Datasets:

Modalities:
Image
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
License:
amitmisra commited on
Commit
d064b29
·
verified ·
1 Parent(s): f6cd622

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -40
README.md CHANGED
@@ -3,57 +3,123 @@ license: mit
3
  ---
4
  # Flood Detection Dataset
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ## Overview
7
- This repository contains model output parquet files and geotiffs from our flood detection research. The data is organized in 3° × 3° tiles, with each tile containing both tabular data and processed geotiff images.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  ## Directory Structure
10
  ```
11
- ├── N27 # Main directory by latitude
12
- │ ├── N27E030 # Subdirectory for specific tile
13
- │ │ ├── N27E030.parquet # Tabular data
14
- │ │ ├── N27E030_90m.tif # Geotiff with 90m buffer
15
- │ │ └── N27E030_240m.tif # Geotiff with 240m buffer
16
  ```
17
 
18
- The naming convention uses the southwest corner coordinates of each tile. For example, `N27E030` represents:
19
- - Latitude: 27°N to 30°N
20
- - Longitude: 30°E to 33°E
21
-
22
- ## Schema
23
- | Column | Type | Description |
24
- |--------|------|-------------|
25
- | year | int | Year of observation |
26
- | month | int | Month of observation |
27
- | day | int | Day of observation |
28
- | lat | float | Latitude of potential flood detection (pixel center) |
29
- | lon | float | Longitude of potential flood detection (pixel center) |
30
- | filename | str | Corresponding Sentinel-1 file name |
31
- | land_cover | int | ESA WorldCover land cover classification |
32
- | dem_metric_1 | float | Individual pixel slope |
33
- | dem_metric_2 | float | Maximum slope within 240m |
34
- | soil_moisture | float | LPRM algorithm absolute soil moisture (%) |
35
- | soil_moisture_zscore | float | Soil moisture anomaly (Oct 2014-Sep 2024 baseline) |
36
- | soil_moisture_sca | float | SCA algorithm absolute soil moisture (%) |
37
- | soil_moisture_sca_zscore | float | SCA soil moisture anomaly (Oct 2014-Sep 2024 baseline) |
38
- | temp | float | Average daily minimum temperature (1991-2020 climate) |
39
- | edge_false_positives | int | Edge effect detection flag |
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Recommended Filtering
42
- For optimal results, we recommend applying the following filters:
43
 
44
  ```python
45
- filters = {
46
- 'dem_metric_2': '< 10',
47
- 'soil_moisture_sca': '> 1',
48
- 'soil_moisture_zscore': '> 1',
49
- 'soil_moisture': '> 20',
50
- 'temp': '> 0',
51
- 'land_cover': '!= 60', # exclude bare ground
52
- 'edge_false_positives': '= 0'
53
  }
54
  ```
55
 
56
  ## Spatial Resolution
57
- - Current Status (Oct 31, 2024):
58
- - Africa and South America: 20-meter resolution
59
- - Rest of world: 30-meter resolution (20-meter update expected later this year)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
  # Flood Detection Dataset
5
 
6
+ ## Quick Start
7
+ ```python
8
+ # Example: Loading and filtering data for Dolo Ado in SE Ethiopia, one of the sites explored in our paper (4.17°N, 42.05°E)
9
+ import pandas as pd
10
+ import rasterio
11
+
12
+ # Load parquet data
13
+ df = pd.read_parquet('N03/N03E042/N03E042-post-processing.parquet')
14
+
15
+ # Apply recommended filters
16
+ filtered_df = df[
17
+ (df.dem_metric_2 < 10) &
18
+ (df.soil_moisture_sca > 1) &
19
+ (df.soil_moisture_zscore > 1) &
20
+ (df.soil_moisture > 20) &
21
+ (df.temp > 0) &
22
+ (df.land_cover != 60) &
23
+ (df.edge_false_positives == 0)
24
+ ]
25
+
26
+ # Load corresponding geotiff
27
+ with rasterio.open('N03/N03E042/N03E042-90m-buffer.tif') as src:
28
+ flood_data = src.read(1) # Read first band
29
+ ```
30
+
31
  ## Overview
32
+ This dataset provides flood detection data from satellite observations. Each geographic area is divided into 3° × 3° tiles (approximately 330km × 330km at the equator).
33
+
34
+ ### What's in each tile?
35
+ 1. **Parquet file** (post-processing.parquet): Contains detailed observations with timestamps, locations, and environmental metrics
36
+ 2. **90-meter buffer geotiff** (90m-buffer.tif): Filtered flood extent with 90m safety buffer
37
+ 3. **240-meter buffer geotiff** (240m-buffer.tif): Filtered flood extent with wider 240m safety buffer
38
+ Note: for some tiles, there are no flood detections. In these cases, there aren't any geotiffs provided
39
+
40
+ ## Finding Your Area of Interest
41
+ 1. Identify the coordinates of your area
42
+ 2. Round down to the nearest 3 degrees for both latitude and longitude
43
+ 3. Use these as the filename. For example:
44
+ - For Dolo Ado (4.17°N, 42.05°E)
45
+ - Round down to (3°N, 42°E)
46
+ - Look for file `N03E042` in the `N03` folder
47
 
