Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #define _USE_MATH_DEFINES
#include <iostream>
#include <fstream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
#include <utility>
#include <complex>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <deque>
#include <tuple>
#include <bitset>
#include <algorithm>
#include <random>
using namespace std;
typedef long double ld;
typedef long long ll;
typedef vector<int> vint;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
typedef complex<ld> compd;
#define rep(i,n) for(int i=0;i<n;i++)
#define srep(i,a,n) for(int i=a;i<n;i++)
#define REP(i,n) for(int i=0;i<=n;i++)
#define SREP(i,a,n) for(int i=a;i<=n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define RREP(i,n) for(int i=n;i>=0;i--)
#define all(a) (a).begin(),(a).end()
#define mp(a,b) make_pair(a,b)
#define mt make_tuple
#define pb push_back
#define fst first
#define scn second
#define bicnt(x) __buildin__popcount(x)
#define gcd(a,b) __gcd__(a,b)
#define debug(x) cout<<"debug: "<<x<<endl
#define DEBUG 0
const ll inf = (ll)1e9;
const ll mod = 1e9 + 7;
const ld eps = 1e-9;
const int dx[] = { 0,1,0,-1 };
const int dy[] = { 1,0,-1,0 };
struct edge {
int to, cap, cost, rev;
edge(int to_, int cap_, int cost_, int rev_) {
to = to_;
cap = cap_;
cost = cost_;
rev = rev_;
}
};
int n;
vector<edge> e[1010];
int h[1010];
int dist[1010];
int prevv[1010], preve[1010];
void add_edge(int s, int t, int cap, int cost) {
e[s].push_back(edge(t, cap, cost, e[t].size()));
e[t].push_back(edge(s, 0, -cost, e[s].size() - 1));
}
int min_cost_flow(int s, int t, int f) {
int ret = 0;
REP(i, n) h[i] = 0;
while (f > 0) {
priority_queue<pii> pq;
pq.push(mp(0, -s));
REP(i, n) dist[i] = inf;
dist[s] = 0;
while (!pq.empty()) {
auto it = pq.top(); pq.pop();
int v = -it.second, cost = -it.first;
if (dist[v] < cost) continue;
rep(i, e[v].size()) {
edge* to = &e[v][i];
if (to->cap > 0 && dist[to->to] > dist[v] + to->cost + h[v] - h[to->to]) {
dist[to->to] = dist[v] + to->cost + h[v] - h[to->to];
prevv[to->to] = v;
preve[to->to] = i;
pq.push(mp(-dist[to->to], -to->to));
}
}
}
if (dist[t] == inf) return -1;
rep(i, n) h[i] += dist[i];
int d = f;
for (int i = t; i != s; i = prevv[i]) {
d = min(d, e[prevv[i]][preve[i]].cap);
}
f -= d;
ret += d*h[t];
for (int i = t; i != s; i = prevv[i]) {
edge* to = &e[prevv[i]][preve[i]];
to->cap -= d;
e[i][to->rev].cap += d;
}
}
return ret;
}
int main() {
int e, f; cin >> n >> e >> f;
rep(i, e) {
int s, t, c, d; cin >> s >> t >> c >> d;
add_edge(s, t, c, d);
}
cout << min_cost_flow(0, n - 1, f) << endl;
return 0;
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
using Weight=long long;
static const Weight INF=1LL<<57;
template <class T>
using gp_queue=priority_queue<T, deque<T>, less<T>>;
struct Arc {
// accessible to the reverse edge
size_t src, dst;
Weight capacity, cost, flow;
size_t rev;
Arc() {}
Arc(size_t src, size_t dst, Weight capacity, Weight cost=0):
src(src), dst(dst), capacity(capacity), cost(cost), flow(0), rev(-1)
{}
Weight residue() const {
return capacity - flow;
}
};
bool operator<(const Arc &e, const Arc &f) {
if (e.cost != f.cost) {
return e.cost > f.cost;
} else if (e.capacity != f.capacity) {
return e.capacity > f.capacity;
} else {
return e.src!=f.src? e.src<f.src : e.dst<f.dst;
}
}
using Arcs=vector<Arc>;
using Node=vector<Arc>;
using FlowNetwork=vector<Node>;
void connect(FlowNetwork &g, size_t s, size_t d, Weight c=1, Weight k=0) {
g[s].push_back(Arc(s, d, c, k));
g[d].push_back(Arc(d, s, 0, -k));
g[s].back().rev = g[d].size()-1;
g[d].back().rev = g[s].size()-1;
}
void join(FlowNetwork &g, size_t s, size_t d, Weight c=1, Weight k=0) {
g[s].push_back(Arc(s, d, c, k));
g[d].push_back(Arc(d, s, c, k));
g[s].back().rev = g[d].size()-1;
g[d].back().rev = g[s].size()-1;
}
pair<Weight, Weight> mincost_flow(
FlowNetwork &g, size_t s, size_t t, Weight F=INF
) {
size_t V=g.size();
vector<Arc *> prev(V, NULL);
pair<Weight, Weight> total; // <cost, flow>
while (F > total.second) {
vector<Weight> d(V, INF); d[s]=0;
for (size_t i=0; i<V; ++i) {
for (size_t v=0; v<V; ++v) {
if (d[v] == INF) continue;
for (Arc &e: g[v]) {
if (e.capacity <= 0) continue;
if (d[e.dst] > d[e.src] + e.cost) {
d[e.dst] = d[e.src] + e.cost;
prev[e.dst] = &e;
}
}
}
}
if (d[t] == INF) {
total.first = -1;
return total;
}
Weight f=F-total.second;
for (Arc *e=prev[t]; e!=NULL; e=prev[e->src])
f = min(f, e->capacity);
total.second += f;
total.first += f * d[t];
for (Arc *e=prev[t]; e!=NULL; e=prev[e->src]) {
e->capacity -= f;
g[e->dst][e->rev].capacity += f;
}
}
return total;
}
int main() {
size_t V, E;
Weight F;
