File size: 5,398 Bytes
c511950 b3fb022 d064b29 b3fb022 d064b29 d79588e d064b29 69faca5 11d1c1f d79588e 69faca5 d79588e d064b29 b3fb022 d064b29 b3fb022 d064b29 b3fb022 d064b29 b3fb022 d064b29 b3fb022 d79588e d064b29 d53367b d064b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: mit
---
# Flood Detection Dataset
## Quick Start
```python
# Example: Loading and filtering data for Dolo Ado in SE Ethiopia, one of the sites explored in our paper (4.17°N, 42.05°E)
import pandas as pd
import rasterio
# Load parquet data
df = pd.read_parquet('N03/N03E042/N03E042-post-processing.parquet')
# Apply recommended filters
filtered_df = df[
(df.dem_metric_2 < 10) &
(df.soil_moisture_sca > 1) &
(df.soil_moisture_zscore > 1) &
(df.soil_moisture > 20) &
(df.temp > 0) &
(df.land_cover != 60) &
(df.edge_false_positives == 0)
]
# Load corresponding geotiff
with rasterio.open('N03/N03E042/N03E042-90m-buffer.tif') as src:
flood_data = src.read(1) # Read first band
```
## Overview
This dataset provides flood detection data from satellite observations. Each geographic area is divided into 3° × 3° tiles (approximately 330km × 330km at the equator).
### What's in each tile?
1. **Parquet file** (post-processing.parquet): Contains detailed observations with timestamps, locations, and environmental metrics
2. **80-meter buffer geotiff** (80m-buffer.tif): Filtered flood extent with 80m safety buffer
3. **240-meter buffer geotiff** (240m-buffer.tif): Filtered flood extent with wider 240m safety buffer
4. **Flood recurrence geotiff with 80-meter buffer** (recurrence-80m-buffer.tif): Number of distinct months with flooding detected.
In the geotiffs:
- **Value 2**: Pixels with flooding detected within the buffer distance (80m or 240m). For the recurrence file, it is number of months with flooding minus 1. So 2=1 month of flooding, 3=2 months of flooding, etc.
- **Value 1**: Default exclusion layer representing areas with potential false positives (rough terrain or arid regions) or false negatives (urban areas)
- **Value 0**: Areas without any flood detection and outside of our exclusion mask
## Finding Your Area of Interest
1. Identify the coordinates of your area
2. Round down to the nearest 3 degrees for both latitude and longitude
3. Use these as the filename. For example:
- For Dolo Ado (4.17°N, 42.05°E)
- Round down to (3°N, 42°E)
- Look for file `N03E042` in the `N03` folder
## Directory Structure
```
├── N03 # Main directory by latitude
│ ├── N03E042 # Subdirectory for specific tile
│ │ ├── N03E042-post-processing.parquet # Tabular data
│ │ ├── N03E042-90m-buffer.parquet # Geotiff with 90m buffer
│ │ └── N03E042-240m-buffer.tif # Geotiff with 240m buffer
```
## Data Description
### Parquet File Schema
| Column | Type | Description | Example Value |
|--------|------|-------------|---------------|
| year | int | Year of observation | 2023 |
| month | int | Month of observation | 7 |
| day | int | Day of observation | 15 |
| lat | float | Latitude of detection | 27.842 |
| lon | float | Longitude of detection | 30.156 |
| filename | str | Sentinel-1 source file | 'S1A_IW_GRDH_1SDV...' |
| land_cover | int | ESA WorldCover class | 40 |
| dem_metric_1 | float | Pixel slope | 2.5 |
| dem_metric_2 | float | Max slope within 240m | 5.8 |
| soil_moisture | float | LPRM soil moisture % | 35.7 |
| soil_moisture_zscore | float | Moisture anomaly | 2.3 |
| soil_moisture_sca | float | SCA soil moisture % | 38.2 |
| soil_moisture_sca_zscore | float | SCA moisture anomaly | 2.1 |
| temp | float | Avg daily min temp °C | 22.4 |
| edge_false_positives | int | Edge effect flag (0=no, 1=yes) | 0 |
### Land Cover Classes
Common values in the `land_cover` column:
- 10: Tree cover
- 20: Shrubland
- 30: Grassland
- 40: Cropland
- 50: Urban/built-up
- 60: Bare ground (typically excluded)
- 70: Snow/Ice
- 80: Permanent Water bodies (excluded in this dataset)
- 90: Wetland
## Recommended Filtering
To reduce false positives, apply these filters:
```python
recommended_filters = {
'dem_metric_2': '< 10', # Exclude steep terrain
'soil_moisture_sca': '> 1', # Ensure meaningful soil moisture
'soil_moisture_zscore': '> 1', # Above normal moisture
'soil_moisture': '> 20', # Sufficient moisture present
'temp': '> 0', # Above freezing
'land_cover': '!= 60', # Exclude bare ground
'edge_false_positives': '= 0' # Remove edge artifacts
}
```
## Spatial Resolution
Current data resolution (as of Feb 24,2025):
- ✅ Global geotiffs: 20-meter resolution
- ✅ Africa parquet files: 20-meter resolution
- ⏳ Rest of world parquet files: 30-meter resolution
- Update to 20-meter expected later this year
## Common Issues and Solutions
1. **Edge Effects**: If you see suspicious linear patterns near tile edges, use the `edge_false_positives` filter
2. **Desert Areas**: Consider stricter soil moisture thresholds in arid regions
3. **Mountain Regions**: You may need to adjust `dem_metric_2` threshold based on your needs
## Known Limitations
- Detection quality may be reduced in urban areas and areas with dense vegetation cover
- While we try to control for false positives, certain soil types can still lead to false positives
## Citation
If you use this dataset, please cite our paper: https://arxiv.org/abs/2411.01411
## Questions or Issues?
Please open an issue on our GitHub repository at https://github.com/microsoft/ai4g-flood or contact us at [[email protected]] |