Dataset Viewer
Auto-converted to Parquet
mels_S
float64
-0.34
70.3
lig_S
float64
-0.05
41
mels_N
float64
-0.44
219
hvac_N
float64
0
400
hvac_S
float64
0
350
Timestamp
stringlengths
16
29
1.2
0.2
7.5
37.400002
19.5
2018-01-01 01:00:00
1.3
0.2
6.8
37.5
19.889999
2018-01-01 01:15:00
1.1
0.2
7.4
38
19.299999
2018-01-01 01:30:00
1.2
0.2
7.7
37.200001
18.889999
2018-01-01 01:45:00
1.1
0.2
7.3
37.400002
24.700001
2018-01-01 02:00:00
1.15
0.2
7.4
37.200001
24.9
2018-01-01 02:15:00
1.2
0.2
7.5
38.200001
21.4
2018-01-01 02:30:00
1
0.2
8
38.200001
20.1
2018-01-01 02:45:00
1.1
0.2
6.9
37.400002
18.700001
2018-01-01 03:00:00
1.3
0.1
8.3
37.200001
18.889999
2018-01-01 03:15:00
1.2
0.15
7.9
37.900002
19.200001
2018-01-01 03:30:00
1.1
0.2
7.5
37.700001
18.889999
2018-01-01 03:45:00
1.4
0.2
7.2
37.200001
23.299999
2018-01-01 04:00:00
1.2
0.1
7.9
36.900002
23.9
2018-01-01 04:15:00
1.4
0.2
6.7
35.400002
20.700001
2018-01-01 04:30:00
1.3
0.2
7
37.200001
18.5
2018-01-01 04:45:00
1.2
0.2
6.95
36.200001
18.6
2018-01-01 05:00:00
1.1
0.2
6.9
37.5
19.200001
2018-01-01 05:15:00
1.2
0.2
6.3
37.790001
19
2018-01-01 05:30:00
1.166667
0.2
6.433333
37.599998
19.200001
2018-01-01 05:45:00
1.133333
0.2
6.566667
37.599998
19.5
2018-01-01 06:00:00
1.1
0.2
6.7
38.200001
24.700001
2018-01-01 06:15:00
1.1
0.2
6.7
38.290001
25.9
2018-01-01 06:30:00
1.1
0.2
6.7
38.290001
22.6
2018-01-01 06:45:00
1.1
0.2
6.7
36.700001
20.1
2018-01-01 07:00:00
1.2
0.1
7.2
37.200001
20.700001
2018-01-01 07:15:00
1.3
0.2
7.4
38.099998
20.389999
2018-01-01 07:30:00
1.2
0.2
6.9
37.700001
20.1
2018-01-01 07:45:00
1.1
0.2
7.5
38.5
19.7
2018-01-01 08:00:00
1.133333
0.2
7.266667
38.29
23
2018-01-01 08:15:00
1.166667
0.2
7.033333
36.6
24.3
2018-01-01 08:30:00
1.2
0.2
6.8
36.400002
20.700001
2018-01-01 08:45:00
1.2
0.2
6.8
36.7
18.89
2018-01-01 09:00:00
1.25
0.2
7.15
37
18.389999
2018-01-01 09:15:00
1.3
0.2
7.5
37.6
20.1
2018-01-01 09:30:00
1.4
0.2
7.3
37.900002
19.299999
2018-01-01 09:45:00
1.2
0.2
6.7
37.400002
19.6
2018-01-01 10:00:00
1.1
0.15
6.85
36.7
18.7
2018-01-01 10:15:00
1
0.1
7
35.790001
17.700001
2018-01-01 10:30:00
1.1
0.2
7.3
36.6
18.6
2018-01-01 10:45:00
0.8
0.2
7.3
37
24.700001
2018-01-01 11:00:00
0.95
0.2
6.95
36.700001
23.700001
2018-01-01 11:15:00
1.1
0.2
6.6
66.400002
20
2018-01-01 11:30:00
1.2
0.2
6.9
37.900002
20.1
2018-01-01 11:45:00
1.2
0.2
7.6
36.4
17.8
2018-01-01 12:00:00
1.2
0.2
6.7
35.700001
18.299999
2018-01-01 12:15:00
1.1
0.2
7.5
37
18.200001
2018-01-01 12:30:00
1.3
0.2
7.4
37.4
18.39
2018-01-01 12:45:00
1.2
0.2
7.45
36.599998
18.389999
2018-01-01 13:00:00
1.1
0.2
7.5
35.79
18.39
2018-01-01 13:15:00
1
0.2
7.4
36.1
19.39
2018-01-01 13:30:00
1.1
0.2
7.2
36.9
18.8
2018-01-01 13:45:00
1.2
0.2
7.1
36.790001
19.389999
2018-01-01 14:00:00
1.2
0.2
7
37
19.2
2018-01-01 14:15:00
1.3
0.3
8.4
36.099998
18.1
2018-01-01 14:30:00
1.15
0.2
7.2
35.5
18
2018-01-01 14:45:00
1
0.3
7.5
35.79
23
2018-01-01 15:00:00
1.2
0.3
8
36.5
23.700001
2018-01-01 15:15:00
1.15
0.3
7.55
36.5
23.799999
2018-01-01 15:30:00
1.1
0.3
7.1
36.700001
20.700001
2018-01-01 15:45:00
1
0.3
7.7
36.290001
19.5
2018-01-01 16:00:00
1.05
0.3
7.65
36.79
18.6
2018-01-01 16:15:00
1.1
0.3
7.6
37.200001
18.889999
2018-01-01 16:30:00
1.15
0.3
7.55
37.200001
19.299999
2018-01-01 16:45:00
1.2
0.3
7.5
35.900002
23
2018-01-01 17:00:00
1.2
0.3
8
36
23.1
2018-01-01 17:15:00
1.2
0.3
7.4
36.6
19.2
2018-01-01 17:30:00
1.2
0.3
6.8
36.700001
18.700001
2018-01-01 17:45:00
1.3
0.3
7.1
37.099998
18.889999
2018-01-01 18:00:00
1.4
0.2
7.9
37.099998
19.299999
2018-01-01 18:15:00
1.2
0.3
6.9
37
19.2
2018-01-01 18:30:00
1.233333
0.6
9.533333
37.9
18.1
2018-01-01 18:45:00
1.266667
0.9
12.166667
36.599998
23.700001
2018-01-01 19:00:00
1.3
1.2
14.8
37.400002
24
2018-01-01 19:15:00
1.4
1.15
15
36.1
18.39
2018-01-01 19:30:00
1.5
1.1
15.2
36.29
18.7
2018-01-01 19:45:00
1.3
0.1
14.2
36.5
18.8
2018-01-01 20:00:00
1.3
0.64
14.16
36.7
19.2
2018-01-01 20:15:00
1.3
1.18
14.12
37.099998
19.389999
2018-01-01 20:30:00
1.3
1.72
14.08
37.4
20.39
2018-01-01 20:45:00
1.3
2.26
14.04
38.290001
20
2018-01-01 21:00:00
1.3
2.8
14
37.2
25.3
2018-01-01 21:15:00
1.4
2.6
15.1
37.2
25.6
2018-01-01 21:30:00
1.45
2.1
14.55
35.599998
20.6
2018-01-01 21:45:00
1.5
1.6
14
36.7
17.89
2018-01-01 22:00:00
1.2
1.3
14.2
37.5
18.6
2018-01-01 22:15:00
1.2
1.4
14.2
38.790001
21.299999
2018-01-01 22:30:00
1.3
1.4
14.2
38.5
21.299999
2018-01-01 22:45:00
1.4
1.4
14.2
38.2
20.39
2018-01-01 23:00:00
1.3
1.4
13.9
37.1
18.5
2018-01-01 23:15:00
1.2
1.4
13.6
39.400002
25.200001
2018-01-01 23:30:00
1.3
1.4
14.2
38.900002
25.200001
2018-01-01 23:45:00
1.4
1.4
14.8
38.599998
21.5
2018-01-02 00:00:00
1.3
1.45
14.35
37.6
44.3
2018-01-02 00:15:00
1.2
1.5
13.9
38.2
19.6
2018-01-02 00:30:00
1.2
1.7
13.95
38.5
20.200001
2018-01-02 00:45:00
1.2
1.9
14
38.400002
19.799999
2018-01-02 01:00:00
1.2
1.5
13.3
37.790001
19.6
2018-01-02 01:15:00
1.2
0.1
14
38.400002
19.799999
2018-01-02 01:30:00
0.7
0.2
13.9
38.599998
25.5
2018-01-02 01:45:00
End of preview. Expand in Data Studio

