Update README.md
Browse files
README.md
CHANGED
@@ -3,57 +3,123 @@ license: mit
|
|
3 |
---
|
4 |
# Flood Detection Dataset
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
## Overview
|
7 |
-
This
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
## Directory Structure
|
10 |
```
|
11 |
-
├──
|
12 |
-
│ ├──
|
13 |
-
│ │ ├──
|
14 |
-
│ │ ├──
|
15 |
-
│ │ └──
|
16 |
```
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
24 |
-
|
25 |
-
|
|
26 |
-
|
|
27 |
-
|
|
28 |
-
|
|
29 |
-
|
|
30 |
-
|
|
31 |
-
|
|
32 |
-
|
|
33 |
-
|
|
34 |
-
|
|
35 |
-
|
|
36 |
-
|
|
37 |
-
|
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
## Recommended Filtering
|
42 |
-
|
43 |
|
44 |
```python
|
45 |
-
|
46 |
-
'dem_metric_2': '< 10',
|
47 |
-
'soil_moisture_sca': '> 1',
|
48 |
-
'soil_moisture_zscore': '> 1',
|
49 |
-
'soil_moisture': '> 20',
|
50 |
-
'temp': '> 0',
|
51 |
-
'land_cover': '!= 60',
|
52 |
-
'edge_false_positives': '= 0'
|
53 |
}
|
54 |
```
|
55 |
|
56 |
## Spatial Resolution
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
# Flood Detection Dataset
|
5 |
|
6 |
+
## Quick Start
|
7 |
+
```python
|
8 |
+
# Example: Loading and filtering data for Dolo Ado in SE Ethiopia, one of the sites explored in our paper (4.17°N, 42.05°E)
|
9 |
+
import pandas as pd
|
10 |
+
import rasterio
|
11 |
+
|
12 |
+
# Load parquet data
|
13 |
+
df = pd.read_parquet('N03/N03E042/N03E042-post-processing.parquet')
|
14 |
+
|
15 |
+
# Apply recommended filters
|
16 |
+
filtered_df = df[
|
17 |
+
(df.dem_metric_2 < 10) &
|
18 |
+
(df.soil_moisture_sca > 1) &
|
19 |
+
(df.soil_moisture_zscore > 1) &
|
20 |
+
(df.soil_moisture > 20) &
|
21 |
+
(df.temp > 0) &
|
22 |
+
(df.land_cover != 60) &
|
23 |
+
(df.edge_false_positives == 0)
|
24 |
+
]
|
25 |
+
|
26 |
+
# Load corresponding geotiff
|
27 |
+
with rasterio.open('N03/N03E042/N03E042-90m-buffer.tif') as src:
|
28 |
+
flood_data = src.read(1) # Read first band
|
29 |
+
```
|
30 |
+
|
31 |
## Overview
|
32 |
+
This dataset provides flood detection data from satellite observations. Each geographic area is divided into 3° × 3° tiles (approximately 330km × 330km at the equator).
|
33 |
+
|
34 |
+
### What's in each tile?
|
35 |
+
1. **Parquet file** (post-processing.parquet): Contains detailed observations with timestamps, locations, and environmental metrics
|
36 |
+
2. **90-meter buffer geotiff** (90m-buffer.tif): Filtered flood extent with 90m safety buffer
|
37 |
+
3. **240-meter buffer geotiff** (240m-buffer.tif): Filtered flood extent with wider 240m safety buffer
|
38 |
+
Note: for some tiles, there are no flood detections. In these cases, there aren't any geotiffs provided
|
39 |
+
|
40 |
+
## Finding Your Area of Interest
|
41 |
+
1. Identify the coordinates of your area
|
42 |
+
2. Round down to the nearest 3 degrees for both latitude and longitude
|
43 |
+
3. Use these as the filename. For example:
|
44 |
+
- For Dolo Ado (4.17°N, 42.05°E)
|
45 |
+
- Round down to (3°N, 42°E)
|
46 |
+
- Look for file `N03E042` in the `N03` folder
|
47 |
|
48 |
## Directory Structure
|
49 |
```
|
50 |
+
├── N03 # Main directory by latitude
|
51 |
+
│ ├── N03E042 # Subdirectory for specific tile
|
52 |
+
│ │ ├── N03E042-post-processing.parquet # Tabular data
|
53 |
+
│ │ ├── N03E042-90m-buffer.parquet # Geotiff with 90m buffer
|
54 |
+
