File size: 1,448 Bytes
3c0e32d 4fef7f3 3c0e32d 5693b90 4fef7f3 5693b90 4fef7f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
---
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 13421862.0
num_examples: 200
download_size: 13211013
dataset_size: 13421862.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
task_categories:
- image-to-text
---
KITAB-Bench is a comprehensive multi-domain benchmark for Arabic OCR and document understanding. It evaluates the performance of traditional OCR, vision-language models (VLMs), and specialized AI systems on diverse document types including PDFs, handwritten text, structured tables, financial & legal reports, and more. The benchmark includes nine major domains across 8,809 samples and offers novel evaluation metrics such as Markdown Recognition Score (MARS), Table Edit Distance Score (TEDS), and Chart Representation Metric (SCRM).
**Key Features:**
* 9 major domains & 36 sub-domains
* Diverse document types: PDFs, handwritten text, structured tables, financial & legal reports
* Strong baselines: Benchmarked against Tesseract, GPT-4o, Gemini, Qwen, and more
* Novel evaluation metrics: MARS, TEDS, SCRM, and more
**Please see paper & code for more information:**
- [Paper](https://arxiv.org/abs/2502.14949)
- [Project Page](https://mbzuai-oryx.github.io/KITAB-Bench/)
- [Github Repository](https://github.com/mbzuai-oryx/KITAB-Bench) |