scanf("%zu %zu %lld", &V, &E, &F);
FlowNetwork g(V);
for (size_t i=0; i<E; ++i) {
size_t u, v;
Weight c, d;
scanf("%zu %zu %lld %lld", &u, &v, &c, &d);
connect(g, u, v, c, d);
}
printf("%lld\n", mincost_flow(g, 0, V-1, F).first);
return 0;
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> P;
constexpr int IINF = INT_MAX;
struct edge{
int to, cap, cost, rev;
};
int V, E, F;
vector<vector<edge> > G;
vector<int> h, dist, prevv, preve;
void add_edge(int from, int to, int cap, int cost){
G[from].push_back((edge){to, cap, cost, int(G[to].size())});
G[to].push_back((edge){from, 0, -cost, int(G[from].size())-1});
}
// 最小費用流
int min_cost_flow(int s, int t, int f){
h.resize(G.size());
dist.resize(G.size());
prevv.resize(G.size());
preve.resize(G.size());
int res = 0;
fill(h.begin(), h.end(), 0);
while(f > 0){
priority_queue<P, vector<P>, greater<P> > que;
fill(dist.begin(), dist.end(), IINF);
dist[s] = 0;
que.push({0,s});
while(!que.empty()){
P p = que.top();
que.pop();
int v = p.second;
if(dist[v] < p.first) continue;
for(int i=0;i<int(G[v].size());i++){
auto &e = G[v][i];
if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]){
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push({dist[e.to], e.to});
}
}
}
if(dist[t] == IINF){
return -1;
}
for(int v=0; v<G.size(); v++) h[v] += dist[v];
int d = f;
for(int v=t; v!=s; v=prevv[v]){
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d*h[t];
for(int v=t; v!=s; v=prevv[v]){
auto &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main() {
cin >> V >> E >> F;
G.resize(V);
for(int i=0;i<E;i++){
int u, v, c, d;
cin >> u >> v >> c >> d;
add_edge(u, v, c, d);
}
cout << min_cost_flow(0, V-1, F) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.Closeable;
import java.io.FileInputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.PriorityQueue;
import java.util.TreeMap;
public class Main {
static ContestScanner in;static Writer out;public static void main(String[] args)
{try{in=new ContestScanner();out=new Writer();Main solve=new Main();solve.solve();
in.close();out.flush();out.close();}catch(IOException e){e.printStackTrace();}}
static void dump(int[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();}
static void dump(int[]a,int n){for(int i=0;i<a.length;i++)out.printf("%"+n+"d ",a[i]);out.println();}
static void dump(long[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();}
static void dump(char[]a){for(int i=0;i<a.length;i++)out.print(a[i]);out.println();}
static long pow(long a,int n){long r=1;while(n>0){if((n&1)==1)r*=a;a*=a;n>>=1;}return r;}
static String itob(int a,int l){return String.format("%"+l+"s",Integer.toBinaryString(a)).replace(' ','0');}
static void sort(int[]a){m_sort(a,0,a.length,new int[a.length]);}
static void sort(int[]a,int l){m_sort(a,0,l,new int[l]);}
static void sort(int[]a,int l,int[]buf){m_sort(a,0,l,buf);}
static void sort(int[]a,int s,int l,int[]buf){m_sort(a,s,l,buf);}
static void m_sort(int[]a,int s,int sz,int[]b)
{if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;}
m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz;
while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];}
while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i];
} /* qsort(3.5s)<<msort(9.5s)<<<shuffle+qsort(17s)<Arrays.sort(Integer)(20s) */
static void sort(long[]a){m_sort(a,0,a.length,new long[a.length]);}
static void sort(long[]a,int l){m_sort(a,0,l,new long[l]);}
static void sort(long[]a,int l,long[]buf){m_sort(a,0,l,buf);}
static void sort(long[]a,int s,int l,long[]buf){m_sort(a,s,l,buf);}
static void m_sort(long[]a,int s,int sz,long[]b)
{if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;}
m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz;
while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];}
while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i];}
static void swap(long[] a,int i,int j){final long t=a[i];a[i]=a[j];a[j]=t;}
static void swap(int[] a,int i,int j){final int t=a[i];a[i]=a[j];a[j]=t;}
static int binarySearchSmallerMax(int[]a,int v)// get maximum index which a[idx]<=v
{int l=-1,r=a.length-1,s=0;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;}
static int binarySearchSmallerMax(int[]a,int v,int l,int r)
{int s=-1;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;}
@SuppressWarnings("unchecked")
static List<Integer>[]createGraph(int n)
{List<Integer>[]g=new List[n];for(int i=0;i<n;i++)g[i]=new ArrayList<>();return g;}
void solve() throws NumberFormatException, IOException{
final int n = in.nextInt();
final int m = in.nextInt();
int f = in.nextInt();
MinCostFlow mf = new MinCostFlow(n, f);
for(int i=0; i<m; i++){
