id
int64
0
7.97k
query
stringlengths
1.23k
1.26k
answer
stringclasses
2 values
choices
sequencelengths
2
2
gold
int64
0
1
text
stringlengths
374
399
7,900
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.917, V2: -0.044, V3: -2.009, V4: 0.694, V5: 0.150, V6: -1.590, V7: 0.519, V8: -0.374, V9: 0.759, V10: -0.556, V11: -0.658, V12: -0.505, V13: -1.553, V14: -0.469, V15: 0.299, V16: -0.101, V17: 0.819, V18: 0.096, V19: -0.026, V20: -0.168, V21: -0.140, V22: -0.432, V23: 0.080, V24: -0.094, V25: 0.080, V26: -0.382, V27: -0.035, V28: -0.023, Amount: 76.430.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.917, V2: -0.044, V3: -2.009, V4: 0.694, V5: 0.150, V6: -1.590, V7: 0.519, V8: -0.374, V9: 0.759, V10: -0.556, V11: -0.658, V12: -0.505, V13: -1.553, V14: -0.469, V15: 0.299, V16: -0.101, V17: 0.819, V18: 0.096, V19: -0.026, V20: -0.168, V21: -0.140, V22: -0.432, V23: 0.080, V24: -0.094, V25: 0.080, V26: -0.382, V27: -0.035, V28: -0.023, Amount: 76.430.
7,901
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.067, V2: 0.367, V3: -2.458, V4: 0.254, V5: 1.003, V6: -1.070, V7: 0.663, V8: -0.355, V9: -0.419, V10: -0.121, V11: 1.579, V12: 0.952, V13: 0.443, V14: -0.393, V15: -0.290, V16: 0.160, V17: 0.367, V18: 0.191, V19: 0.002, V20: -0.117, V21: 0.074, V22: 0.294, V23: 0.043, V24: 0.681, V25: 0.229, V26: 0.563, V27: -0.103, V28: -0.056, Amount: 4.940.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.067, V2: 0.367, V3: -2.458, V4: 0.254, V5: 1.003, V6: -1.070, V7: 0.663, V8: -0.355, V9: -0.419, V10: -0.121, V11: 1.579, V12: 0.952, V13: 0.443, V14: -0.393, V15: -0.290, V16: 0.160, V17: 0.367, V18: 0.191, V19: 0.002, V20: -0.117, V21: 0.074, V22: 0.294, V23: 0.043, V24: 0.681, V25: 0.229, V26: 0.563, V27: -0.103, V28: -0.056, Amount: 4.940.
7,902
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.410, V2: -1.687, V3: 2.106, V4: 0.000, V5: -1.980, V6: 1.103, V7: -0.326, V8: 0.853, V9: 1.287, V10: -1.214, V11: -0.394, V12: 0.424, V13: -1.186, V14: -0.784, V15: -1.961, V16: 0.213, V17: 0.273, V18: 0.689, V19: 1.291, V20: -0.256, V21: 0.077, V22: 0.790, V23: 0.978, V24: 0.109, V25: 0.115, V26: 1.657, V27: 0.067, V28: -0.176, Amount: 304.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.410, V2: -1.687, V3: 2.106, V4: 0.000, V5: -1.980, V6: 1.103, V7: -0.326, V8: 0.853, V9: 1.287, V10: -1.214, V11: -0.394, V12: 0.424, V13: -1.186, V14: -0.784, V15: -1.961, V16: 0.213, V17: 0.273, V18: 0.689, V19: 1.291, V20: -0.256, V21: 0.077, V22: 0.790, V23: 0.978, V24: 0.109, V25: 0.115, V26: 1.657, V27: 0.067, V28: -0.176, Amount: 304.490.
7,903
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.908, V2: -2.093, V3: -2.965, V4: 0.700, V5: 1.818, V6: 3.911, V7: 0.071, V8: 0.733, V9: 0.435, V10: 0.013, V11: -0.289, V12: 0.272, V13: -0.079, V14: 0.496, V15: 0.586, V16: -0.137, V17: -0.569, V18: 0.184, V19: -0.908, V20: 0.943, V21: 0.740, V22: 1.000, V23: -0.558, V24: 0.773, V25: 0.243, V26: -0.284, V27: -0.062, V28: 0.041, Amount: 564.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.908, V2: -2.093, V3: -2.965, V4: 0.700, V5: 1.818, V6: 3.911, V7: 0.071, V8: 0.733, V9: 0.435, V10: 0.013, V11: -0.289, V12: 0.272, V13: -0.079, V14: 0.496, V15: 0.586, V16: -0.137, V17: -0.569, V18: 0.184, V19: -0.908, V20: 0.943, V21: 0.740, V22: 1.000, V23: -0.558, V24: 0.773, V25: 0.243, V26: -0.284, V27: -0.062, V28: 0.041, Amount: 564.000.
7,904
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.738, V2: 0.270, V3: 0.605, V4: -0.613, V5: -0.066, V6: 1.574, V7: 0.018, V8: 0.890, V9: 0.278, V10: -0.866, V11: -0.407, V12: 0.114, V13: -0.276, V14: 0.369, V15: 2.046, V16: -0.519, V17: 0.575, V18: -1.246, V19: -0.696, V20: -0.597, V21: -0.075, V22: -0.226, V23: -0.386, V24: -0.340, V25: -0.058, V26: -0.275, V27: -0.863, V28: -0.268, Amount: 124.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.738, V2: 0.270, V3: 0.605, V4: -0.613, V5: -0.066, V6: 1.574, V7: 0.018, V8: 0.890, V9: 0.278, V10: -0.866, V11: -0.407, V12: 0.114, V13: -0.276, V14: 0.369, V15: 2.046, V16: -0.519, V17: 0.575, V18: -1.246, V19: -0.696, V20: -0.597, V21: -0.075, V22: -0.226, V23: -0.386, V24: -0.340, V25: -0.058, V26: -0.275, V27: -0.863, V28: -0.268, Amount: 124.220.
7,905
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.873, V2: 2.475, V3: -0.131, V4: -0.638, V5: -0.313, V6: -0.316, V7: 0.049, V8: 0.744, V9: 0.545, V10: 1.890, V11: 0.644, V12: 0.999, V13: 0.846, V14: 0.038, V15: 0.230, V16: 0.638, V17: -0.831, V18: 0.253, V19: 0.429, V20: 0.728, V21: -0.450, V22: -0.707, V23: 0.125, V24: -0.522, V25: 0.321, V26: 0.111, V27: 0.522, V28: 0.171, Amount: 8.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.873, V2: 2.475, V3: -0.131, V4: -0.638, V5: -0.313, V6: -0.316, V7: 0.049, V8: 0.744, V9: 0.545, V10: 1.890, V11: 0.644, V12: 0.999, V13: 0.846, V14: 0.038, V15: 0.230, V16: 0.638, V17: -0.831, V18: 0.253, V19: 0.429, V20: 0.728, V21: -0.450, V22: -0.707, V23: 0.125, V24: -0.522, V25: 0.321, V26: 0.111, V27: 0.522, V28: 0.171, Amount: 8.920.
7,906
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.881, V2: 1.971, V3: 1.886, V4: -0.087, V5: -1.300, V6: -0.302, V7: -0.008, V8: 0.111, V9: 1.501, V10: 1.375, V11: -0.466, V12: 0.218, V13: -0.096, V14: -1.001, V15: 0.174, V16: -0.226, V17: -0.049, V18: -0.281, V19: -0.006, V20: 0.336, V21: -0.105, V22: 0.034, V23: -0.199, V24: 0.742, V25: 0.205, V26: 0.175, V27: -1.218, V28: -0.452, Amount: 20.240.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.881, V2: 1.971, V3: 1.886, V4: -0.087, V5: -1.300, V6: -0.302, V7: -0.008, V8: 0.111, V9: 1.501, V10: 1.375, V11: -0.466, V12: 0.218, V13: -0.096, V14: -1.001, V15: 0.174, V16: -0.226, V17: -0.049, V18: -0.281, V19: -0.006, V20: 0.336, V21: -0.105, V22: 0.034, V23: -0.199, V24: 0.742, V25: 0.205, V26: 0.175, V27: -1.218, V28: -0.452, Amount: 20.240.
7,907
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.342, V2: -0.511, V3: 0.466, V4: -0.431, V5: -0.924, V6: -0.593, V7: -0.483, V8: -0.127, V9: -0.631, V10: 0.448, V11: 0.004, V12: 0.147, V13: 0.532, V14: -0.483, V15: -0.405, V16: 0.054, V17: 1.082, V18: -2.383, V19: 0.452, V20: 0.034, V21: 0.107, V22: 0.485, V23: -0.039, V24: 0.473, V25: 0.592, V26: -0.138, V27: 0.027, V28: 0.009, Amount: 7.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.342, V2: -0.511, V3: 0.466, V4: -0.431, V5: -0.924, V6: -0.593, V7: -0.483, V8: -0.127, V9: -0.631, V10: 0.448, V11: 0.004, V12: 0.147, V13: 0.532, V14: -0.483, V15: -0.405, V16: 0.054, V17: 1.082, V18: -2.383, V19: 0.452, V20: 0.034, V21: 0.107, V22: 0.485, V23: -0.039, V24: 0.473, V25: 0.592, V26: -0.138, V27: 0.027, V28: 0.009, Amount: 7.950.
7,908
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.531, V2: 0.249, V3: -0.071, V4: 0.430, V5: 2.652, V6: 3.575, V7: 0.032, V8: 0.877, V9: -0.998, V10: -0.008, V11: -0.121, V12: -0.370, V13: 0.076, V14: 0.534, V15: 1.920, V16: -0.335, V17: -0.273, V18: 0.687, V19: 1.786, V20: 0.542, V21: 0.097, V22: -0.054, V23: -0.112, V24: 1.008, V25: 0.660, V26: -0.028, V27: 0.002, V28: 0.010, Amount: 78.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.531, V2: 0.249, V3: -0.071, V4: 0.430, V5: 2.652, V6: 3.575, V7: 0.032, V8: 0.877, V9: -0.998, V10: -0.008, V11: -0.121, V12: -0.370, V13: 0.076, V14: 0.534, V15: 1.920, V16: -0.335, V17: -0.273, V18: 0.687, V19: 1.786, V20: 0.542, V21: 0.097, V22: -0.054, V23: -0.112, V24: 1.008, V25: 0.660, V26: -0.028, V27: 0.002, V28: 0.010, Amount: 78.000.
