Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Size:
10K<n<100K
Tags:
audio
License:
File size: 6,545 Bytes
e1a0de8 5a2fa42 e1a0de8 5a2fa42 e1a0de8 4e17ae0 e1a0de8 5a2fa42 e1a0de8 5a2fa42 e1a0de8 5a2fa42 e1a0de8 5a2fa42 e1a0de8 5a2fa42 e1a0de8 5a2fa42 e1a0de8 5a2fa42 e1a0de8 5a2fa42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# Copyright (C) 2024 Aaron Keesing
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# “Software”), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from itertools import chain
import json
import os
import tarfile
import pandas as pd
import datasets
_CITATION = """\
@inproceedings{45857,
title = {Audio Set: An ontology and human-labeled dataset for audio events},
author = {Jort F. Gemmeke and Daniel P. W. Ellis and Dylan Freedman and Aren Jansen and Wade Lawrence and R. Channing Moore and Manoj Plakal and Marvin Ritter},
year = {2017},
booktitle = {Proc. IEEE ICASSP 2017},
address = {New Orleans, LA}
}
"""
_DESCRIPTION = """\
This repository contains the balanced training set and evaluation set of the AudioSet
data, described here: https://research.google.com/audioset/dataset/index.html. The
YouTube videos were downloaded in March 2023, and so not all of the original audios are
available.
"""
_HOMEPAGE = "https://research.google.com/audioset/dataset/index.html"
_LICENSE = "cc-by-4.0"
_URL_PREFIX = "https://huggingface.co/datasets/agkphysics/AudioSet/resolve/main"
_N_BAL_TRAIN_TARS = 10
_N_UNBAL_TRAIN_TARS = 870
_N_EVAL_TARS = 9
def _iter_tar(path):
"""Iterate through the tar archive, but without skipping some files, which the HF
DL does.
"""
with open(path, "rb") as fid:
stream = tarfile.open(fileobj=fid, mode="r|*")
for tarinfo in stream:
file_obj = stream.extractfile(tarinfo)
yield tarinfo.name, file_obj
stream.members = []
del stream
class AudioSetDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="balanced",
version=VERSION,
description="Balanced training and balanced evaluation set.",
),
datasets.BuilderConfig(
name="unbalanced",
version=VERSION,
description="Full unbalanced training set and balanced evaluation set.",
),
]
DEFAULT_CONFIG_NAME = "balanced"
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=datasets.Features(
{
"video_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=None, mono=True, decode=True),
"labels": datasets.Sequence(datasets.Value("string")),
"human_labels": datasets.Sequence(datasets.Value("string")),
}
),
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
if self.config.data_dir:
prefix = self.config.data_dir
else:
prefix = _URL_PREFIX
prefix = prefix + "/data"
_LABEL_URLS = {
"bal_train": (
f"{prefix}/balanced_train_segments.csv"
if self.config.name == "balanced"
else f"{prefix}/unbalanced_train_segments.csv"
),
"eval": f"{prefix}/eval_segments.csv",
"ontology": f"{prefix}/ontology.json",
}
_DATA_URLS = {
"bal_train": (
[f"{prefix}/bal_train0{i}.tar" for i in range(_N_BAL_TRAIN_TARS)]
if self.config.name == "balanced"
else [
f"{prefix}/unbal_train{i:03d}.tar"
for i in range(_N_UNBAL_TRAIN_TARS)
]
),
"eval": [f"{prefix}/eval0{i}.tar" for i in range(_N_EVAL_TARS)],
}
tar_files = dl_manager.download(_DATA_URLS)
label_files = dl_manager.download(_LABEL_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"labels": label_files["bal_train"],
"ontology": label_files["ontology"],
"audio_files": chain.from_iterable(
_iter_tar(x) for x in tar_files["bal_train"]
),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"labels": label_files["eval"],
"ontology": label_files["ontology"],
"audio_files": chain.from_iterable(
_iter_tar(x) for x in tar_files["eval"]
),
},
),
]
def _generate_examples(self, labels, ontology, audio_files):
with open(ontology) as fid:
ontology_data = json.load(fid)
id_to_name = {x["id"]: x["name"] for x in ontology_data}
labels_df = pd.read_csv(
labels,
skiprows=3,
header=None,
skipinitialspace=True,
names=["vid_id", "start", "end", "labels"],
index_col="vid_id",
)
for path, fid in audio_files:
vid_id = os.path.splitext(os.path.basename(path))[0]
label_ids = labels_df.loc[vid_id, "labels"].split(",")
human_labels = [id_to_name[x] for x in label_ids]
example = {
"video_id": vid_id,
"labels": label_ids,
"human_labels": human_labels,
"audio": {"path": path, "bytes": fid.read()},
}
yield vid_id, example
|