int from = in.nextInt();
int to = in.nextInt();
int cap = in.nextInt();
int cost = in.nextInt();
mf.edge(from, to, cap, cost);
}
int res = mf.flow(0, n-1);
if(mf.f>0) res = -1;
System.out.println(res);
}
}
class MinCostFlow{
final int n;
int f;
List<Edge>[] node;
@SuppressWarnings("unchecked")
public MinCostFlow(int n, int f) {
this.n = n;
this.f = f;
node = new List[n];
for(int i=0; i<n; i++) node[i] = new ArrayList<>();
}
void edge(int from, int to, int cap, int cost){
Edge e = new Edge(to, cap, cost);
Edge r = new Edge(from, 0, -cost);
e.rev = r;
r.rev = e;
node[from].add(e);
node[to].add(r);
}
int flow(int s, int t){
int[] h = new int[n];
int[] dist = new int[n];
int[] preV = new int[n];
int[] preE = new int[n];
final int inf = Integer.MAX_VALUE;
PriorityQueue<Pos> qu = new PriorityQueue<>();
int res = 0;
while(f>0){
Arrays.fill(dist, inf);
dist[s] = 0;
qu.clear();
qu.add(new Pos(s, 0));
while(!qu.isEmpty()){
Pos p = qu.poll();
if(dist[p.v]<p.d) continue;
final int sz = node[p.v].size();
for(int i=0; i<sz; i++){
Edge e = node[p.v].get(i);
final int nd = e.cost+p.d + h[p.v]-h[e.to];
if(e.cap>0 && nd < dist[e.to]){
preV[e.to] = p.v;
preE[e.to] = i;
dist[e.to] = nd;
qu.add(new Pos(e.to, nd));
}
}
}
if(dist[t]==inf) break;
for(int i=0; i<n; i++) h[i] += dist[i];
int minf = f;
for(int i=t; i!=s; i=preV[i]){
minf = Math.min(minf, node[preV[i]].get(preE[i]).cap);
}
f -= minf;
res += minf*h[t];
for(int i=t; i!=s; i=preV[i]){
node[preV[i]].get(preE[i]).cap -= minf;
node[preV[i]].get(preE[i]).rev.cap += minf;
}
}
return res;
}
}
class Pos implements Comparable<Pos>{
int v, d;
public Pos(int v, int d) {
this.v = v;
this.d = d;
}
@Override
public int compareTo(Pos o) {
return d-o.d;
}
}
class Edge{
int to, cap, cost;
Edge rev;
Edge(int t, int c, int co){
to = t;
cap = c;
cost = co;
}
void rev(Edge r){
rev = r;
}
}
@SuppressWarnings("serial")
class MultiSet<T> extends HashMap<T, Integer>{
@Override public Integer get(Object key){return containsKey(key)?super.get(key):0;}
public void add(T key,int v){put(key,get(key)+v);}
public void add(T key){put(key,get(key)+1);}
public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);}
public MultiSet<T> merge(MultiSet<T> set)
{MultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;}
for(Entry<T,Integer>e:s.entrySet())l.add(e.getKey(),e.getValue());return l;}
}
@SuppressWarnings("serial")
class OrderedMultiSet<T> extends TreeMap<T, Integer>{
@Override public Integer get(Object key){return containsKey(key)?super.get(key):0;}
public void add(T key,int v){put(key,get(key)+v);}
public void add(T key){put(key,get(key)+1);}
public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);}
public OrderedMultiSet<T> merge(OrderedMultiSet<T> set)
{OrderedMultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;}
while(!s.isEmpty()){l.add(s.firstEntry().getKey(),s.pollFirstEntry().getValue());}return l;}
}
class Pair implements Comparable<Pair>{
int a,b;final int hash;Pair(int a,int b){this.a=a;this.b=b;hash=(a<<16|a>>16)^b;}
public boolean equals(Object obj){Pair o=(Pair)(obj);return a==o.a&&b==o.b;}
public int hashCode(){return hash;}
public int compareTo(Pair o){if(a!=o.a)return a<o.a?-1:1;else if(b!=o.b)return b<o.b?-1:1;return 0;}
}
class Timer{
long time;public void set(){time=System.currentTimeMillis();}
public long stop(){return time=System.currentTimeMillis()-time;}
public void print(){System.out.println("Time: "+(System.currentTimeMillis()-time)+"ms");}
@Override public String toString(){return"Time: "+time+"ms";}
}
class Writer extends PrintWriter{
public Writer(String filename)throws IOException
{super(new BufferedWriter(new FileWriter(filename)));}
public Writer()throws IOException{super(System.out);}
}
class ContestScanner implements Closeable{
private BufferedReader in;private int c=-2;
public ContestScanner()throws IOException
{in=new BufferedReader(new InputStreamReader(System.in));}
public ContestScanner(String filename)throws IOException
{in=new BufferedReader(new InputStreamReader(new FileInputStream(filename)));}
public String nextToken()throws IOException {
StringBuilder sb=new StringBuilder();
while((c=in.read())!=-1&&Character.isWhitespace(c));
while(c!=-1&&!Character.isWhitespace(c)){sb.append((char)c);c=in.read();}
return sb.toString();
}
public String readLine()throws IOException{
StringBuilder sb=new StringBuilder();if(c==-2)c=in.read();
while(c!=-1&&c!='\n'&&c!='\r'){sb.append((char)c);c=in.read();}
return sb.toString();
}
public long nextLong()throws IOException,NumberFormatException
{return Long.parseLong(nextToken());}
public int nextInt()throws NumberFormatException,IOException