7,909
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.957, V2: -0.070, V3: -0.740, V4: 0.341, V5: -0.402, V6: -0.899, V7: -0.324, V8: -0.160, V9: 1.083, V10: -0.761, V11: -0.140, V12: 0.989, V13: 1.308, V14: -1.537, V15: 0.714, V16: 0.490, V17: 0.435, V18: 0.021, V19: -0.237, V20: -0.073, V21: -0.232, V22: -0.467, V23: 0.349, V24: -0.109, V25: -0.478, V26: -0.286, V27: 0.033, V28: -0.004, Amount: 20.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.957, V2: -0.070, V3: -0.740, V4: 0.341, V5: -0.402, V6: -0.899, V7: -0.324, V8: -0.160, V9: 1.083, V10: -0.761, V11: -0.140, V12: 0.989, V13: 1.308, V14: -1.537, V15: 0.714, V16: 0.490, V17: 0.435, V18: 0.021, V19: -0.237, V20: -0.073, V21: -0.232, V22: -0.467, V23: 0.349, V24: -0.109, V25: -0.478, V26: -0.286, V27: 0.033, V28: -0.004, Amount: 20.000.
7,910
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.134, V2: -0.131, V3: 1.508, V4: 1.225, V5: -1.104, V6: -0.063, V7: -0.809, V8: 0.162, V9: -0.451, V10: 0.699, V11: 0.117, V12: -0.033, V13: 0.468, V14: -0.323, V15: 1.053, V16: 1.333, V17: -0.262, V18: -1.094, V19: -1.364, V20: 0.007, V21: 0.041, V22: 0.034, V23: 0.236, V24: 0.538, V25: -0.558, V26: 2.993, V27: -0.179, V28: -0.001, Amount: 18.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.134, V2: -0.131, V3: 1.508, V4: 1.225, V5: -1.104, V6: -0.063, V7: -0.809, V8: 0.162, V9: -0.451, V10: 0.699, V11: 0.117, V12: -0.033, V13: 0.468, V14: -0.323, V15: 1.053, V16: 1.333, V17: -0.262, V18: -1.094, V19: -1.364, V20: 0.007, V21: 0.041, V22: 0.034, V23: 0.236, V24: 0.538, V25: -0.558, V26: 2.993, V27: -0.179, V28: -0.001, Amount: 18.900.
7,911
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.058, V2: 0.507, V3: 1.938, V4: 1.252, V5: 0.062, V6: 2.617, V7: -0.701, V8: 1.425, V9: 0.179, V10: -0.889, V11: 0.980, V12: 1.516, V13: -0.827, V14: -0.083, V15: -1.412, V16: -2.156, V17: 1.907, V18: -1.989, V19: 0.102, V20: -0.260, V21: -0.120, V22: 0.020, V23: 0.110, V24: -1.033, V25: -0.523, V26: -0.384, V27: 0.141, V28: 0.042, Amount: 14.180.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.058, V2: 0.507, V3: 1.938, V4: 1.252, V5: 0.062, V6: 2.617, V7: -0.701, V8: 1.425, V9: 0.179, V10: -0.889, V11: 0.980, V12: 1.516, V13: -0.827, V14: -0.083, V15: -1.412, V16: -2.156, V17: 1.907, V18: -1.989, V19: 0.102, V20: -0.260, V21: -0.120, V22: 0.020, V23: 0.110, V24: -1.033, V25: -0.523, V26: -0.384, V27: 0.141, V28: 0.042, Amount: 14.180.
7,912
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.967, V2: -0.030, V3: -1.985, V4: 1.092, V5: 0.827, V6: -0.160, V7: 0.432, V8: -0.085, V9: 0.145, V10: 0.442, V11: 0.089, V12: 0.162, V13: -1.481, V14: 0.942, V15: -1.001, V16: -0.320, V17: -0.496, V18: 0.179, V19: 0.249, V20: -0.261, V21: 0.070, V22: 0.227, V23: -0.048, V24: 0.193, V25: 0.454, V26: -0.512, V27: -0.038, V28: -0.067, Amount: 39.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.967, V2: -0.030, V3: -1.985, V4: 1.092, V5: 0.827, V6: -0.160, V7: 0.432, V8: -0.085, V9: 0.145, V10: 0.442, V11: 0.089, V12: 0.162, V13: -1.481, V14: 0.942, V15: -1.001, V16: -0.320, V17: -0.496, V18: 0.179, V19: 0.249, V20: -0.261, V21: 0.070, V22: 0.227, V23: -0.048, V24: 0.193, V25: 0.454, V26: -0.512, V27: -0.038, V28: -0.067, Amount: 39.900.
7,913
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.215, V2: 0.709, V3: 1.132, V4: 1.173, V5: 0.779, V6: 1.769, V7: 0.114, V8: 0.605, V9: -0.893, V10: 0.081, V11: 2.169, V12: 0.833, V13: -0.155, V14: 0.706, V15: 1.994, V16: -1.695, V17: 1.081, V18: -1.107, V19: 0.054, V20: -0.007, V21: 0.406, V22: 1.383, V23: 0.050, V24: -0.989, V25: -0.984, V26: -0.086, V27: 0.305, V28: 0.179, Amount: 14.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.215, V2: 0.709, V3: 1.132, V4: 1.173, V5: 0.779, V6: 1.769, V7: 0.114, V8: 0.605, V9: -0.893, V10: 0.081, V11: 2.169, V12: 0.833, V13: -0.155, V14: 0.706, V15: 1.994, V16: -1.695, V17: 1.081, V18: -1.107, V19: 0.054, V20: -0.007, V21: 0.406, V22: 1.383, V23: 0.050, V24: -0.989, V25: -0.984, V26: -0.086, V27: 0.305, V28: 0.179, Amount: 14.900.
7,914
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.846, V2: 0.316, V3: 0.126, V4: 3.926, V5: 0.090, V6: 0.782, V7: -0.622, V8: 0.126, V9: 0.941, V10: 1.015, V11: -0.494, V12: -2.873, V13: 1.696, V14: 1.249, V15: -1.012, V16: 1.229, V17: -0.257, V18: 0.417, V19: -2.057, V20: -0.256, V21: 0.112, V22: 0.586, V23: 0.161, V24: 0.526, V25: -0.185, V26: 0.038, V27: -0.022, V28: -0.031, Amount: 26.970.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.846, V2: 0.316, V3: 0.126, V4: 3.926, V5: 0.090, V6: 0.782, V7: -0.622, V8: 0.126, V9: 0.941, V10: 1.015, V11: -0.494, V12: -2.873, V13: 1.696, V14: 1.249, V15: -1.012, V16: 1.229, V17: -0.257, V18: 0.417, V19: -2.057, V20: -0.256, V21: 0.112, V22: 0.586, V23: 0.161, V24: 0.526, V25: -0.185, V26: 0.038, V27: -0.022, V28: -0.031, Amount: 26.970.
7,915
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.342, V2: -0.538, V3: 0.179, V4: -0.547, V5: -1.050, V6: -1.135, V7: -0.295, V8: -0.278, V9: -0.890, V10: 0.693, V11: -0.562, V12: -0.345, V13: -0.022, V14: 0.225, V15: 0.886, V16: -1.310, V17: 0.002, V18: 0.920, V19: -0.765, V20: -0.431, V21: -0.371, V22: -0.672, V23: 0.020, V24: 0.415, V25: 0.253, V26: 1.038, V27: -0.074, V28: 0.010, Amount: 40.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.342, V2: -0.538, V3: 0.179, V4: -0.547, V5: -1.050, V6: -1.135, V7: -0.295, V8: -0.278, V9: -0.890, V10: 0.693, V11: -0.562, V12: -0.345, V13: -0.022, V14: 0.225, V15: 0.886, V16: -1.310, V17: 0.002, V18: 0.920, V19: -0.765, V20: -0.431, V21: -0.371, V22: -0.672, V23: 0.020, V24: 0.415, V25: 0.253, V26: 1.038, V27: -0.074, V28: 0.010, Amount: 40.900.
7,916
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.987, V2: -0.313, V3: -2.057, V4: 0.304, V5: 0.535, V6: -0.632, V7: 0.460, V8: -0.282, V9: 0.528, V10: 0.089, V11: -1.422, V12: -0.310, V13: -0.925, V14: 0.573, V15: -0.213, V16: -0.413, V17: -0.153, V18: -0.624, V19: 0.297, V20: -0.115, V21: -0.034, V22: -0.114, V23: 0.012, V24: 0.307, V25: 0.188, V26: 0.554, V27: -0.118, V28: -0.065, Amount: 75.130.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.987, V2: -0.313, V3: -2.057, V4: 0.304, V5: 0.535, V6: -0.632, V7: 0.460, V8: -0.282, V9: 0.528, V10: 0.089, V11: -1.422, V12: -0.310, V13: -0.925, V14: 0.573, V15: -0.213, V16: -0.413, V17: -0.153, V18: -0.624, V19: 0.297, V20: -0.115, V21: -0.034, V22: -0.114, V23: 0.012, V24: 0.307, V25: 0.188, V26: 0.554, V27: -0.118, V28: -0.065, Amount: 75.130.
7,917
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.502, V2: -0.424, V3: 0.763, V4: 3.701, V5: -0.316, V6: 1.055, V7: -0.082, V8: 0.353, V9: -1.134, V10: 1.222, V11: 0.680, V12: -0.311, V13: -1.072, V14: 0.557, V15: 0.147, V16: 1.395, V17: -0.925, V18: 0.424, V19: -1.778, V20: 0.338, V21: 0.356, V22: 0.257, V23: -0.302, V24: -0.335, V25: 0.203, V26: 0.097, V27: -0.039, V28: 0.064, Amount: 291.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.502, V2: -0.424, V3: 0.763, V4: 3.701, V5: -0.316, V6: 1.055, V7: -0.082, V8: 0.353, V9: -1.134, V10: 1.222, V11: 0.680, V12: -0.311, V13: -1.072, V14: 0.557, V15: 0.147, V16: 1.395, V17: -0.925, V18: 0.424, V19: -1.778, V20: 0.338, V21: 0.356, V22: 0.257, V23: -0.302, V24: -0.335, V25: 0.203, V26: 0.097, V27: -0.039, V28: 0.064, Amount: 291.950.