│ │ └── N03E042-240m-buffer.tif # Geotiff with 240m buffer
|
55 |
```
|
56 |
|
57 |
+
## Data Description
|
58 |
+
|
59 |
+
### Parquet File Schema
|
60 |
+
| Column | Type | Description | Example Value |
|
61 |
+
|--------|------|-------------|---------------|
|
62 |
+
| year | int | Year of observation | 2023 |
|
63 |
+
| month | int | Month of observation | 7 |
|
64 |
+
| day | int | Day of observation | 15 |
|
65 |
+
| lat | float | Latitude of detection | 27.842 |
|
66 |
+
| lon | float | Longitude of detection | 30.156 |
|
67 |
+
| filename | str | Sentinel-1 source file | 'S1A_IW_GRDH_1SDV...' |
|
68 |
+
| land_cover | int | ESA WorldCover class | 40 |
|
69 |
+
| dem_metric_1 | float | Pixel slope | 2.5 |
|
70 |
+
| dem_metric_2 | float | Max slope within 240m | 5.8 |
|
71 |
+
| soil_moisture | float | LPRM soil moisture % | 35.7 |
|
72 |
+
| soil_moisture_zscore | float | Moisture anomaly | 2.3 |
|
73 |
+
| soil_moisture_sca | float | SCA soil moisture % | 38.2 |
|
74 |
+
| soil_moisture_sca_zscore | float | SCA moisture anomaly | 2.1 |
|
75 |
+
| temp | float | Avg daily min temp °C | 22.4 |
|
76 |
+
| edge_false_positives | int | Edge effect flag (0=no, 1=yes) | 0 |
|
77 |
+
|
78 |
+
### Land Cover Classes
|
79 |
+
Common values in the `land_cover` column:
|
80 |
+
- 10: Tree cover
|
81 |
+
- 20: Shrubland
|
82 |
+
- 30: Grassland
|
83 |
+
- 40: Cropland
|
84 |
+
- 50: Urban/built-up
|
85 |
+
- 60: Bare ground (typically excluded)
|
86 |
+
- 70: Snow/Ice
|
87 |
+
- 80: Permanent Water bodies (excluded in this dataset)
|
88 |
+
- 90: Wetland
|
89 |
|
90 |
## Recommended Filtering
|
91 |
+
To reduce false positives, apply these filters:
|
92 |
|
93 |
```python
|
94 |
+
recommended_filters = {
|
95 |
+
'dem_metric_2': '< 10', # Exclude steep terrain
|
96 |
+
'soil_moisture_sca': '> 1', # Ensure meaningful soil moisture
|
97 |
+
'soil_moisture_zscore': '> 1', # Above normal moisture
|
98 |
+
'soil_moisture': '> 20', # Sufficient moisture present
|
99 |
+
'temp': '> 0', # Above freezing
|
100 |
+
'land_cover': '!= 60', # Exclude bare ground
|
101 |
+
'edge_false_positives': '= 0' # Remove edge artifacts
|
102 |
}
|
103 |
```
|
104 |
|
105 |
## Spatial Resolution
|
106 |
+
Current data resolution (as of Oct 31, 2024):
|
107 |
+
- ✅ Africa: 20-meter resolution
|
108 |
+
- ✅ South America: 20-meter resolution
|
109 |
+
- ⏳ Rest of world: 30-meter resolution
|
110 |
+
- Update to 20-meter expected later this year
|
111 |
+
|
112 |
+
## Common Issues and Solutions
|
113 |
+
1. **Edge Effects**: If you see suspicious linear patterns near tile edges, use the `edge_false_positives` filter
|
114 |
+
2. **Desert Areas**: Consider stricter soil moisture thresholds in arid regions
|
115 |
+
3. **Mountain Regions**: You may need to adjust `dem_metric_2` threshold based on your needs
|
116 |
+
|
117 |
+
## Known Limitations
|
118 |
+
- Detection quality may be reduced in urban areas and areas with dense vegetation cover
|
119 |
+
- While we try to control for false positives, certain soil types can still lead to false positives
|
120 |
+
|
121 |
+
## Citation
|
122 |
+
If you use this dataset, please cite our paper: [Paper citation to be added]
|
123 |
+
|
124 |
+
## Questions or Issues?
|
125 |
+
Please open an issue on our GitHub repository at https://github.com/microsoft/ai4g-flood or contact us at [[email protected]]
|