{return(int)nextLong();}
public double nextDouble()throws NumberFormatException,IOException
{return Double.parseDouble(nextToken());}
public void close() throws IOException {in.close();}
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.awt.geom.Point2D;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
Scanner sc = new Scanner(System.in);
public static void main(String[] args){
new Main();
}
public Main(){
// new A().doIt();
new GRL_6().doIt();
}
class GRL_6{
void doIt(){
int n = sc.nextInt();
int e = sc.nextInt();
int max = sc.nextInt();
MCF m = new MCF(n);
for(int i = 0;i < e;i++){
int from = sc.nextInt();
int to = sc.nextInt();
int cap = sc.nextInt();
int cost = sc.nextInt();
m.addEdge(from, to, cap, cost);
}
System.out.println(m.minCostFlow(0, n-1, max));
}
class MCF{
int INF=1<<24; ArrayList<ArrayList<Edge>> G;
class Edge {
int to, cap, cost;
int rev;
public Edge(int to, int cap, int cost, int rev) {
this.to = to;this.cap = cap;this.cost = cost; this.rev = rev;
}
}
MCF(int v){
G= new ArrayList<ArrayList<Edge>>();
for(int i=0;i<v;i++){
G.add(new ArrayList<Edge>());
}
}
private void addEdge(int from, int to, int cap, int cost){
G.get(from).add(new Edge(to, cap, cost, G.get(to).size()));
G.get(to).add(new Edge(from, 0, -cost, G.get(from).size() - 1));
}
private int minCostFlow(int s, int t, int f) {
int V = G.size();
int [] dist = new int[V], prevv = new int[V], preve = new int[V];
int res=0;
while(f > 0){
Arrays.fill(dist, INF);
dist[s] = 0;
boolean update = true;
while(update) {
update = false;
for(int v = 0; v < V; v++){
if(dist[v] == INF) continue;
for(int i = 0 ; i < G.get(v).size(); i++){
Edge e = G.get(v).get(i);
if(e.cap > 0 && dist[e.to]> dist[v] + e.cost ){
dist[e.to] = dist[v] + e.cost;
prevv[e.to] = v;
preve[e.to] = i;
update = true;
}
}
}
}
if(dist[t] == INF) return -1;
int d= f;
for(int v=t;v!= s; v = prevv[v]){
d= Math.min(d, G.get(prevv[v]).get(preve[v]).cap);
}
f -= d;
res += d * dist[t];
for(int v = t; v!= s; v = prevv[v]){
Edge e =G.get(prevv[v]).get(preve[v]);
e.cap -= d;
G.get(v).get(e.rev).cap += d;
}
}
return res;
}
}
}
class A{
BigInteger sum[] = new BigInteger[501];
BigInteger bit[] = new BigInteger[501];
void doIt(){
sum[1] = new BigInteger("1");
bit[1] = new BigInteger("1");
for(int i = 2;i < 501;i++){
bit[i] = bit[i-1].multiply(new BigInteger("2"));
sum[i] = sum[i-1].add(bit[i]);
}
while(true){
String str = sc.next();
if(str.equals("0"))break;
BigInteger num = new BigInteger(str);
int length = num.toString(2).length() + 1;
ArrayList<Par> array = new ArrayList<Par>();
array.add(new Par(bit[length],1,length-1));
System.out.println(bit[length - 1]+" "+sum[length - 1]);
System.out.println(array.get(0).num+" "+array.get(0).cnt+" "+array.get(0).length);
}
}
class Par{
BigInteger num;
int cnt,length;
public Par(BigInteger num,int cnt,int length){
this.num = num;
this.cnt = cnt;
this.length = length;
}
}
}
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.Vector;
public class Main {
static final int INF = 10000000;
/**
* @param args
* @throws IOException
*/
@SuppressWarnings("unchecked")
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] tmpArray = br.readLine().split(" ");
int v = Integer.parseInt(tmpArray[0]);
int e = Integer.parseInt(tmpArray[1]);
int f = Integer.parseInt(tmpArray[2]);
V = v;
G = new Vector[V];
for(int i = 0; i < G.length; i++){
G[i] = new Vector<Edge>();
}
dist = new int[V];
prevv = new int[V];
preve = new int[V];
h = new int[V];
for(int i = 0; i < e; i++){
tmpArray = br.readLine().split(" ");
int from = Integer.parseInt(tmpArray[0]);
int to = Integer.parseInt(tmpArray[1]);
int c = Integer.parseInt(tmpArray[2]);
int d = Integer.parseInt(tmpArray[3]);
addEdge(from, to, c, d);
}
int result = minCostFlow(0, V - 1, f);
System.out.println(result);
}
static int V;
static Vector<Edge> G[];
static int dist[];
static int prevv[];
static int preve[];
static int h[];
static void addEdge(int from, int to, int cap, int cost){
G[from].add(new Edge(to, cap, cost, G[to].size()));
G[to].add(new Edge(from, 0, -cost, G[from].size() - 1));
}
static int minCostFlow(int s, int t, int f){
int res = 0;
Arrays.fill(h, 0);
while(f > 0){
//dijkstra
PriorityQueue<Dist> que = new PriorityQueue<Dist>();
Arrays.fill(dist, INF);
dist[s] = 0;
que.add(new Dist(0, s));
while(!que.isEmpty()){
Dist p = que.remove();
int v = p.v;
if(dist[v] < p.dist){
continue;
}
for(int i = 0; i < G[v].size() ;i++){
Edge e = G[v].get(i);
if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]){
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.add(new Dist(dist[e.to], e.to));
}
}
}
if(dist[t] == INF){