7,918
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.375, V2: 0.505, V3: 1.401, V4: -0.066, V5: 0.148, V6: 0.756, V7: -0.273, V8: 0.507, V9: 0.088, V10: -0.949, V11: 0.619, V12: -0.499, V13: -1.086, V14: -1.255, V15: 0.824, V16: 0.977, V17: 0.445, V18: 1.583, V19: 0.952, V20: 0.148, V21: -0.053, V22: -0.233, V23: -0.219, V24: 0.104, V25: 0.174, V26: 0.639, V27: -0.042, V28: -0.023, Amount: 22.200.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.375, V2: 0.505, V3: 1.401, V4: -0.066, V5: 0.148, V6: 0.756, V7: -0.273, V8: 0.507, V9: 0.088, V10: -0.949, V11: 0.619, V12: -0.499, V13: -1.086, V14: -1.255, V15: 0.824, V16: 0.977, V17: 0.445, V18: 1.583, V19: 0.952, V20: 0.148, V21: -0.053, V22: -0.233, V23: -0.219, V24: 0.104, V25: 0.174, V26: 0.639, V27: -0.042, V28: -0.023, Amount: 22.200.
7,919
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.824, V2: -0.472, V3: -0.785, V4: 0.549, V5: -0.424, V6: -0.592, V7: -0.140, V8: -0.077, V9: 0.516, V10: 0.223, V11: 0.956, V12: 1.003, V13: -0.190, V14: 0.375, V15: -0.379, V16: 0.207, V17: -0.571, V18: 0.013, V19: 0.026, V20: -0.075, V21: 0.072, V22: 0.161, V23: 0.163, V24: 0.038, V25: -0.291, V26: 0.199, V27: -0.055, V28: -0.050, Amount: 80.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.824, V2: -0.472, V3: -0.785, V4: 0.549, V5: -0.424, V6: -0.592, V7: -0.140, V8: -0.077, V9: 0.516, V10: 0.223, V11: 0.956, V12: 1.003, V13: -0.190, V14: 0.375, V15: -0.379, V16: 0.207, V17: -0.571, V18: 0.013, V19: 0.026, V20: -0.075, V21: 0.072, V22: 0.161, V23: 0.163, V24: 0.038, V25: -0.291, V26: 0.199, V27: -0.055, V28: -0.050, Amount: 80.950.
7,920
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.955, V2: -0.336, V3: 0.126, V4: 0.458, V5: -0.858, V6: -0.431, V7: -0.700, V8: -0.077, V9: 1.300, V10: -0.228, V11: -0.634, V12: 1.411, V13: 1.990, V14: -0.616, V15: 0.721, V16: 0.361, V17: -0.801, V18: 0.069, V19: -0.317, V20: -0.087, V21: 0.098, V22: 0.554, V23: 0.235, V24: 0.014, V25: -0.322, V26: -0.414, V27: 0.069, V28: -0.022, Amount: 12.860.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.955, V2: -0.336, V3: 0.126, V4: 0.458, V5: -0.858, V6: -0.431, V7: -0.700, V8: -0.077, V9: 1.300, V10: -0.228, V11: -0.634, V12: 1.411, V13: 1.990, V14: -0.616, V15: 0.721, V16: 0.361, V17: -0.801, V18: 0.069, V19: -0.317, V20: -0.087, V21: 0.098, V22: 0.554, V23: 0.235, V24: 0.014, V25: -0.322, V26: -0.414, V27: 0.069, V28: -0.022, Amount: 12.860.
7,921
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.734, V2: 0.843, V3: 2.218, V4: 0.827, V5: 0.155, V6: -0.172, V7: 1.247, V8: -0.229, V9: -0.486, V10: -0.552, V11: 0.003, V12: 0.588, V13: 0.352, V14: -0.338, V15: -0.320, V16: -1.120, V17: 0.376, V18: -1.057, V19: -0.329, V20: 0.131, V21: -0.024, V22: 0.214, V23: -0.207, V24: 0.625, V25: 0.523, V26: -0.345, V27: -0.099, V28: -0.148, Amount: 61.040.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.734, V2: 0.843, V3: 2.218, V4: 0.827, V5: 0.155, V6: -0.172, V7: 1.247, V8: -0.229, V9: -0.486, V10: -0.552, V11: 0.003, V12: 0.588, V13: 0.352, V14: -0.338, V15: -0.320, V16: -1.120, V17: 0.376, V18: -1.057, V19: -0.329, V20: 0.131, V21: -0.024, V22: 0.214, V23: -0.207, V24: 0.625, V25: 0.523, V26: -0.345, V27: -0.099, V28: -0.148, Amount: 61.040.
7,922
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.712, V2: 1.965, V3: 0.102, V4: 3.063, V5: 1.179, V6: -0.471, V7: 1.483, V8: 0.109, V9: -2.587, V10: 0.568, V11: -1.564, V12: -0.450, V13: 0.092, V14: 0.783, V15: -1.441, V16: 0.126, V17: -0.269, V18: -0.480, V19: -0.911, V20: -0.188, V21: 0.247, V22: 0.562, V23: -0.345, V24: -0.008, V25: 0.438, V26: 0.242, V27: -0.067, V28: 0.058, Amount: 29.100.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.712, V2: 1.965, V3: 0.102, V4: 3.063, V5: 1.179, V6: -0.471, V7: 1.483, V8: 0.109, V9: -2.587, V10: 0.568, V11: -1.564, V12: -0.450, V13: 0.092, V14: 0.783, V15: -1.441, V16: 0.126, V17: -0.269, V18: -0.480, V19: -0.911, V20: -0.188, V21: 0.247, V22: 0.562, V23: -0.345, V24: -0.008, V25: 0.438, V26: 0.242, V27: -0.067, V28: 0.058, Amount: 29.100.
7,923
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.905, V2: -1.067, V3: -1.547, V4: -0.716, V5: -0.469, V6: -1.053, V7: 0.049, V8: -0.433, V9: -0.701, V10: 0.686, V11: -0.201, V12: 0.145, V13: 0.954, V14: -0.139, V15: -0.365, V16: 0.422, V17: 0.523, V18: -2.117, V19: 0.576, V20: 0.328, V21: 0.184, V22: 0.239, V23: 0.104, V24: 1.136, V25: -0.029, V26: -0.311, V27: -0.068, V28: -0.026, Amount: 166.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.905, V2: -1.067, V3: -1.547, V4: -0.716, V5: -0.469, V6: -1.053, V7: 0.049, V8: -0.433, V9: -0.701, V10: 0.686, V11: -0.201, V12: 0.145, V13: 0.954, V14: -0.139, V15: -0.365, V16: 0.422, V17: 0.523, V18: -2.117, V19: 0.576, V20: 0.328, V21: 0.184, V22: 0.239, V23: 0.104, V24: 1.136, V25: -0.029, V26: -0.311, V27: -0.068, V28: -0.026, Amount: 166.000.
7,924
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.203, V2: 0.237, V3: 0.629, V4: 0.549, V5: -0.482, V6: -0.774, V7: -0.006, V8: -0.097, V9: -0.297, V10: 0.089, V11: 1.743, V12: 1.367, V13: 0.649, V14: 0.358, V15: 0.267, V16: 0.418, V17: -0.625, V18: -0.169, V19: 0.090, V20: -0.059, V21: -0.187, V22: -0.557, V23: 0.144, V24: 0.543, V25: 0.175, V26: 0.063, V27: -0.030, V28: 0.012, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.203, V2: 0.237, V3: 0.629, V4: 0.549, V5: -0.482, V6: -0.774, V7: -0.006, V8: -0.097, V9: -0.297, V10: 0.089, V11: 1.743, V12: 1.367, V13: 0.649, V14: 0.358, V15: 0.267, V16: 0.418, V17: -0.625, V18: -0.169, V19: 0.090, V20: -0.059, V21: -0.187, V22: -0.557, V23: 0.144, V24: 0.543, V25: 0.175, V26: 0.063, V27: -0.030, V28: 0.012, Amount: 1.980.
7,925
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.725, V2: -6.131, V3: -0.170, V4: 2.624, V5: 1.513, V6: -0.616, V7: 0.652, V8: 0.554, V9: -0.637, V10: -1.385, V11: -1.983, V12: 0.556, V13: 1.539, V14: 0.356, V15: 0.372, V16: 0.020, V17: -0.146, V18: 0.360, V19: 1.057, V20: 3.239, V21: 0.541, V22: -1.595, V23: 1.598, V24: -1.158, V25: 0.742, V26: -0.775, V27: -0.200, V28: -0.706, Amount: 819.510.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.725, V2: -6.131, V3: -0.170, V4: 2.624, V5: 1.513, V6: -0.616, V7: 0.652, V8: 0.554, V9: -0.637, V10: -1.385, V11: -1.983, V12: 0.556, V13: 1.539, V14: 0.356, V15: 0.372, V16: 0.020, V17: -0.146, V18: 0.360, V19: 1.057, V20: 3.239, V21: 0.541, V22: -1.595, V23: 1.598, V24: -1.158, V25: 0.742, V26: -0.775, V27: -0.200, V28: -0.706, Amount: 819.510.
7,926
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.559, V2: 0.910, V3: -0.065, V4: -1.189, V5: 1.222, V6: -0.160, V7: 1.444, V8: -0.633, V9: 0.967, V10: 1.454, V11: 0.045, V12: -0.140, V13: -0.634, V14: -0.503, V15: -0.791, V16: 0.143, V17: -1.366, V18: 0.043, V19: 0.556, V20: 0.473, V21: -0.545, V22: -0.690, V23: -0.066, V24: -1.134, V25: -0.308, V26: 0.111, V27: -0.054, V28: -0.385, Amount: 17.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.559, V2: 0.910, V3: -0.065, V4: -1.189, V5: 1.222, V6: -0.160, V7: 1.444, V8: -0.633, V9: 0.967, V10: 1.454, V11: 0.045, V12: -0.140, V13: -0.634, V14: -0.503, V15: -0.791, V16: 0.143, V17: -1.366, V18: 0.043, V19: 0.556, V20: 0.473, V21: -0.545, V22: -0.690, V23: -0.066, V24: -1.134, V25: -0.308, V26: 0.111, V27: -0.054, V28: -0.385, Amount: 17.990.
7,927
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.657, V2: 0.479, V3: 0.350, V4: -0.804, V5: 1.169, V6: -0.253, V7: 1.336, V8: -0.180, V9: -0.167, V10: -1.431, V11: 1.227, V12: 0.713, V13: 0.124, V14: -1.634, V15: -1.154, V16: 0.016, V17: 0.667, V18: 0.561, V19: 0.227, V20: 0.303, V21: -0.106, V22: -0.232, V23: -0.026, V24: 0.591, V25: 0.078, V26: -0.171, V27: -0.099, V28: -0.059, Amount: 97.880.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.657, V2: 0.479, V3: 0.350, V4: -0.804, V5: 1.169, V6: -0.253, V7: 1.336, V8: -0.180, V9: -0.167, V10: -1.431, V11: 1.227, V12: 0.713, V13: 0.124, V14: -1.634, V15: -1.154, V16: 0.016, V17: 0.667, V18: 0.561, V19: 0.227, V20: 0.303, V21: -0.106, V22: -0.232, V23: -0.026, V24: 0.591, V25: 0.078, V26: -0.171, V27: -0.099, V28: -0.059, Amount: 97.880.