EnergyBench Dataset

A open-source large-scale energy meter dataset designed to support a variety of energy analytics applications, including load profile analysis, and load forecasting. It compiles over 60 detailed electricity consumption datasets encompassing approximately 78,000 real buildings representing the global building stock, offering insights into the temporal and spatial variations in energy consumption. The buildings are classified into two categories: Commercial, which includes 2,900 buildings, and Residential, which includes 75,100 buildings, with a total of 65,000 building-days of time-series data. These buildings span diverse geographies, climatic zones, and operational profiles, providing a broad spectrum of usage patterns. Additional to the real buildings, it also includes synthetic and simulated buildings electricity consumption data.

All processed datasets contain hourly data, with some offering additional 15-minute and 30-minute resolution. To ensure efficient storage, we saved the datasets in Parquet format rather than CSV. For datasets involving a large number of buildings, we partitioned the data into multiple Parquet files.

Metadata of each datasets are provided in metadata.

Table 1: Summary of EnergBench dataset (Real Buildings)

Category # Datasets # Buildings # Days # Hourly Obs
Commercial 20 2,916 16,706 62M
Residential 47 75,121 43,852 1.2B

Table 2: Summary of EnergBench dataset (Synthetic and Simulated Buildings)

Category # Datasets # Buildings # Days # Hourly Obs
Commercial 1 207,559 365 ~1.7B
Residential 4 31M 966 ~718.7B
Downloads last month
202