return -1;
}
for(int v=0; v < V; v++){
h[v] += dist[v];
}
//s-t間経路に沿って目一杯流す
int d = f;
for(int v = t; v != s; v = prevv[v]){
d = Math.min(d, G[prevv[v]].get(preve[v]).cap);
}
f -= d;
res += d * h[t];
for(int v = t; v != s; v = prevv[v]){
Edge e = G[prevv[v]].get(preve[v]);
e.cap -= d;
G[v].get(e.rev).cap += d;
}
}
return res;
}
}
class Edge {
int to, cap, cost, rev;
Edge(int to, int cap, int cost, int rev){
this.to = to;
this.cap = cap;
this.cost = cost;
this.rev = rev;
}
}
class Dist implements Comparable<Dist>{
int dist;
int v;
Dist(int dist, int v){
this.dist = dist;
this.v = v;
}
//近い順に並べる
@Override
public int compareTo(Dist d) {
return this.dist - d.dist;
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
#define pb push_back
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=105;
struct Edge {
int from,to,cap,flow,cost;
Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w) {}
};
int n,m,tf;
vector<Edge>edges;
vector<int>G[maxn];
bool inq[maxn];
int d[maxn];
int a[maxn];
int p[maxn];
inline void addedge (int u,int v,int c,int w) {
edges.pb(Edge(u,v,c,0,w));
edges.pb(Edge(v,u,0,0,-w));
int id=edges.size()-2;
G[u].pb(id);
G[v].pb(id+1);
}
inline bool spfa (int s,int t,int& flow,int& cost) {
for (int i=0;i<n;i++) d[i]=INF;
d[s]=0; inq[s]=1; a[s]=max(0,tf-flow);
queue<int>q;
q.push(s);
while (q.size()) {
int u=q.front(); q.pop();
inq[u]=0;
for (int id:G[u]) {
Edge& e=edges[id];
if (e.cap>e.flow && d[e.to]>d[u]+e.cost) {
d[e.to]=d[u]+e.cost;
p[e.to]=id;
a[e.to]=min(a[u],e.cap-e.flow);
if (!inq[e.to]) {inq[e.to]=1;q.push(e.to);}
}
}
}
if (d[t]==INF) return 0;
flow+=a[t];
cost+=d[t]*a[t];
// cout<<flow<<' '<<cost<<'\n';
for (int u=t;u!=s;u=edges[p[u]].from) {
edges[p[u]].flow+=a[t];
edges[p[u]^1].flow-=a[t];
}
return 1;
}
inline int mcmf (int s,int t) {
int flow=0 , cost=0;
while (spfa(s,t,flow,cost) && flow<tf);
if (flow<tf) return -1;
else return cost;
}
int main() {
cin>>n>>m>>tf;
for (int i=0;i<m;i++) {
int u,v,c,w; cin>>u>>v>>c>>w;
addedge(u,v,c,w);
}
cout<<mcmf(0,n-1)<<'\n';
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct PrimalDual{
const int INF = 1<<28;
typedef pair<int,int> P;
struct edge{
int to,cap,cost,rev;
edge(){}
edge(int to,int cap,int cost,int rev):to(to),cap(cap),cost(cost),rev(rev){}
};
int n;
vector<vector<edge> > G;
vector<int> h,dist,prevv,preve;
PrimalDual(){}
PrimalDual(int sz):n(sz),G(sz),h(sz),dist(sz),prevv(sz),preve(sz){}
void add_edge(int from,int to,int cap,int cost){
G[from].push_back(edge(to,cap,cost,G[to].size()));
G[to].push_back(edge(from,0,-cost,G[from].size()-1));
}
int flow(int s,int t,int f){
int res=0;
fill(h.begin(),h.end(),0);
while(f>0){
priority_queue<P,vector<P>,greater<P> > que;
fill(dist.begin(),dist.end(),INF);
dist[s]=0;
que.push(P(0,s));
while(!que.empty()){
P p=que.top();que.pop();
int v=p.second;
if(dist[v]<p.first) continue;
for(int i=0;i<(int)G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&dist[e.to]>dist[v]+e.cost+h[v]-h[e.to]){
dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];
prevv[e.to]=v;
preve[e.to]=i;
que.push(P(dist[e.to],e.to));
}
}
}
if(dist[t]==INF) return -1;
for(int v=0;v<n;v++) h[v]+=dist[v];
int d=f;
for(int v=t;v!=s;v=prevv[v]){
d=min(d,G[prevv[v]][preve[v]].cap);
}
f-=d;
res+=d*h[t];
for(int v=t;v!=s;v=prevv[v]){
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}
return res;
}
};
int main(){
int v,e,f;
cin>>v>>e>>f;
PrimalDual pd(v);
for(int i=0;i<e;i++){
int u,v,c,d;
cin>>u>>v>>c>>d;
pd.add_edge(u,v,c,d);
}
cout<<pd.flow(0,v-1,f)<<endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
using namespace std;
//Minimum Cost Flow O(FE log V)
#include<algorithm>
#include<utility>
#include<vector>
#include<queue>
#include<limits>
template<typename T>
struct MCF{
vector<vector<pair<pair<int,int>,pair<int,T> > > >G;
vector<T>h,d;
vector<int>pv,pe;
MCF(int n_=0):G(n_),h(n_,0),d(n_),pv(n_),pe(n_){}
void add_edge(int from,int to,int cap,T cost)
{
G[from].push_back(make_pair(
make_pair(to,G[to].size()),make_pair(cap,cost)
));
G[to].push_back(make_pair(
make_pair(from,G[from].size()-1),make_pair(0,-cost)
));
}
T min_cost_flow(int s,int t,int f)//ans or -1
{
T ret=0;
while(f>0)
{
priority_queue<pair<T,int>,vector<pair<T,int> >,greater<pair<T,int> > >P;
fill(d.begin(),d.end(),numeric_limits<T>::max());
d[s]=0;
P.push(make_pair(0,s));
while(!P.empty())
{
pair<T,int>p=P.top();P.pop();
if(d[p.second]<p.first)continue;
for(int i=0;i<G[p.second].size();i++)
{
pair<pair<int,int>,pair<int,T> >&e=G[p.second][i];
if(e.second.first>0&&
d[e.first.first]>d[p.second]+e.second.second+h[p.second]-h[e.first.first])
{
