nielsr HF Staff commited on
Commit
4fef7f3
·
verified ·
1 Parent(s): 5693b90

Improve dataset card with description, license, and task category

Browse files

This PR improves the dataset card by:

- Adding a more detailed description of the KITAB-Bench dataset.
- Specifying the `license` as `apache-2.0`.
- Setting the `task_categories` to `image-to-text`.
- Adding a link to the project page (already present in the README but not prominently featured in the dataset card)

Files changed (1) hide show
  1. README.md +15 -2
README.md CHANGED
@@ -18,8 +18,21 @@ configs:
18
  data_files:
19
  - split: train
20
  path: data/train-*
 
 
 
21
  ---
22
 
 
 
 
 
 
 
 
 
 
23
  **Please see paper & code for more information:**
24
- - https://github.com/mbzuai-oryx/KITAB-Bench
25
- - https://arxiv.org/abs/2502.14949
 
 
18
  data_files:
19
  - split: train
20
  path: data/train-*
21
+ license: apache-2.0
22
+ task_categories:
23
+ - image-to-text
24
  ---
25
 
26
+ KITAB-Bench is a comprehensive multi-domain benchmark for Arabic OCR and document understanding. It evaluates the performance of traditional OCR, vision-language models (VLMs), and specialized AI systems on diverse document types including PDFs, handwritten text, structured tables, financial & legal reports, and more. The benchmark includes nine major domains across 8,809 samples and offers novel evaluation metrics such as Markdown Recognition Score (MARS), Table Edit Distance Score (TEDS), and Chart Representation Metric (SCRM).
27
+
28
+ **Key Features:**
29
+
30
+ * 9 major domains & 36 sub-domains
31
+ * Diverse document types: PDFs, handwritten text, structured tables, financial & legal reports
32
+ * Strong baselines: Benchmarked against Tesseract, GPT-4o, Gemini, Qwen, and more
33
+ * Novel evaluation metrics: MARS, TEDS, SCRM, and more
34
+
35
  **Please see paper & code for more information:**
36
+ - [Paper](https://arxiv.org/abs/2502.14949)
37
+ - [Project Page](https://mbzuai-oryx.github.io/KITAB-Bench/)
38
+ - [Github Repository](https://github.com/mbzuai-oryx/KITAB-Bench)