7,928
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.015, V2: 0.166, V3: -1.589, V4: 0.340, V5: 0.455, V6: -0.643, V7: 0.147, V8: -0.150, V9: 0.094, V10: -0.235, V11: 1.442, V12: 1.345, V13: 0.788, V14: -0.803, V15: -0.601, V16: 0.419, V17: 0.243, V18: 0.024, V19: 0.265, V20: -0.092, V21: -0.289, V22: -0.730, V23: 0.338, V24: 0.693, V25: -0.286, V26: 0.139, V27: -0.061, V28: -0.036, Amount: 4.260.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.015, V2: 0.166, V3: -1.589, V4: 0.340, V5: 0.455, V6: -0.643, V7: 0.147, V8: -0.150, V9: 0.094, V10: -0.235, V11: 1.442, V12: 1.345, V13: 0.788, V14: -0.803, V15: -0.601, V16: 0.419, V17: 0.243, V18: 0.024, V19: 0.265, V20: -0.092, V21: -0.289, V22: -0.730, V23: 0.338, V24: 0.693, V25: -0.286, V26: 0.139, V27: -0.061, V28: -0.036, Amount: 4.260.
7,929
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.020, V2: -0.298, V3: 0.309, V4: 0.640, V5: -0.279, V6: 0.131, V7: -0.029, V8: 0.018, V9: 0.174, V10: -0.115, V11: 0.583, V12: 1.419, V13: 0.896, V14: -0.109, V15: -0.870, V16: 0.185, V17: -0.550, V18: -0.089, V19: 0.729, V20: 0.192, V21: -0.217, V22: -0.693, V23: -0.126, V24: -0.298, V25: 0.388, V26: 0.191, V27: -0.035, V28: 0.021, Amount: 114.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.020, V2: -0.298, V3: 0.309, V4: 0.640, V5: -0.279, V6: 0.131, V7: -0.029, V8: 0.018, V9: 0.174, V10: -0.115, V11: 0.583, V12: 1.419, V13: 0.896, V14: -0.109, V15: -0.870, V16: 0.185, V17: -0.550, V18: -0.089, V19: 0.729, V20: 0.192, V21: -0.217, V22: -0.693, V23: -0.126, V24: -0.298, V25: 0.388, V26: 0.191, V27: -0.035, V28: 0.021, Amount: 114.990.
7,930
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.057, V2: 0.016, V3: -1.911, V4: 0.188, V5: 0.661, V6: -0.211, V7: -0.006, V8: 0.022, V9: 0.410, V10: -0.189, V11: 0.578, V12: 0.189, V13: -0.884, V14: -0.483, V15: -0.308, V16: 0.643, V17: 0.154, V18: 0.376, V19: 0.463, V20: -0.195, V21: -0.350, V22: -0.977, V23: 0.284, V24: -0.089, V25: -0.269, V26: 0.193, V27: -0.070, V28: -0.048, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.057, V2: 0.016, V3: -1.911, V4: 0.188, V5: 0.661, V6: -0.211, V7: -0.006, V8: 0.022, V9: 0.410, V10: -0.189, V11: 0.578, V12: 0.189, V13: -0.884, V14: -0.483, V15: -0.308, V16: 0.643, V17: 0.154, V18: 0.376, V19: 0.463, V20: -0.195, V21: -0.350, V22: -0.977, V23: 0.284, V24: -0.089, V25: -0.269, V26: 0.193, V27: -0.070, V28: -0.048, Amount: 1.980.
7,931
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.735, V2: 0.259, V3: 1.199, V4: 1.328, V5: 2.160, V6: 0.789, V7: 0.748, V8: 0.427, V9: -1.404, V10: -0.031, V11: 0.042, V12: -0.471, V13: -1.028, V14: 0.603, V15: 0.747, V16: -0.676, V17: 0.458, V18: -2.242, V19: -3.010, V20: -0.480, V21: 0.141, V22: 0.546, V23: 0.490, V24: -1.005, V25: 0.279, V26: 0.057, V27: 0.027, V28: 0.026, Amount: 6.300.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.735, V2: 0.259, V3: 1.199, V4: 1.328, V5: 2.160, V6: 0.789, V7: 0.748, V8: 0.427, V9: -1.404, V10: -0.031, V11: 0.042, V12: -0.471, V13: -1.028, V14: 0.603, V15: 0.747, V16: -0.676, V17: 0.458, V18: -2.242, V19: -3.010, V20: -0.480, V21: 0.141, V22: 0.546, V23: 0.490, V24: -1.005, V25: 0.279, V26: 0.057, V27: 0.027, V28: 0.026, Amount: 6.300.
7,932
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.274, V2: -0.508, V3: 0.743, V4: -0.773, V5: -0.925, V6: -0.253, V7: -0.703, V8: -0.002, V9: -1.220, V10: 0.685, V11: 2.161, V12: 1.180, V13: 1.812, V14: -0.335, V15: 0.222, V16: 1.030, V17: 0.186, V18: -1.553, V19: 0.313, V20: 0.186, V21: 0.227, V22: 0.620, V23: 0.027, V24: 0.278, V25: 0.286, V26: -0.290, V27: 0.038, V28: 0.016, Amount: 24.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.274, V2: -0.508, V3: 0.743, V4: -0.773, V5: -0.925, V6: -0.253, V7: -0.703, V8: -0.002, V9: -1.220, V10: 0.685, V11: 2.161, V12: 1.180, V13: 1.812, V14: -0.335, V15: 0.222, V16: 1.030, V17: 0.186, V18: -1.553, V19: 0.313, V20: 0.186, V21: 0.227, V22: 0.620, V23: 0.027, V24: 0.278, V25: 0.286, V26: -0.290, V27: 0.038, V28: 0.016, Amount: 24.000.
7,933
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.376, V2: -0.910, V3: 0.606, V4: -1.745, V5: -0.626, V6: -1.400, V7: 0.405, V8: -0.075, V9: 1.544, V10: -1.525, V11: -0.537, V12: 0.056, V13: -1.169, V14: 0.271, V15: 1.144, V16: -0.670, V17: 0.026, V18: -0.044, V19: 0.807, V20: 0.282, V21: 0.043, V22: -0.182, V23: 0.736, V24: 0.332, V25: -1.076, V26: -0.652, V27: 0.097, V28: 0.145, Amount: 164.040.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.376, V2: -0.910, V3: 0.606, V4: -1.745, V5: -0.626, V6: -1.400, V7: 0.405, V8: -0.075, V9: 1.544, V10: -1.525, V11: -0.537, V12: 0.056, V13: -1.169, V14: 0.271, V15: 1.144, V16: -0.670, V17: 0.026, V18: -0.044, V19: 0.807, V20: 0.282, V21: 0.043, V22: -0.182, V23: 0.736, V24: 0.332, V25: -1.076, V26: -0.652, V27: 0.097, V28: 0.145, Amount: 164.040.
7,934
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.079, V2: -0.206, V3: 0.557, V4: 1.258, V5: -0.098, V6: 1.115, V7: -0.467, V8: 0.369, V9: 0.670, V10: -0.098, V11: 0.068, V12: 1.059, V13: -0.163, V14: -0.236, V15: -1.335, V16: -0.366, V17: -0.124, V18: -0.102, V19: 0.351, V20: -0.101, V21: -0.073, V22: 0.064, V23: -0.216, V24: -0.810, V25: 0.688, V26: -0.225, V27: 0.062, V28: 0.009, Amount: 38.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.079, V2: -0.206, V3: 0.557, V4: 1.258, V5: -0.098, V6: 1.115, V7: -0.467, V8: 0.369, V9: 0.670, V10: -0.098, V11: 0.068, V12: 1.059, V13: -0.163, V14: -0.236, V15: -1.335, V16: -0.366, V17: -0.124, V18: -0.102, V19: 0.351, V20: -0.101, V21: -0.073, V22: 0.064, V23: -0.216, V24: -0.810, V25: 0.688, V26: -0.225, V27: 0.062, V28: 0.009, Amount: 38.000.
7,935
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.425, V2: -0.144, V3: -1.114, V4: -0.788, V5: 1.290, V6: -1.464, V7: 0.427, V8: 0.040, V9: -0.089, V10: -0.328, V11: 0.361, V12: 1.301, V13: 0.908, V14: 0.611, V15: -0.964, V16: 0.374, V17: -1.206, V18: 0.549, V19: -0.599, V20: -0.559, V21: 0.528, V22: 1.553, V23: 0.154, V24: -0.268, V25: -1.202, V26: -0.543, V27: -0.240, V28: 0.446, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.425, V2: -0.144, V3: -1.114, V4: -0.788, V5: 1.290, V6: -1.464, V7: 0.427, V8: 0.040, V9: -0.089, V10: -0.328, V11: 0.361, V12: 1.301, V13: 0.908, V14: 0.611, V15: -0.964, V16: 0.374, V17: -1.206, V18: 0.549, V19: -0.599, V20: -0.559, V21: 0.528, V22: 1.553, V23: 0.154, V24: -0.268, V25: -1.202, V26: -0.543, V27: -0.240, V28: 0.446, Amount: 1.000.
7,936
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.043, V2: 1.045, V3: 0.292, V4: -2.379, V5: -0.190, V6: -0.921, V7: 0.179, V8: -0.384, V9: 0.237, V10: -1.337, V11: 1.649, V12: 1.417, V13: -0.176, V14: 0.925, V15: 0.484, V16: -0.784, V17: 0.167, V18: -0.162, V19: 0.447, V20: -0.257, V21: 0.934, V22: 0.316, V23: -0.005, V24: 0.269, V25: -0.177, V26: -0.127, V27: 0.290, V28: 0.128, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.043, V2: 1.045, V3: 0.292, V4: -2.379, V5: -0.190, V6: -0.921, V7: 0.179, V8: -0.384, V9: 0.237, V10: -1.337, V11: 1.649, V12: 1.417, V13: -0.176, V14: 0.925, V15: 0.484, V16: -0.784, V17: 0.167, V18: -0.162, V19: 0.447, V20: -0.257, V21: 0.934, V22: 0.316, V23: -0.005, V24: 0.269, V25: -0.177, V26: -0.127, V27: 0.290, V28: 0.128, Amount: 1.000.