d[e.first.first]=d[p.second]+e.second.second+h[p.second]-h[e.first.first];
pv[e.first.first]=p.second;
pe[e.first.first]=i;
P.push(make_pair(d[e.first.first],e.first.first));
}
}
}
if(d[t]==numeric_limits<T>::max())return -1;
for(int u=0;u<G.size();u++)h[u]+=d[u];
int d=f;
for(int u=t;u!=s;u=pv[u])d=min(d,G[pv[u]][pe[u]].second.first);
f-=d;
ret+=d*h[t];
for(int u=t;u!=s;u=pv[u])
{
G[pv[u]][pe[u]].second.first-=d;
G[u][G[pv[u]][pe[u]].first.second].second.first+=d;
}
}
return ret;
}
};
int main()
{
int N,E,F;
cin>>N>>E>>F;
MCF<int>mf(N);
for(int i=0;i<E;i++)
{
int u,v,c,d;cin>>u>>v>>c>>d;
mf.add_edge(u,v,c,d);
}
cout<<mf.min_cost_flow(0,N-1,F)<<endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define int long long
//O(F*V^2)
class MinimumCostFlow {
private:
struct edge {
int to, cap, cost, rev;
};
const int INF = 1e18;
int V;
vector<vector<edge>> G;
vector<int> h, dist;
vector<int> prevv, preve;
void add_edge(int from, int to, int cap, int cost) {
G[from].push_back({to, cap, cost, (int)G[to].size()});
G[to].push_back({from, 0LL, -cost, (int)G[from].size() - 1LL});
}
int min_cost_flow(int s, int t, int f) {
int res = 0;
fill(h.begin(), h.end(), 0LL);
while (f > 0) {
using P = pair<int, int>;
priority_queue<P, vector<P>, greater<P>> que;
fill(dist.begin(), dist.end(), INF);
dist[s] = 0;
que.push(P(0, s));
while (!que.empty()) {
P p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first) continue;
for (int i = 0; i < G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(P{dist[e.to], e.to});
}
}
}
if (dist[t] == INF) {
return -1;
}
for (int v = 0; v < V; v++) {
h[v] += dist[v];
}
int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
public:
MinimumCostFlow(int N) : V(N), G(N, vector<edge>()), h(N), dist(N), prevv(N), preve(N) {}
void addEdge(int from, int to, int cap, int cost) {
return add_edge(from, to, cap, cost);
}
int minCostFlow(int s, int t, int f) {
return min_cost_flow(s, t, f);
}
};
signed main() {
int V, E, F;
cin >> V >> E >> F;
MinimumCostFlow mcf(V);
for (int i = 0; i < E; i++) {
int u, v, c, d;
cin >> u >> v >> c >> d;
mcf.addEdge(u, v, c, d);
}
cout << mcf.minCostFlow(0, V - 1, F) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define rep(i,n) REP(i,0,n)
#define REP(i,s,e) for(int i=(s); i<(int)(e); i++)
#define repr(i, n) REPR(i, n, 0)
#define REPR(i, s, e) for(int i=(int)(s-1); i>=(int)(e); i--)
#define pb push_back
#define all(r) r.begin(),r.end()
#define rall(r) r.rbegin(),r.rend()
#define fi first
#define se second
typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll MOD = 1e9 + 7;
double EPS = 1e-8;
// ????°??????¨??? O(F |E| |V|)
struct MinCostFlow
{
typedef pair<int, int> P; // first -> minDist, second -> v
struct Edge
{
int to, cap, cost, rev;
};
const int V;
vector<vector<Edge>> G;
vector<int> dist, prevv, preve;
MinCostFlow(int v) : V(v), G(v), dist(v), prevv(v), preve(v){}
void add_edge(int from, int to, int cap, int cost) {
G[from].push_back({to, cap, cost, (int)G[to].size()});
G[to].push_back({from, 0, -cost, (int)G[from].size()-1});
}
// minCostFlow s -> t
// noexist flow return -1
int min_cost_flow(int s, int t, int f) {
int res = 0;
while(f > 0) {
for(int i = 0; i < V; ++i) dist[i] = INF;
dist[s] = 0;
bool update = true;
while(update) {
update = false;
for(int v = 0; v < V; ++v) {
if(dist[v] == INF) continue;
for(int i = 0; i < G[v].size(); ++i) {
Edge& e = G[v][i];
if(e.cap > 0 && dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
prevv[e.to] = v;
preve[e.to] = i;
update = true;
}
}
}
}
if(dist[t] == INF) return -1;
int d = f;
for(int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * dist[t];
for(int v = t; v != s; v = prevv[v]) {
Edge& e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
};
int main(){
int V, E, F;
cin >> V >> E >> F;
MinCostFlow f(V);
rep(i, E) {
int a, b, c, d;
cin >> a >> b >> c >> d;
f.add_edge(a, b, c, d);
}
cout << f.min_cost_flow(0, V-1, F) << endl;
return 0;
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | //http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_6_B&lang=jp
#include <iostream>
#include <map>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
typedef pair<int, int>P;
class MCF{
public:
class edge{
public:
int to, cap, cost, rev;
edge(){};
edge(int _to, int _cap, int _cost, int _rev){
to = _to;
cap = _cap;
cost = _cost;
rev = _rev;
}
};
vector<vector<edge> >G;
vector<int>h;
vector<int>dist;
vector<int>prevv;
vector<int>preve;
MCF(int n){
G.resize(n);
preve.resize(n, 0);
prevv.resize(n, 0);
}
void addEdge(int from, int to, int cap, int cost){
G[from].push_back(edge(to, cap, cost, G[to].size()));
G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
