AudioSet / AudioSet.py
agkphysics's picture
Add unbalanced config. Fix memory leak.
5a2fa42 unverified
# Copyright (C) 2024 Aaron Keesing
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# “Software”), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from itertools import chain
import json
import os
import tarfile
import pandas as pd
import datasets
_CITATION = """\
@inproceedings{45857,
title = {Audio Set: An ontology and human-labeled dataset for audio events},
author = {Jort F. Gemmeke and Daniel P. W. Ellis and Dylan Freedman and Aren Jansen and Wade Lawrence and R. Channing Moore and Manoj Plakal and Marvin Ritter},
year = {2017},
booktitle = {Proc. IEEE ICASSP 2017},
address = {New Orleans, LA}
}
"""
_DESCRIPTION = """\
This repository contains the balanced training set and evaluation set of the AudioSet
data, described here: https://research.google.com/audioset/dataset/index.html. The
YouTube videos were downloaded in March 2023, and so not all of the original audios are
available.
"""
_HOMEPAGE = "https://research.google.com/audioset/dataset/index.html"
_LICENSE = "cc-by-4.0"
_URL_PREFIX = "https://huggingface.co/datasets/agkphysics/AudioSet/resolve/main"
_N_BAL_TRAIN_TARS = 10
_N_UNBAL_TRAIN_TARS = 870
_N_EVAL_TARS = 9
def _iter_tar(path):
"""Iterate through the tar archive, but without skipping some files, which the HF
DL does.
"""
with open(path, "rb") as fid:
stream = tarfile.open(fileobj=fid, mode="r|*")
for tarinfo in stream:
file_obj = stream.extractfile(tarinfo)
yield tarinfo.name, file_obj
stream.members = []
del stream
class AudioSetDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="balanced",
version=VERSION,
description="Balanced training and balanced evaluation set.",
),
datasets.BuilderConfig(
name="unbalanced",
version=VERSION,
description="Full unbalanced training set and balanced evaluation set.",
),
]
DEFAULT_CONFIG_NAME = "balanced"
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=datasets.Features(
{
"video_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=None, mono=True, decode=True),
"labels": datasets.Sequence(datasets.Value("string")),
"human_labels": datasets.Sequence(datasets.Value("string")),
}
),
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
if self.config.data_dir:
prefix = self.config.data_dir
else:
prefix = _URL_PREFIX
prefix = prefix + "/data"
_LABEL_URLS = {
"bal_train": (
f"{prefix}/balanced_train_segments.csv"
if self.config.name == "balanced"
else f"{prefix}/unbalanced_train_segments.csv"
),
"eval": f"{prefix}/eval_segments.csv",
"ontology": f"{prefix}/ontology.json",
}
_DATA_URLS = {
"bal_train": (
[f"{prefix}/bal_train0{i}.tar" for i in range(_N_BAL_TRAIN_TARS)]
if self.config.name == "balanced"
else [
f"{prefix}/unbal_train{i:03d}.tar"
for i in range(_N_UNBAL_TRAIN_TARS)
]
),
"eval": [f"{prefix}/eval0{i}.tar" for i in range(_N_EVAL_TARS)],
}
tar_files = dl_manager.download(_DATA_URLS)
label_files = dl_manager.download(_LABEL_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"labels": label_files["bal_train"],
"ontology": label_files["ontology"],
"audio_files": chain.from_iterable(
_iter_tar(x) for x in tar_files["bal_train"]
),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"labels": label_files["eval"],
"ontology": label_files["ontology"],
"audio_files": chain.from_iterable(
_iter_tar(x) for x in tar_files["eval"]
),
},
),
]
def _generate_examples(self, labels, ontology, audio_files):
with open(ontology) as fid:
ontology_data = json.load(fid)
id_to_name = {x["id"]: x["name"] for x in ontology_data}
labels_df = pd.read_csv(
labels,
skiprows=3,
header=None,
skipinitialspace=True,
names=["vid_id", "start", "end", "labels"],
index_col="vid_id",
)
for path, fid in audio_files:
vid_id = os.path.splitext(os.path.basename(path))[0]
label_ids = labels_df.loc[vid_id, "labels"].split(",")
human_labels = [id_to_name[x] for x in label_ids]
example = {
"video_id": vid_id,
"labels": label_ids,
"human_labels": human_labels,
"audio": {"path": path, "bytes": fid.read()},
}
yield vid_id, example