Improve dataset card and add metadata

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +26 -32
README.md CHANGED
@@ -1,35 +1,29 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: width
5
- dtype: int64
6
- - name: height
7
- dtype: int64
8
- - name: total_regions
9
- dtype: int64
10
- - name: region_types
11
- dtype: string
12
- - name: text_types
13
- dtype: string
14
- - name: normalized_bounding_boxes
15
- dtype: string
16
- - name: category
17
- dtype: string
18
- - name: image
19
- dtype: image
20
- splits:
21
- - name: train
22
- num_bytes: 734884430.593
23
- num_examples: 1701
24
- download_size: 682479522
25
- dataset_size: 734884430.593
26
- configs:
27
- - config_name: default
28
- data_files:
29
- - split: train
30
- path: data/train-*
31
  ---
32
 
33
- **Please see paper & code for more information:**
34
- - https://github.com/mbzuai-oryx/KITAB-Bench
35
- - https://arxiv.org/abs/2502.14949
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ task_categories:
4
+ - image-segmentation
5
+ tags:
6
+ - arabic
7
+ - ocr
8
+ - document-understanding
9
+ - layout-analysis
10
+ - table-recognition
11
+ - chart-recognition
12
+ - vqa
13
+ - benchmark
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
+ KITAB-Bench is a comprehensive benchmark for Arabic OCR and document understanding. It evaluates performance across multiple tasks, including OCR, layout detection, table recognition, chart extraction, and visual question answering (VQA). The benchmark includes diverse document types from 9 major domains and 36 sub-domains, offering a robust evaluation of Arabic document processing capabilities.
17
+
18
+ **Key Features:**
19
+
20
+ * **Diverse Datasets:** Covers various document types (PDFs, handwritten text, tables, charts, etc.).
21
+ * **Multiple Tasks:** Evaluates OCR, layout detection, table recognition, chart extraction, and VQA.
22
+ * **Comprehensive Evaluation:** Uses established and novel metrics tailored to Arabic document processing.
23
+ * **Strong Baselines:** Provides performance results for leading models, including GPT-4o and Gemini.
24
+
25
+ **Paper:** [KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding](https://arxiv.org/abs/2502.14949)
26
+
27
+ **Code:** [https://github.com/mbzuai-oryx/KITAB-Bench](https://github.com/mbzuai-oryx/KITAB-Bench)
28
+
29
+ **Project Page:** [https://mbzuai-oryx.github.io/KITAB-Bench/](https://mbzuai-oryx.github.io/KITAB-Bench/)