}
int flow(int s, int t, int f){
int res = 0;
h.clear();
h.resize(G.size(), 0);
while (f > 0){
priority_queue<P, vector<P>, greater<P> >que;
dist.clear();
dist.resize(G.size(), 1145141919);
dist[s] = 0;
que.push(P(0, s));
while (!que.empty()){
P p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first)continue;
for (int i = 0; i < G[v].size(); i++){
edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]){
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(P(dist[e.to], e.to));
}
}
}
if (dist[t] == 1145141919){
return -1;
}
for (int v = 0; v < G.size(); v++)h[v] += dist[v];
int d = f;
for (int v = t; v != s; v = prevv[v]){
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d*h[t];
for (int v = t; v != s; v = prevv[v]){
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
};
int main(){
int V, E, F;
cin >> V >> E >> F;
MCF mcf(V);
for (int i = 0; i < E; i++){
int from, to, cap, cost;
cin >> from >> to >> cap >> cost;
mcf.addEdge(from, to, cap, cost);
}
cout << mcf.flow(0, V - 1, F) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | from heapq import heappush, heappop
import collections
class MinCostFlowDijkstra:
def __init__(self, N):
self.N = N
self.edges = collections.defaultdict(list)
def add(self, fro, to, cap, cost, directed=True):
# edge[fro]: to, cap, cost, rev(逆辺)
if directed:
self.edges[fro].append([to, cap, cost, len(self.edges[to])])
self.edges[to].append([fro, 0, -cost, len(self.edges[fro]) - 1])
else: # TODO: must be Verified
self.edges[fro].append([to, cap, cost, len(self.edges[to])])
self.edges[to].append([fro, 0, -cost, len(self.edges[fro]) - 1])
self.edges[to].append([fro, cap, cost, len(self.edges[fro])])
self.edges[fro].append([to, 0, -cost, len(self.edges[to]) - 1])
def minCostFlow(self, start, goal, flow):
res = 0
potential = collections.defaultdict(int)
prevVertex = collections.defaultdict(int)
prevEdge = collections.defaultdict(int)
while flow > 0:
dist = collections.defaultdict(lambda: float('inf'))
dist[start] = 0
que = []
heappush(que, (0, start))
while que:
k, v = heappop(que)
if dist[v] < k:
continue
for i, (to, cap, cost, _) in enumerate(self.edges[v]):
if cap > 0 and dist[to] > dist[v] + cost + potential[v] - potential[to]:
dist[to] = dist[v] + cost + potential[v] - potential[to]
prevVertex[to] = v
prevEdge[to] = i
heappush(que, (dist[to], to))
if dist[goal] == float('inf'):
return -1
for i in range(self.N):
potential[i] += dist[i]
d = flow
v = goal
while v != start:
d = min(d, self.edges[prevVertex[v]][prevEdge[v]][1])
v = prevVertex[v]
flow -= d
res += d * potential[goal]
v = goal
while v != start:
e = self.edges[prevVertex[v]][prevEdge[v]]
e[1] -= d
self.edges[v][e[3]][1] += d
v = prevVertex[v]
#print(d, flow, prevVertex, prevEdge)
return res
V, E, F = map(int, input().split())
graph = MinCostFlowDijkstra(V)
for _ in range(E):
u, v, c, d = map(int, input().split())
graph.add(u, v, c, d)
print(graph.minCostFlow(0, V-1, F))
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
#define _overload(_1,_2,_3,name,...) name
#define _rep(i,n) _range(i,0,n)
#define _range(i,a,b) for(int i=int(a);i<int(b);++i)
#define rep(...) _overload(__VA_ARGS__,_range,_rep,)(__VA_ARGS__)
#define _rrep(i,n) _rrange(i,n,0)
#define _rrange(i,a,b) for(int i=int(a)-1;i>=int(b);--i)
#define rrep(...) _overload(__VA_ARGS__,_rrange,_rrep,)(__VA_ARGS__)
#define _all(arg) begin(arg),end(arg)
#define uniq(arg) sort(_all(arg)),(arg).erase(unique(_all(arg)),end(arg))
#define getidx(ary,key) lower_bound(_all(ary),key)-begin(ary)
#define clr(a,b) memset((a),(b),sizeof(a))
#define bit(n) (1LL<<(n))
#define popcount(n) (__builtin_popcountll(n))
using namespace std;
template<class T>bool chmax(T &a, const T &b) { return (a < b) ? (a = b, 1) : 0;}
template<class T>bool chmin(T &a, const T &b) { return (b < a) ? (a = b, 1) : 0;}
using ll = long long;
using R = long double;
const R EPS = 1e-9; // [-1000,1000]->EPS=1e-8 [-10000,10000]->EPS=1e-7
inline int sgn(const R& r) {return (r > EPS) - (r < -EPS);}
inline R sq(R x) {return sqrt(max<R>(x, 0.0));}
const int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
const int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
// Problem Specific Parameter:
//Appropriately Changed
using W = ll;
using edge = struct {int to, rev; W cap, flow, cost;};
using G = vector<vector<edge>>;
//Appropriately Changed
void add_edge(G &graph, int from, int to, W cap, W cost) {
graph[from].push_back({to, int(graph[to].size()) , cap , 0 , cost});
graph[to].push_back({from, int(graph[from].size()) - 1, 0 , 0, -cost});
}
// Description: ??°??????????????????????°??????¨???
