unique_id
stringlengths
36
36
formatted_question
stringlengths
59
502
correct_answer
int64
1
17.3k
topic
float64
option_1
stringlengths
1
54
option_2
stringlengths
1
53
option_3
stringlengths
1
55
option_4
stringlengths
1
54
question_type
stringclasses
2 values
87d55516-470a-4c57-9713-3f320ed53247
Let $L_1 : \frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{4}$ and $L_2 : \frac{x+1}{2} = \frac{y-2}{3} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $|5\alpha - 11\beta - 8\gamma|$ equals:
3
null
20
18
25
16
MCQ
f131eebf-78ee-4273-b473-b776fb3280b4
Let $M$ and $m$ respectively be the maximum and the minimum values of \[ f(x) = \begin{bmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 4x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 4x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 4x \end{bmatrix}, x \in \mathbb{R} \] Then $M^4 - m^4$ is equal to:
1
null
1280
1295
1215
1040
MCQ
cbc72177-b566-4494-87df-ab52acb84bfc
Let \( ABC \) be a triangle formed by the lines \( 7x - 6y + 3 = 0, x + 2y - 31 = 0 \) and \( 9x - 2y - 19 = 0 \). Let the point \((h, k)\) be the image of the centroid of \( \Delta ABC \) in the line \( 3x + 6y - 53 = 0 \). Then \( h^2 + k^2 + hk \) is equal to:
2
null
47
36
47
40
MCQ
68edd102-6049-4277-a9d4-e831373e20f9
The value of \( \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{k^4 + 4k^2 + 11k + 5}{(k+3)!} \right) \) is:
4
null
4/3
2
7/3
5/3
MCQ
284e0696-65cb-4558-a145-131420581840
The least value of \( n \) for which the number of integral terms in the Binomial expansion of \( (\sqrt{7} + \sqrt{11})^n \) is 183, is:
1
null
2184
2196
2148
2172
MCQ
7547e409-5d97-4179-9041-5f85e5a66c5e
Let \( y = y(x) \) be the solution of the differential equation \[ \cos x \left( \log_e (\cos x) \right)^2 dy + (\sin x - 3y \sin x \log_e (\cos x)) dx = 0, \quad x \in \left( 0, \frac{\pi}{2} \right).\] If \( y \left( \frac{\pi}{6} \right) = \frac{-1}{\log_2 2} \), then \( y \left( \frac{\pi}{8} \right) \) is equal to:
1
null
\frac{1}{\log_2 (5) - \log_2 (4)}
\frac{2}{\log_2 (3) - \log_2 (4)}
\frac{1}{\log_2 (4) - \log_2 (3)}
\frac{1}{\log_2 (4)}
MCQ
d87ae9e7-3636-4854-a874-65795666e575
Let the line \( x + y = 1 \) meet the circle \( x^2 + y^2 = 4 \) at the points A and B. If the line perpendicular to AB and passing through the mid point of the chord AB intersects the circle at C and D, then the area of the quadrilateral ADBC is equal to:
3
null
\sqrt{14}
3\sqrt{7}
2\sqrt{14}
5\sqrt{7}
MCQ
dd7bf750-08ca-4eee-8b1b-3aa7880e708f
Let the area of the region $ \{(x, y) : 2y \leq x^2 + 3, \quad y \geq |x|, \quad |y| \leq |x - 1|\} $ be A. Then $ 6A $ is equal to:
3
null
$16$
$12$
$14$
$18$
MCQ
92a4b8da-f6bb-4de1-b0cb-e42c14b3dcd6
Let \( S = \{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \} \), where \( A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \). Then \( n(S) \) is equal to ______.
2
null
6
2
0
1
MCQ