7,937
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.428, V2: -0.157, V3: 0.903, V4: -2.322, V5: -0.475, V6: 0.928, V7: -1.513, V8: -2.354, V9: -1.138, V10: -0.691, V11: 0.109, V12: -0.362, V13: -0.870, V14: 0.250, V15: -0.829, V16: 2.162, V17: -0.448, V18: -0.702, V19: 0.198, V20: 0.819, V21: -1.366, V22: -0.335, V23: -0.272, V24: 0.035, V25: 1.362, V26: -0.369, V27: -0.050, V28: 0.160, Amount: 76.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.428, V2: -0.157, V3: 0.903, V4: -2.322, V5: -0.475, V6: 0.928, V7: -1.513, V8: -2.354, V9: -1.138, V10: -0.691, V11: 0.109, V12: -0.362, V13: -0.870, V14: 0.250, V15: -0.829, V16: 2.162, V17: -0.448, V18: -0.702, V19: 0.198, V20: 0.819, V21: -1.366, V22: -0.335, V23: -0.272, V24: 0.035, V25: 1.362, V26: -0.369, V27: -0.050, V28: 0.160, Amount: 76.000.
7,938
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.161, V2: 1.266, V3: -1.576, V4: 1.473, V5: 1.162, V6: -1.014, V7: 0.658, V8: -0.153, V9: -0.847, V10: -1.452, V11: 2.894, V12: 0.774, V13: 0.664, V14: -3.334, V15: 0.523, V16: 0.898, V17: 2.683, V18: 1.269, V19: -0.912, V20: 0.002, V21: -0.120, V22: -0.205, V23: -0.203, V24: -0.282, V25: 0.785, V26: -0.285, V27: 0.058, V28: 0.085, Amount: 1.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.161, V2: 1.266, V3: -1.576, V4: 1.473, V5: 1.162, V6: -1.014, V7: 0.658, V8: -0.153, V9: -0.847, V10: -1.452, V11: 2.894, V12: 0.774, V13: 0.664, V14: -3.334, V15: 0.523, V16: 0.898, V17: 2.683, V18: 1.269, V19: -0.912, V20: 0.002, V21: -0.120, V22: -0.205, V23: -0.203, V24: -0.282, V25: 0.785, V26: -0.285, V27: 0.058, V28: 0.085, Amount: 1.790.
7,939
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.022, V2: 0.863, V3: -0.242, V4: -0.296, V5: 0.842, V6: -1.044, V7: 1.296, V8: -0.694, V9: 0.263, V10: -0.064, V11: 1.318, V12: -0.275, V13: -1.168, V14: -1.038, V15: 0.179, V16: 0.086, V17: 0.127, V18: 1.251, V19: 0.098, V20: -0.092, V21: 0.290, V22: 1.115, V23: -0.266, V24: -0.019, V25: -0.552, V26: -0.274, V27: -0.599, V28: -0.300, Amount: 23.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.022, V2: 0.863, V3: -0.242, V4: -0.296, V5: 0.842, V6: -1.044, V7: 1.296, V8: -0.694, V9: 0.263, V10: -0.064, V11: 1.318, V12: -0.275, V13: -1.168, V14: -1.038, V15: 0.179, V16: 0.086, V17: 0.127, V18: 1.251, V19: 0.098, V20: -0.092, V21: 0.290, V22: 1.115, V23: -0.266, V24: -0.019, V25: -0.552, V26: -0.274, V27: -0.599, V28: -0.300, Amount: 23.400.
7,940
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.457, V2: 1.105, V3: 1.433, V4: -0.590, V5: 0.312, V6: -0.336, V7: 0.491, V8: 0.425, V9: -0.637, V10: -0.624, V11: 1.497, V12: 0.439, V13: -0.584, V14: -0.044, V15: 0.153, V16: 0.590, V17: -0.102, V18: -0.089, V19: -0.785, V20: -0.032, V21: -0.205, V22: -0.642, V23: -0.199, V24: -0.046, V25: 0.136, V26: 0.001, V27: -0.149, V28: -0.213, Amount: 13.470.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.457, V2: 1.105, V3: 1.433, V4: -0.590, V5: 0.312, V6: -0.336, V7: 0.491, V8: 0.425, V9: -0.637, V10: -0.624, V11: 1.497, V12: 0.439, V13: -0.584, V14: -0.044, V15: 0.153, V16: 0.590, V17: -0.102, V18: -0.089, V19: -0.785, V20: -0.032, V21: -0.205, V22: -0.642, V23: -0.199, V24: -0.046, V25: 0.136, V26: 0.001, V27: -0.149, V28: -0.213, Amount: 13.470.
7,941
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.968, V2: -0.305, V3: -1.296, V4: 0.289, V5: -0.066, V6: -0.737, V7: 0.047, V8: -0.074, V9: 0.783, V10: 0.108, V11: 0.331, V12: 0.166, V13: -1.814, V14: 0.886, V15: -0.303, V16: 0.039, V17: -0.575, V18: 0.173, V19: 0.602, V20: -0.283, V21: -0.229, V22: -0.690, V23: 0.233, V24: -0.443, V25: -0.172, V26: -0.579, V27: -0.032, V28: -0.062, Amount: 34.040.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.968, V2: -0.305, V3: -1.296, V4: 0.289, V5: -0.066, V6: -0.737, V7: 0.047, V8: -0.074, V9: 0.783, V10: 0.108, V11: 0.331, V12: 0.166, V13: -1.814, V14: 0.886, V15: -0.303, V16: 0.039, V17: -0.575, V18: 0.173, V19: 0.602, V20: -0.283, V21: -0.229, V22: -0.690, V23: 0.233, V24: -0.443, V25: -0.172, V26: -0.579, V27: -0.032, V28: -0.062, Amount: 34.040.
7,942
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.922, V2: 0.604, V3: 0.009, V4: -0.520, V5: -0.270, V6: -0.245, V7: 0.917, V8: 0.511, V9: -0.264, V10: -0.602, V11: -0.241, V12: -0.382, V13: -2.041, V14: 0.912, V15: -1.158, V16: 0.453, V17: -0.542, V18: 0.518, V19: 0.027, V20: 0.065, V21: 0.147, V22: 0.140, V23: 0.203, V24: -0.383, V25: -0.294, V26: 0.323, V27: 0.161, V28: 0.160, Amount: 150.910.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.922, V2: 0.604, V3: 0.009, V4: -0.520, V5: -0.270, V6: -0.245, V7: 0.917, V8: 0.511, V9: -0.264, V10: -0.602, V11: -0.241, V12: -0.382, V13: -2.041, V14: 0.912, V15: -1.158, V16: 0.453, V17: -0.542, V18: 0.518, V19: 0.027, V20: 0.065, V21: 0.147, V22: 0.140, V23: 0.203, V24: -0.383, V25: -0.294, V26: 0.323, V27: 0.161, V28: 0.160, Amount: 150.910.
7,943
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.813, V2: 0.752, V3: 2.673, V4: 2.716, V5: -0.490, V6: 2.210, V7: 0.662, V8: 0.197, V9: -0.423, V10: 1.347, V11: 1.399, V12: 0.300, V13: -0.237, V14: -0.640, V15: 0.375, V16: -0.641, V17: 0.306, V18: -0.268, V19: 0.475, V20: 0.492, V21: -0.085, V22: 0.541, V23: -0.047, V24: -0.273, V25: -0.405, V26: 0.198, V27: 0.299, V28: -0.253, Amount: 166.580.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.813, V2: 0.752, V3: 2.673, V4: 2.716, V5: -0.490, V6: 2.210, V7: 0.662, V8: 0.197, V9: -0.423, V10: 1.347, V11: 1.399, V12: 0.300, V13: -0.237, V14: -0.640, V15: 0.375, V16: -0.641, V17: 0.306, V18: -0.268, V19: 0.475, V20: 0.492, V21: -0.085, V22: 0.541, V23: -0.047, V24: -0.273, V25: -0.405, V26: 0.198, V27: 0.299, V28: -0.253, Amount: 166.580.
7,944
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.218, V2: -0.039, V3: -0.644, V4: 0.177, V5: 1.908, V6: 3.654, V7: -0.872, V8: 0.832, V9: 1.467, V10: -0.343, V11: 0.750, V12: -2.470, V13: 1.752, V14: 1.701, V15: 0.690, V16: 0.691, V17: -0.360, V18: 0.923, V19: -0.410, V20: 0.007, V21: -0.056, V22: -0.064, V23: -0.129, V24: 0.948, V25: 0.662, V26: -0.322, V27: 0.015, V28: 0.023, Amount: 30.240.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.218, V2: -0.039, V3: -0.644, V4: 0.177, V5: 1.908, V6: 3.654, V7: -0.872, V8: 0.832, V9: 1.467, V10: -0.343, V11: 0.750, V12: -2.470, V13: 1.752, V14: 1.701, V15: 0.690, V16: 0.691, V17: -0.360, V18: 0.923, V19: -0.410, V20: 0.007, V21: -0.056, V22: -0.064, V23: -0.129, V24: 0.948, V25: 0.662, V26: -0.322, V27: 0.015, V28: 0.023, Amount: 30.240.
7,945
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.152, V2: 0.018, V3: 1.300, V4: 1.338, V5: -0.923, V6: -0.189, V7: -0.511, V8: 0.050, V9: 0.787, V10: -0.222, V11: -0.675, V12: 0.849, V13: 0.725, V14: -0.497, V15: 0.102, V16: 0.046, V17: -0.289, V18: -0.147, V19: -0.215, V20: -0.089, V21: -0.054, V22: 0.083, V23: -0.014, V24: 0.397, V25: 0.438, V26: -0.411, V27: 0.077, V28: 0.040, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.152, V2: 0.018, V3: 1.300, V4: 1.338, V5: -0.923, V6: -0.189, V7: -0.511, V8: 0.050, V9: 0.787, V10: -0.222, V11: -0.675, V12: 0.849, V13: 0.725, V14: -0.497, V15: 0.102, V16: 0.046, V17: -0.289, V18: -0.147, V19: -0.215, V20: -0.089, V21: -0.054, V22: 0.083, V23: -0.014, V24: 0.397, V25: 0.438, V26: -0.411, V27: 0.077, V28: 0.040, Amount: 9.990.
