Dataset Viewer (First 5GB)
Auto-converted to Parquet
text
stringlengths
11
16
0 0 251 0 0
1 1 252 0 0
2 1 251 0 0
3 1 251 0 0
4 1 251 0 0
5 1 251 0 0
6 1 251 0 0
1 1 251 0 0
6 0 253 0 0
6 0 254 0 0
7 2 255 0 0
8 0 256 0 0
6 1 252 0 0
9 0 256 0 0
10 0 256 0 0
4 0 256 0 0
0 0 256 0 0
11 0 256 0 0
6 0 256 0 0
1 0 256 0 0
12 0 256 0 0
13 0 256 0 0
14 0 256 0 0
15 0 256 0 0
6 0 254 0 0
2 0 256 0 0
5 1 252 0 0
4 1 252 0 0
3 1 252 0 0
6 1 257 0 0
0 1 257 0 0
2 0 256 0 0
16 0 256 0 0
11 0 256 0 0
6 0 256 0 0
1 0 256 0 0
15 0 256 0 0
17 0 258 0 0
7 0 258 0 0
6 0 258 0 0
18 0 258 0 0
2 1 259 0 0
3 1 259 0 0
4 1 259 0 0
5 1 259 0 0
6 1 259 0 0
1 1 259 0 0
2 1 260 0 0
3 1 260 0 0
4 1 260 0 0
5 1 260 0 0
6 1 260 0 0
1 1 260 0 0
2 1 252 0 0
19 0 261 0 0
0 1 262 0 0
4 0 261 0 0
19 0 263 0 0
1 0 264 0 0
20 0 264 0 0
6 0 265 0 0
10 2 253 0 0
5 2 253 0 0
21 2 253 0 0
22 2 253 0 0
6 2 253 0 0
1 2 253 0 0
11 2 260 0 0
6 2 266 0 0
6 0 264 0 0
23 0 267 0 0
24 0 267 0 0
4 0 267 0 0
23 0 268 0 0
6 0 268 0 0
24 0 268 0 0
4 0 268 0 0
23 0 259 0 0
6 0 259 0 0
24 0 259 0 0
4 0 259 0 0
6 1 254 0 0
6 0 267 0 0
5 0 264 0 0
25 0 264 0 0
20 0 253 0 0
4 0 263 0 0
0 0 263 0 0
2 0 269 0 0
16 0 269 0 0
26 0 269 0 0
6 0 269 0 0
1 0 269 0 0
20 0 269 0 0
6 3 270 0 0
6 0 254 0 0
6 0 271 0 0
6 2 272 0 0
6 0 273 0 0
26 0 273 0 0
End of preview. Expand in Data Studio

GDELT-big

Description

GDELT-big is a Temporal Knowledge Graph (TKG) dataset following a format compatible with FinDKG and RE-GCN.

Compared to the datasets used by FinDKG (FinDKG, FinDKG-full) and RE-GCN (ICEWS18, ICEWS14, ICEWS05-15, GDELT), GDELT-big offers superior graph density (in regards to the number edges per node and timestep) and covers a much longer time span. See below table for key characteristics:

ICEWS18 ICEWS14s ICEWS05-15 GDELT FinDKG FinDKG-full GDELT-big
Entities 23033 7128 10488 7691 13645 13645 1302
Edge Types 256 230 251 240 15 15 5
No. Edges (Train) 373018 74845 368868 1734399 119549 222732 388876937
No. Edges (Val) 45995 8514 46302 238765 11444 9404 48609616
No. Edges (Test) 49545 7371 46159 305241 13069 10013 48609617
No. Timesteps (Train) 240 304 3243 2138 100 234 483
No. Timesteps (Val) 30 30 404 265 13 13 78
No. Timesteps (Test) 34 31 370 348 13 14 68
No. Edges/Timestep 1541 249 115 828 1143 928 772808
Timestep Resolution 24 hours 24 hours 24 hours 15 min 1 week 1 week 1 week

GDELT-big is assembled from the GDELT 1.0 Global Knowledge Graph (GKG) data stream, and spans the period 2013-04-01 to 2025-04-14, with entity relations aggregated per week (time2id refers to the Monday of each such week). It is chronologically split into training, validation, and testing, similarly to the above mentioned datasets. Its entities are extracted from a pre-defined list of nations and Fortune 500 companies.

GDELT-big was created primarily due to the relative sparsity of existing TKG datasets. Of the other datasets listed in the above table, on average, less than 7% of all nodes have a degree > 0 in any randomly selected timestep. For GDELT-big, this value is 22%. As such, the nodes in GDELT-big are far more interconnected than in previously available datasets.

Key Features

  • Extensive Coverage: The dataset spans 12 years, offering broad insights into how the news landscape for the specific entities evolve over time.
  • Superior Density: The TKG has far more edges per node in each timestep, enabling new insights to be drawn from TKG predictions.
  • Time-Series Analysis Ready: The dataset is provided in a format compatible with previous research in the area.

Citation

If you use the GDELT-big dataset in your research, please cite our work as follows:

http://hdl.handle.net/20.500.12380/309518

@blomhelgesson{BlomHelgesson2025,
  author    = {Blom, Axel and Helgesson, Andreas},
  title     = {Financial News Event Prediction Using Temporal Knowledge Graphs},
  school    = {Chalmers University of Technology},
  year      = {2025},
  month     = {June},
  type      = {Master's Thesis in Data Science \& AI},
  note      = {Department of Mathematical Sciences}
}

License

This dataset is available under the Creative Commons Attribution 4.0 International (CC BY-4.0) license.

Task Categories

  • Time-Series Forecasting
  • Temporal Knowledge Graph Forecasting

Language

  • English (en)

Tags

  • Finance
  • Temporal Knowledge Graph
  • Dynamic Knowledge Graph
  • TKG
  • DKG

Pretty Name

GDELT-big: A Denser News TKG

Downloads last month
41