee-main-2022-online-25th-june-morning-shift