7,946
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.828, V2: -0.516, V3: -0.446, V4: 0.292, V5: -0.445, V6: 0.002, V7: -0.496, V8: 0.109, V9: 0.931, V10: -0.043, V11: 0.978, V12: 1.424, V13: 0.475, V14: 0.075, V15: -0.048, V16: 0.393, V17: -0.828, V18: 0.283, V19: 0.189, V20: -0.031, V21: -0.089, V22: -0.300, V23: 0.340, V24: 0.733, V25: -0.453, V26: -0.686, V27: 0.017, V28: -0.022, Amount: 69.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.828, V2: -0.516, V3: -0.446, V4: 0.292, V5: -0.445, V6: 0.002, V7: -0.496, V8: 0.109, V9: 0.931, V10: -0.043, V11: 0.978, V12: 1.424, V13: 0.475, V14: 0.075, V15: -0.048, V16: 0.393, V17: -0.828, V18: 0.283, V19: 0.189, V20: -0.031, V21: -0.089, V22: -0.300, V23: 0.340, V24: 0.733, V25: -0.453, V26: -0.686, V27: 0.017, V28: -0.022, Amount: 69.990.
7,947
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.124, V2: -0.978, V3: 2.835, V4: -1.080, V5: -1.154, V6: 0.968, V7: -1.063, V8: 0.622, V9: 0.768, V10: -0.342, V11: -2.976, V12: -0.897, V13: -1.082, V14: -1.390, V15: -1.721, V16: -1.434, V17: 0.176, V18: 1.809, V19: -0.318, V20: -0.152, V21: -0.331, V22: -0.208, V23: -0.213, V24: -0.649, V25: 0.456, V26: 0.924, V27: 0.290, V28: 0.133, Amount: 75.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.124, V2: -0.978, V3: 2.835, V4: -1.080, V5: -1.154, V6: 0.968, V7: -1.063, V8: 0.622, V9: 0.768, V10: -0.342, V11: -2.976, V12: -0.897, V13: -1.082, V14: -1.390, V15: -1.721, V16: -1.434, V17: 0.176, V18: 1.809, V19: -0.318, V20: -0.152, V21: -0.331, V22: -0.208, V23: -0.213, V24: -0.649, V25: 0.456, V26: 0.924, V27: 0.290, V28: 0.133, Amount: 75.000.
7,948
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.389, V2: -0.411, V3: 1.612, V4: -0.166, V5: -0.402, V6: 0.703, V7: -0.892, V8: 0.561, V9: -1.142, V10: 0.725, V11: 1.092, V12: 0.463, V13: -0.032, V14: 0.007, V15: 0.373, V16: -2.057, V17: 0.649, V18: 1.103, V19: -0.523, V20: -0.656, V21: -0.091, V22: 0.422, V23: -0.436, V24: -0.218, V25: -0.650, V26: 0.527, V27: -0.185, V28: -0.395, Amount: 28.450.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.389, V2: -0.411, V3: 1.612, V4: -0.166, V5: -0.402, V6: 0.703, V7: -0.892, V8: 0.561, V9: -1.142, V10: 0.725, V11: 1.092, V12: 0.463, V13: -0.032, V14: 0.007, V15: 0.373, V16: -2.057, V17: 0.649, V18: 1.103, V19: -0.523, V20: -0.656, V21: -0.091, V22: 0.422, V23: -0.436, V24: -0.218, V25: -0.650, V26: 0.527, V27: -0.185, V28: -0.395, Amount: 28.450.
7,949
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.927, V2: 2.056, V3: -0.939, V4: 0.927, V5: -1.103, V6: 0.027, V7: -0.384, V8: 1.433, V9: -1.056, V10: -0.729, V11: -1.130, V12: 0.956, V13: 1.362, V14: 1.222, V15: 1.107, V16: 0.044, V17: 0.447, V18: -0.192, V19: 0.178, V20: -0.580, V21: 0.329, V22: 0.477, V23: 0.057, V24: -0.419, V25: -0.076, V26: -0.310, V27: -0.851, V28: -0.306, Amount: 83.740.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.927, V2: 2.056, V3: -0.939, V4: 0.927, V5: -1.103, V6: 0.027, V7: -0.384, V8: 1.433, V9: -1.056, V10: -0.729, V11: -1.130, V12: 0.956, V13: 1.362, V14: 1.222, V15: 1.107, V16: 0.044, V17: 0.447, V18: -0.192, V19: 0.178, V20: -0.580, V21: 0.329, V22: 0.477, V23: 0.057, V24: -0.419, V25: -0.076, V26: -0.310, V27: -0.851, V28: -0.306, Amount: 83.740.
7,950
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.188, V2: 0.091, V3: 0.433, V4: -0.467, V5: 0.484, V6: -0.297, V7: 0.677, V8: -0.344, V9: 1.153, V10: 0.107, V11: -0.683, V12: -0.558, V13: -0.020, V14: -2.034, V15: 0.574, V16: 0.689, V17: 0.036, V18: 0.735, V19: -0.541, V20: -0.063, V21: -0.030, V22: 0.717, V23: -0.704, V24: 0.672, V25: -0.185, V26: 0.492, V27: -0.634, V28: -0.228, Amount: 99.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.188, V2: 0.091, V3: 0.433, V4: -0.467, V5: 0.484, V6: -0.297, V7: 0.677, V8: -0.344, V9: 1.153, V10: 0.107, V11: -0.683, V12: -0.558, V13: -0.020, V14: -2.034, V15: 0.574, V16: 0.689, V17: 0.036, V18: 0.735, V19: -0.541, V20: -0.063, V21: -0.030, V22: 0.717, V23: -0.704, V24: 0.672, V25: -0.185, V26: 0.492, V27: -0.634, V28: -0.228, Amount: 99.990.
7,951
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.621, V2: 0.322, V3: 1.435, V4: -1.057, V5: 0.137, V6: -1.418, V7: 0.459, V8: -0.057, V9: -0.006, V10: -0.769, V11: -0.755, V12: -0.860, V13: -1.555, V14: 0.422, V15: 0.617, V16: 0.475, V17: -0.480, V18: -0.205, V19: -0.486, V20: -0.131, V21: 0.008, V22: -0.190, V23: -0.024, V24: 0.391, V25: -0.463, V26: 0.760, V27: 0.002, V28: 0.125, Amount: 0.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.621, V2: 0.322, V3: 1.435, V4: -1.057, V5: 0.137, V6: -1.418, V7: 0.459, V8: -0.057, V9: -0.006, V10: -0.769, V11: -0.755, V12: -0.860, V13: -1.555, V14: 0.422, V15: 0.617, V16: 0.475, V17: -0.480, V18: -0.205, V19: -0.486, V20: -0.131, V21: 0.008, V22: -0.190, V23: -0.024, V24: 0.391, V25: -0.463, V26: 0.760, V27: 0.002, V28: 0.125, Amount: 0.220.
7,952
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.541, V2: -0.881, V3: -0.484, V4: 1.495, V5: -0.830, V6: -0.384, V7: -0.263, V8: -0.042, V9: 1.019, V10: 0.143, V11: -1.090, V12: -0.220, V13: -0.724, V14: 0.229, V15: 0.952, V16: 0.491, V17: -0.701, V18: 0.431, V19: -0.870, V20: 0.124, V21: 0.345, V22: 0.632, V23: -0.042, V24: -0.113, V25: -0.203, V26: -0.574, V27: 0.014, V28: 0.004, Amount: 220.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.541, V2: -0.881, V3: -0.484, V4: 1.495, V5: -0.830, V6: -0.384, V7: -0.263, V8: -0.042, V9: 1.019, V10: 0.143, V11: -1.090, V12: -0.220, V13: -0.724, V14: 0.229, V15: 0.952, V16: 0.491, V17: -0.701, V18: 0.431, V19: -0.870, V20: 0.124, V21: 0.345, V22: 0.632, V23: -0.042, V24: -0.113, V25: -0.203, V26: -0.574, V27: 0.014, V28: 0.004, Amount: 220.000.
7,953
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.338, V2: -0.101, V3: -0.469, V4: -1.536, V5: -0.215, V6: -1.454, V7: 0.419, V8: -0.409, V9: 0.913, V10: -1.049, V11: -0.364, V12: 0.722, V13: 0.412, V14: 0.459, V15: 1.456, V16: -0.577, V17: -0.214, V18: -0.575, V19: 1.189, V20: -0.005, V21: -0.389, V22: -1.092, V23: 0.018, V24: -0.106, V25: 0.488, V26: -0.311, V27: -0.026, V28: 0.010, Amount: 28.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.338, V2: -0.101, V3: -0.469, V4: -1.536, V5: -0.215, V6: -1.454, V7: 0.419, V8: -0.409, V9: 0.913, V10: -1.049, V11: -0.364, V12: 0.722, V13: 0.412, V14: 0.459, V15: 1.456, V16: -0.577, V17: -0.214, V18: -0.575, V19: 1.189, V20: -0.005, V21: -0.389, V22: -1.092, V23: 0.018, V24: -0.106, V25: 0.488, V26: -0.311, V27: -0.026, V28: 0.010, Amount: 28.950.
7,954
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.005, V2: -0.261, V3: -1.073, V4: 0.315, V5: -0.235, V6: -1.026, V7: 0.117, V8: -0.354, V9: 1.000, V10: -0.236, V11: -0.886, V12: 1.049, V13: 0.841, V14: -0.135, V15: -0.544, V16: -0.699, V17: -0.095, V18: -0.560, V19: 0.256, V20: -0.141, V21: 0.105, V22: 0.632, V23: 0.005, V24: 0.136, V25: 0.223, V26: 0.186, V27: -0.024, V28: -0.056, Amount: 27.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.005, V2: -0.261, V3: -1.073, V4: 0.315, V5: -0.235, V6: -1.026, V7: 0.117, V8: -0.354, V9: 1.000, V10: -0.236, V11: -0.886, V12: 1.049, V13: 0.841, V14: -0.135, V15: -0.544, V16: -0.699, V17: -0.095, V18: -0.560, V19: 0.256, V20: -0.141, V21: 0.105, V22: 0.632, V23: 0.005, V24: 0.136, V25: 0.223, V26: 0.186, V27: -0.024, V28: -0.056, Amount: 27.000.
7,955
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.019, V2: 0.641, V3: 0.071, V4: -0.789, V5: 0.529, V6: -0.578, V7: 0.770, V8: 0.079, V9: 0.020, V10: -0.186, V11: 0.018, V12: -0.353, V13: -1.913, V14: 0.664, V15: -0.857, V16: 0.333, V17: -0.723, V18: 0.140, V19: 0.397, V20: -0.125, V21: -0.259, V22: -0.705, V23: 0.031, V24: -0.553, V25: -0.519, V26: 0.157, V27: 0.229, V28: 0.079, Amount: 6.280.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.019, V2: 0.641, V3: 0.071, V4: -0.789, V5: 0.529, V6: -0.578, V7: 0.770, V8: 0.079, V9: 0.020, V10: -0.186, V11: 0.018, V12: -0.353, V13: -1.913, V14: 0.664, V15: -0.857, V16: 0.333, V17: -0.723, V18: 0.140, V19: 0.397, V20: -0.125, V21: -0.259, V22: -0.705, V23: 0.031, V24: -0.553, V25: -0.519, V26: 0.157, V27: 0.229, V28: 0.079, Amount: 6.280.