48
  ## Directory Structure
49
  ```
50
+ ├── N03 # Main directory by latitude
51
+ │ ├── N03E042 # Subdirectory for specific tile
52
+ │ │ ├── N03E042-post-processing.parquet # Tabular data
53
+ │ │ ├── N03E042-90m-buffer.parquet # Geotiff with 90m buffer
54
+ │ │ └── N03E042-240m-buffer.tif # Geotiff with 240m buffer
55
  ```
56
 
57
+ ## Data Description
58
+
59
+ ### Parquet File Schema
60
+ | Column | Type | Description | Example Value |
61
+ |--------|------|-------------|---------------|
62
+ | year | int | Year of observation | 2023 |
63
+ | month | int | Month of observation | 7 |
64
+ | day | int | Day of observation | 15 |
65
+ | lat | float | Latitude of detection | 27.842 |
66
+ | lon | float | Longitude of detection | 30.156 |
67
+ | filename | str | Sentinel-1 source file | 'S1A_IW_GRDH_1SDV...' |
68
+ | land_cover | int | ESA WorldCover class | 40 |
69
+ | dem_metric_1 | float | Pixel slope | 2.5 |
70
+ | dem_metric_2 | float | Max slope within 240m | 5.8 |
71
+ | soil_moisture | float | LPRM soil moisture % | 35.7 |
72
+ | soil_moisture_zscore | float | Moisture anomaly | 2.3 |
73
+ | soil_moisture_sca | float | SCA soil moisture % | 38.2 |
74
+ | soil_moisture_sca_zscore | float | SCA moisture anomaly | 2.1 |
75
+ | temp | float | Avg daily min temp °C | 22.4 |
76
+ | edge_false_positives | int | Edge effect flag (0=no, 1=yes) | 0 |
77
+
78
+ ### Land Cover Classes
79
+ Common values in the `land_cover` column:
80
+ - 10: Tree cover
81
+ - 20: Shrubland
82
+ - 30: Grassland
83
+ - 40: Cropland
84
+ - 50: Urban/built-up
85
+ - 60: Bare ground (typically excluded)
86
+ - 70: Snow/Ice
87
+ - 80: Permanent Water bodies (excluded in this dataset)
88
+ - 90: Wetland
89
 
90
  ## Recommended Filtering
91
+ To reduce false positives, apply these filters:
92
 
93
  ```python
94
+ recommended_filters = {
95
+ 'dem_metric_2': '< 10', # Exclude steep terrain
96
+ 'soil_moisture_sca': '> 1', # Ensure meaningful soil moisture
97
+ 'soil_moisture_zscore': '> 1', # Above normal moisture
98
+ 'soil_moisture': '> 20', # Sufficient moisture present
99
+ 'temp': '> 0', # Above freezing
100
+ 'land_cover': '!= 60', # Exclude bare ground
101
+ 'edge_false_positives': '= 0' # Remove edge artifacts
102
  }
103
  ```
104
 
105
  ## Spatial Resolution
106
+ Current data resolution (as of Oct 31, 2024):
107
+ - Africa: 20-meter resolution
108
+ - South America: 20-meter resolution
109
+ - ⏳ Rest of world: 30-meter resolution
110
+ - Update to 20-meter expected later this year
111
+
112
+ ## Common Issues and Solutions
113
+ 1. **Edge Effects**: If you see suspicious linear patterns near tile edges, use the `edge_false_positives` filter
114
+ 2. **Desert Areas**: Consider stricter soil moisture thresholds in arid regions
115
+ 3. **Mountain Regions**: You may need to adjust `dem_metric_2` threshold based on your needs
116
+
117
+ ## Known Limitations
118
+ - Detection quality may be reduced in urban areas and areas with dense vegetation cover
119
+ - While we try to control for false positives, certain soil types can still lead to false positives
120
+
121
+ ## Citation
122
+ If you use this dataset, please cite our paper: [Paper citation to be added]
123
+
124
+ ## Questions or Issues?
125
+ Please open an issue on our GitHub repository at https://github.com/microsoft/ai4g-flood or contact us at [[email protected]]