7,956
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.215, V2: -3.274, V3: 0.311, V4: -0.117, V5: -1.437, V6: 2.271, V7: -0.660, V8: 0.633, V9: -0.190, V10: 0.046, V11: 1.819, V12: 0.733, V13: -0.211, V14: -0.399, V15: -0.179, V16: -0.229, V17: 1.677, V18: -2.823, V19: -0.564, V20: 1.307, V21: 0.587, V22: 0.410, V23: -0.481, V24: -0.947, V25: -0.221, V26: -0.206, V27: -0.010, V28: 0.119, Amount: 696.600.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.215, V2: -3.274, V3: 0.311, V4: -0.117, V5: -1.437, V6: 2.271, V7: -0.660, V8: 0.633, V9: -0.190, V10: 0.046, V11: 1.819, V12: 0.733, V13: -0.211, V14: -0.399, V15: -0.179, V16: -0.229, V17: 1.677, V18: -2.823, V19: -0.564, V20: 1.307, V21: 0.587, V22: 0.410, V23: -0.481, V24: -0.947, V25: -0.221, V26: -0.206, V27: -0.010, V28: 0.119, Amount: 696.600.
7,957
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.779, V2: -0.574, V3: -0.992, V4: 0.479, V5: -0.220, V6: -0.330, V7: -0.066, V8: -0.087, V9: 0.469, V10: 0.192, V11: 0.667, V12: 1.117, V13: 0.356, V14: 0.266, V15: -0.395, V16: 0.310, V17: -0.747, V18: 0.099, V19: 0.166, V20: 0.047, V21: 0.073, V22: 0.103, V23: 0.072, V24: -0.360, V25: -0.234, V26: 0.219, V27: -0.060, V28: -0.047, Amount: 119.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.779, V2: -0.574, V3: -0.992, V4: 0.479, V5: -0.220, V6: -0.330, V7: -0.066, V8: -0.087, V9: 0.469, V10: 0.192, V11: 0.667, V12: 1.117, V13: 0.356, V14: 0.266, V15: -0.395, V16: 0.310, V17: -0.747, V18: 0.099, V19: 0.166, V20: 0.047, V21: 0.073, V22: 0.103, V23: 0.072, V24: -0.360, V25: -0.234, V26: 0.219, V27: -0.060, V28: -0.047, Amount: 119.900.
7,958
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.126, V2: -0.230, V3: -0.097, V4: -0.669, V5: -0.420, V6: -1.079, V7: 0.340, V8: -0.288, V9: 1.027, V10: -1.096, V11: 0.259, V12: 1.359, V13: 0.578, V14: 0.217, V15: 0.829, V16: -1.540, V17: 0.503, V18: -0.939, V19: 0.319, V20: -0.006, V21: 0.078, V22: 0.416, V23: -0.190, V24: 0.465, V25: 0.847, V26: -0.550, V27: 0.046, V28: 0.024, Amount: 66.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.126, V2: -0.230, V3: -0.097, V4: -0.669, V5: -0.420, V6: -1.079, V7: 0.340, V8: -0.288, V9: 1.027, V10: -1.096, V11: 0.259, V12: 1.359, V13: 0.578, V14: 0.217, V15: 0.829, V16: -1.540, V17: 0.503, V18: -0.939, V19: 0.319, V20: -0.006, V21: 0.078, V22: 0.416, V23: -0.190, V24: 0.465, V25: 0.847, V26: -0.550, V27: 0.046, V28: 0.024, Amount: 66.000.
7,959
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.687, V2: -2.050, V3: -2.855, V4: 1.028, V5: -0.051, V6: -0.710, V7: 1.328, V8: -0.486, V9: 0.242, V10: -0.775, V11: -0.422, V12: 0.193, V13: 0.279, V14: -0.801, V15: 0.236, V16: 0.230, V17: 0.765, V18: -0.158, V19: -0.301, V20: 1.317, V21: 0.199, V22: -0.923, V23: -0.412, V24: 0.560, V25: -0.316, V26: 0.265, V27: -0.206, V28: 0.092, Amount: 723.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.687, V2: -2.050, V3: -2.855, V4: 1.028, V5: -0.051, V6: -0.710, V7: 1.328, V8: -0.486, V9: 0.242, V10: -0.775, V11: -0.422, V12: 0.193, V13: 0.279, V14: -0.801, V15: 0.236, V16: 0.230, V17: 0.765, V18: -0.158, V19: -0.301, V20: 1.317, V21: 0.199, V22: -0.923, V23: -0.412, V24: 0.560, V25: -0.316, V26: 0.265, V27: -0.206, V28: 0.092, Amount: 723.790.
7,960
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.401, V2: -0.356, V3: 1.510, V4: -1.366, V5: -0.834, V6: 0.323, V7: 0.085, V8: 0.125, V9: -0.352, V10: -0.280, V11: -2.067, V12: -0.677, V13: 0.197, V14: -0.463, V15: 0.446, V16: -0.866, V17: -0.755, V18: 2.111, V19: -0.900, V20: -0.267, V21: -0.183, V22: -0.168, V23: 0.148, V24: -0.791, V25: -0.472, V26: -0.400, V27: 0.186, V28: 0.185, Amount: 124.050.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.401, V2: -0.356, V3: 1.510, V4: -1.366, V5: -0.834, V6: 0.323, V7: 0.085, V8: 0.125, V9: -0.352, V10: -0.280, V11: -2.067, V12: -0.677, V13: 0.197, V14: -0.463, V15: 0.446, V16: -0.866, V17: -0.755, V18: 2.111, V19: -0.900, V20: -0.267, V21: -0.183, V22: -0.168, V23: 0.148, V24: -0.791, V25: -0.472, V26: -0.400, V27: 0.186, V28: 0.185, Amount: 124.050.
7,961
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.970, V2: 0.390, V3: -2.596, V4: 1.239, V5: 1.375, V6: -0.255, V7: 0.625, V8: -0.177, V9: -0.156, V10: -0.219, V11: 0.654, V12: 0.707, V13: 0.147, V14: -0.909, V15: -1.019, V16: 0.139, V17: 0.499, V18: 0.692, V19: 0.084, V20: -0.103, V21: -0.005, V22: 0.108, V23: -0.115, V24: -0.079, V25: 0.537, V26: -0.505, V27: -0.009, V28: -0.032, Amount: 39.970.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.970, V2: 0.390, V3: -2.596, V4: 1.239, V5: 1.375, V6: -0.255, V7: 0.625, V8: -0.177, V9: -0.156, V10: -0.219, V11: 0.654, V12: 0.707, V13: 0.147, V14: -0.909, V15: -1.019, V16: 0.139, V17: 0.499, V18: 0.692, V19: 0.084, V20: -0.103, V21: -0.005, V22: 0.108, V23: -0.115, V24: -0.079, V25: 0.537, V26: -0.505, V27: -0.009, V28: -0.032, Amount: 39.970.
7,962
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.919, V2: -0.342, V3: 1.113, V4: 1.494, V5: -1.020, V6: -0.200, V7: -0.350, V8: 0.002, V9: 0.615, V10: -0.156, V11: -0.613, V12: 0.639, V13: 0.686, V14: -0.346, V15: 0.536, V16: 0.274, V17: -0.450, V18: 0.157, V19: -0.530, V20: 0.164, V21: 0.208, V22: 0.511, V23: -0.208, V24: 0.437, V25: 0.478, V26: -0.258, V27: 0.047, V28: 0.060, Amount: 134.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.919, V2: -0.342, V3: 1.113, V4: 1.494, V5: -1.020, V6: -0.200, V7: -0.350, V8: 0.002, V9: 0.615, V10: -0.156, V11: -0.613, V12: 0.639, V13: 0.686, V14: -0.346, V15: 0.536, V16: 0.274, V17: -0.450, V18: 0.157, V19: -0.530, V20: 0.164, V21: 0.208, V22: 0.511, V23: -0.208, V24: 0.437, V25: 0.478, V26: -0.258, V27: 0.047, V28: 0.060, Amount: 134.000.
7,963
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.526, V2: 1.187, V3: 0.376, V4: -0.004, V5: 1.386, V6: -0.156, V7: 0.834, V8: 0.148, V9: -0.801, V10: -1.166, V11: 1.168, V12: 0.238, V13: -0.038, V14: -1.300, V15: -0.022, V16: 0.837, V17: 0.396, V18: 0.953, V19: -0.990, V20: -0.103, V21: 0.101, V22: 0.279, V23: -0.280, V24: -0.811, V25: -0.117, V26: -0.499, V27: 0.169, V28: 0.174, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.526, V2: 1.187, V3: 0.376, V4: -0.004, V5: 1.386, V6: -0.156, V7: 0.834, V8: 0.148, V9: -0.801, V10: -1.166, V11: 1.168, V12: 0.238, V13: -0.038, V14: -1.300, V15: -0.022, V16: 0.837, V17: 0.396, V18: 0.953, V19: -0.990, V20: -0.103, V21: 0.101, V22: 0.279, V23: -0.280, V24: -0.811, V25: -0.117, V26: -0.499, V27: 0.169, V28: 0.174, Amount: 1.000.
7,964
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.474, V2: -1.071, V3: 0.441, V4: -1.429, V5: -1.578, V6: -0.721, V7: -1.077, V8: -0.048, V9: -1.959, V10: 1.637, V11: 1.054, V12: -0.705, V13: -0.553, V14: 0.082, V15: -0.027, V16: -0.159, V17: 0.312, V18: 0.573, V19: 0.052, V20: -0.376, V21: -0.173, V22: -0.192, V23: 0.033, V24: 0.293, V25: 0.325, V26: -0.221, V27: 0.020, V28: 0.009, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.474, V2: -1.071, V3: 0.441, V4: -1.429, V5: -1.578, V6: -0.721, V7: -1.077, V8: -0.048, V9: -1.959, V10: 1.637, V11: 1.054, V12: -0.705, V13: -0.553, V14: 0.082, V15: -0.027, V16: -0.159, V17: 0.312, V18: 0.573, V19: 0.052, V20: -0.376, V21: -0.173, V22: -0.192, V23: 0.033, V24: 0.293, V25: 0.325, V26: -0.221, V27: 0.020, V28: 0.009, Amount: 15.000.
7,965
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.257, V2: -1.375, V3: -1.071, V4: -1.521, V5: -1.277, V6: -0.904, V7: -0.995, V8: -0.225, V9: -1.521, V10: 1.791, V11: 0.666, V12: -0.239, V13: 0.083, V14: -0.114, V15: -1.035, V16: -0.641, V17: 0.375, V18: 0.558, V19: 0.017, V20: -0.446, V21: 0.186, V22: 1.079, V23: 0.000, V24: 0.113, V25: 0.131, V26: 0.157, V27: -0.007, V28: -0.070, Amount: 20.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.257, V2: -1.375, V3: -1.071, V4: -1.521, V5: -1.277, V6: -0.904, V7: -0.995, V8: -0.225, V9: -1.521, V10: 1.791, V11: 0.666, V12: -0.239, V13: 0.083, V14: -0.114, V15: -1.035, V16: -0.641, V17: 0.375, V18: 0.558, V19: 0.017, V20: -0.446, V21: 0.186, V22: 1.079, V23: 0.000, V24: 0.113, V25: 0.131, V26: 0.157, V27: -0.007, V28: -0.070, Amount: 20.000.
7,966
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.150, V2: 0.808, V3: -0.591, V4: -0.510, V5: 1.145, V6: -1.116, V7: 0.936, V8: -0.234, V9: 0.014, V10: -1.111, V11: -1.213, V12: -0.653, V13: -0.290, V14: -0.829, V15: 0.579, V16: 0.440, V17: 0.064, V18: 0.899, V19: -0.347, V20: -0.122, V21: 0.221, V22: 0.680, V23: -0.349, V24: -0.734, V25: 0.185, V26: -0.114, V27: 0.027, V28: 0.015, Amount: 4.650.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.150, V2: 0.808, V3: -0.591, V4: -0.510, V5: 1.145, V6: -1.116, V7: 0.936, V8: -0.234, V9: 0.014, V10: -1.111, V11: -1.213, V12: -0.653, V13: -0.290, V14: -0.829, V15: 0.579, V16: 0.440, V17: 0.064, V18: 0.899, V19: -0.347, V20: -0.122, V21: 0.221, V22: 0.680, V23: -0.349, V24: -0.734, V25: 0.185, V26: -0.114, V27: 0.027, V28: 0.015, Amount: 4.650.
7,967
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.645, V2: -0.092, V3: 0.192, V4: 3.984, V5: -0.478, V6: 0.262, V7: -0.375, V8: 0.078, V9: -0.270, V10: 1.319, V11: -1.388, V12: -0.187, V13: 0.092, V14: -0.242, V15: -0.570, V16: 1.207, V17: -0.908, V18: 0.057, V19: -1.782, V20: -0.053, V21: 0.242, V22: 0.559, V23: 0.089, V24: 0.028, V25: -0.280, V26: 0.014, V27: -0.005, V28: -0.011, Amount: 119.100.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.645, V2: -0.092, V3: 0.192, V4: 3.984, V5: -0.478, V6: 0.262, V7: -0.375, V8: 0.078, V9: -0.270, V10: 1.319, V11: -1.388, V12: -0.187, V13: 0.092, V14: -0.242, V15: -0.570, V16: 1.207, V17: -0.908, V18: 0.057, V19: -1.782, V20: -0.053, V21: 0.242, V22: 0.559, V23: 0.089, V24: 0.028, V25: -0.280, V26: 0.014, V27: -0.005, V28: -0.011, Amount: 119.100.
7,968
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.753, V2: 1.275, V3: 0.498, V4: 0.674, V5: 0.556, V6: 0.081, V7: 0.407, V8: 0.433, V9: -0.834, V10: -0.328, V11: -0.984, V12: 0.500, V13: 1.427, V14: 0.373, V15: 1.167, V16: -0.314, V17: -0.116, V18: -0.175, V19: 0.339, V20: 0.166, V21: 0.158, V22: 0.523, V23: -0.170, V24: -0.720, V25: -0.087, V26: -0.239, V27: 0.314, V28: 0.131, Amount: 19.080.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.753, V2: 1.275, V3: 0.498, V4: 0.674, V5: 0.556, V6: 0.081, V7: 0.407, V8: 0.433, V9: -0.834, V10: -0.328, V11: -0.984, V12: 0.500, V13: 1.427, V14: 0.373, V15: 1.167, V16: -0.314, V17: -0.116, V18: -0.175, V19: 0.339, V20: 0.166, V21: 0.158, V22: 0.523, V23: -0.170, V24: -0.720, V25: -0.087, V26: -0.239, V27: 0.314, V28: 0.131, Amount: 19.080.
7,969
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.331, V2: 0.256, V3: -0.352, V4: 0.005, V5: 0.073, V6: -1.180, V7: 0.516, V8: -0.440, V9: -0.294, V10: -0.118, V11: -0.368, V12: 0.640, V13: 1.207, V14: 0.235, V15: 0.663, V16: -0.039, V17: -0.353, V18: -0.711, V19: 0.244, V20: 0.026, V21: -0.053, V22: -0.093, V23: -0.151, V24: 0.152, V25: 0.633, V26: 1.088, V27: -0.109, V28: -0.009, Amount: 16.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.331, V2: 0.256, V3: -0.352, V4: 0.005, V5: 0.073, V6: -1.180, V7: 0.516, V8: -0.440, V9: -0.294, V10: -0.118, V11: -0.368, V12: 0.640, V13: 1.207, V14: 0.235, V15: 0.663, V16: -0.039, V17: -0.353, V18: -0.711, V19: 0.244, V20: 0.026, V21: -0.053, V22: -0.093, V23: -0.151, V24: 0.152, V25: 0.633, V26: 1.088, V27: -0.109, V28: -0.009, Amount: 16.490.
7,970
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.054, V2: 0.133, V3: -2.008, V4: 1.011, V5: 1.014, V6: -0.051, V7: 0.421, V8: -0.099, V9: 0.065, V10: 0.441, V11: 0.029, V12: 0.441, V13: -0.810, V14: 0.794, V15: -1.063, V16: -0.300, V17: -0.603, V18: 0.154, V19: 0.328, V20: -0.291, V21: 0.042, V22: 0.266, V23: -0.045, V24: 0.019, V25: 0.515, V26: -0.498, V27: -0.027, V28: -0.074, Amount: 1.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.054, V2: 0.133, V3: -2.008, V4: 1.011, V5: 1.014, V6: -0.051, V7: 0.421, V8: -0.099, V9: 0.065, V10: 0.441, V11: 0.029, V12: 0.441, V13: -0.810, V14: 0.794, V15: -1.063, V16: -0.300, V17: -0.603, V18: 0.154, V19: 0.328, V20: -0.291, V21: 0.042, V22: 0.266, V23: -0.045, V24: 0.019, V25: 0.515, V26: -0.498, V27: -0.027, V28: -0.074, Amount: 1.990.
7,971
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -6.028, V2: 4.729, V3: -3.104, V4: 0.047, V5: -3.447, V6: -1.080, V7: -2.722, V8: 3.135, V9: -0.155, V10: 0.236, V11: -0.795, V12: 1.767, V13: 0.717, V14: 1.842, V15: 0.922, V16: 0.969, V17: 1.889, V18: -0.508, V19: -0.914, V20: 0.001, V21: 0.620, V22: -1.118, V23: 0.474, V24: 0.322, V25: 0.366, V26: 0.141, V27: 0.188, V28: 0.005, Amount: 44.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -6.028, V2: 4.729, V3: -3.104, V4: 0.047, V5: -3.447, V6: -1.080, V7: -2.722, V8: 3.135, V9: -0.155, V10: 0.236, V11: -0.795, V12: 1.767, V13: 0.717, V14: 1.842, V15: 0.922, V16: 0.969, V17: 1.889, V18: -0.508, V19: -0.914, V20: 0.001, V21: 0.620, V22: -1.118, V23: 0.474, V24: 0.322, V25: 0.366, V26: 0.141, V27: 0.188, V28: 0.005, Amount: 44.990.
7,972
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.366, V2: 0.921, V3: 2.232, V4: 3.194, V5: 0.376, V6: 0.034, V7: 0.480, V8: -0.124, V9: -1.852, V10: 1.213, V11: 1.663, V12: 0.589, V13: 0.765, V14: 0.223, V15: 0.908, V16: -0.208, V17: -0.089, V18: 0.318, V19: 1.749, V20: 0.472, V21: -0.077, V22: -0.193, V23: 0.102, V24: 0.518, V25: -0.621, V26: -0.020, V27: -0.023, V28: -0.071, Amount: 27.830.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.366, V2: 0.921, V3: 2.232, V4: 3.194, V5: 0.376, V6: 0.034, V7: 0.480, V8: -0.124, V9: -1.852, V10: 1.213, V11: 1.663, V12: 0.589, V13: 0.765, V14: 0.223, V15: 0.908, V16: -0.208, V17: -0.089, V18: 0.318, V19: 1.749, V20: 0.472, V21: -0.077, V22: -0.193, V23: 0.102, V24: 0.518, V25: -0.621, V26: -0.020, V27: -0.023, V28: -0.071, Amount: 27.830.
7,973
Detect the credit card fraud using the following financial table attributes. Respond with 'yes' or 'no' Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.182, V2: 0.561, V3: -0.149, V4: 1.252, V5: -0.090, V6: -1.010, V7: 0.140, V8: -0.061, V9: -0.225, V10: -0.372, V11: 1.775, V12: 0.244, V13: -1.011, V14: -0.673, V15: 0.438, V16: 0.682, V17: 0.546, V18: 1.000, V19: -0.364, V20: -0.156, V21: 0.003, V22: 0.001, V23: -0.096, V24: 0.403, V25: 0.605, V26: -0.355, V27: 0.023, V28: 0.041, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.182, V2: 0.561, V3: -0.149, V4: 1.252, V5: -0.090, V6: -1.010, V7: 0.140, V8: -0.061, V9: -0.225, V10: -0.372, V11: 1.775, V12: 0.244, V13: -1.011, V14: -0.673, V15: 0.438, V16: 0.682, V17: 0.546, V18: 1.000, V19: -0.364, V20: -0.156, V21: 0.003, V22: 0.001, V23: -0.096, V24: 0.403, V25: 0.605, V26: -0.355, V27: 0.023, V28: 0.041, Amount: 1.000.