// TimeComplexity: $ \mathcal{O}(FEV) $
// Verifyed: AOJ GRL_6_B
W primal_dual(G &graph, int s, int t, int f) {
const W inf = 1LL << 50;
W res = 0;
while (f) {
int n = graph.size(), update;
vector<W> dist(n, inf);
vector<int> pv(n, 0), pe(n, 0);
dist[s] = 0;
rep(loop, n) {
update = false;
rep(v, n)rep(i, graph[v].size()) {
edge &e = graph[v][i];
if (e.cap > e.flow and chmin(dist[e.to], dist[v] + e.cost)) {
pv[e.to] = v, pe[e.to] = i;
update = true;
}
}
if (!update) break;
}
if (dist[t] == inf) return -1;
W d = f;
for (int v = t; v != s; v = pv[v]) chmin(d, graph[pv[v]][pe[v]].cap - graph[pv[v]][pe[v]].flow);
f -= d, res += d * dist[t];
for (int v = t; v != s; v = pv[v]) {
edge &e = graph[pv[v]][pe[v]];
e.flow += d;
graph[v][e.rev].flow -= d;
}
}
return res;
}
int main(void) {
int v, e, f;
cin >> v >> e >> f;
G graph(v);
rep(i, e) {
int a, b, c, d;
cin >> a >> b >> c >> d;
add_edge(graph, a, b, c, d);
}
cout << primal_dual(graph, 0, v - 1, f) << endl;
return 0;
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
#define fi first
#define se second
typedef long long ll;
using namespace std;
//BEGIN CUT HERE
//Min_cost_flow
class Min_cost_flow{
public:
explicit Min_cost_flow(int n):vertex(static_cast<unsigned int>(n+10)){
G.resize(vertex);
prev_e.resize(vertex);
prev_v.resize(vertex);
}
void add_edge(int from,int to,ll cap,ll cost){
G[from].push_back((edge){to, cap, cost, static_cast<int>(G[to].size())});
G[to].push_back((edge){from, 0, -cost, static_cast<int>(G[from].size() - 1)});
}
ll flow(int s,int t,ll f){
ll res=0;
h.clear();
h.resize(vertex,0);
while(f>0){
vector<ll> dist;
dist.resize(vertex);
dist=dijkstra(s);
if(dist[t]==INF)return -1;
for(int i=0;i<vertex;i++)h[i]+=dist[i];
ll d=f;
for(int i=t;i!=s;i=prev_v[i]){
d=min(d,G[prev_v[i]][prev_e[i]].cap);
}
f-=d;
res+=d*h[t];
for(int i=t;i!=s;i=prev_v[i]){
edge &e=G[prev_v[i]][prev_e[i]];
e.cap-=d;
G[i][e.rev].cap+=d;
}
}
return res;
}
private:
struct edge{
int to;
ll cap;
ll cost;
int rev;
};
unsigned int vertex;
ll INF=(ll)1e16;
vector<vector<edge> > G;
vector<ll> h;
vector<int> prev_v,prev_e;
vector<ll> dijkstra(int start){
vector<ll> dist(vertex,INF);
dist[start]=0;
priority_queue<pair<ll,int> > q;
q.push({0,start});
while(!q.empty()){
int now=q.top().se;
ll now_cost=-q.top().fi;
q.pop();
if(now_cost>dist[now])continue;
for(int i=0;i<(int)G[now].size();i++){
edge &e=G[now][i];
if(e.cap>0 && dist[e.to]>dist[now]+e.cost+h[now]-h[e.to]){
dist[e.to]=dist[now]+e.cost+h[now]-h[e.to];
prev_v[e.to]=now;
prev_e[e.to]=i;
q.push({-dist[e.to],e.to});
}
}
}
return dist;
}
};
int main(){
int v,e,f;cin>>v>>e>>f;
Min_cost_flow m(v);
for(int i=0;i<e;i++){
int from,to,cap,cost;
cin>>from>>to>>cap>>cost;
m.add_edge(from,to,cap,cost);
}
cout<<m.flow(0,v-1,f)<<endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,copy,functools
import time,random
sys.setrecursionlimit(10**7)
inf = 10**20
eps = 1.0 / 10**10
mod = 10**9+7
mod2 = 998244353
dd = [(-1,0),(0,1),(1,0),(0,-1)]
ddn = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(): return [list(map(int, l.split())) for l in sys.stdin.readlines()]
def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]
def LF(): return [float(x) for x in sys.stdin.readline().split()]
def LS(): return sys.stdin.readline().split()
def I(): return int(sys.stdin.readline())
def F(): return float(sys.stdin.readline())
def S(): return input()
def pf(s): return print(s, flush=True)
def pe(s): return print(str(s), file=sys.stderr)
def JA(a, sep): return sep.join(map(str, a))
def JAA(a, s, t): return s.join(t.join(map(str, b)) for b in a)
class Edge():
def __init__(self,t,f,r,ca,co):
self.to = t
self.fron = f
self.rev = r
self.cap = ca
self.cost = co
class MinCostFlow():
size = 0
graph = []
def __init__(self, s):
self.size = s
self.graph = [[] for _ in range(s)]
def add_edge(self, f, t, ca, co):
self.graph[f].append(Edge(t, f, len(self.graph[t]), ca, co))
self.graph[t].append(Edge(f, t, len(self.graph[f])-1, 0, -co))
def min_path(self, s, t):
dist = [inf] * self.size
route = [None] * self.size
que = collections.deque()
inq = [False] * self.size
dist[s] = 0
que.append(s)
inq[s] = True
while que:
u = que.popleft()
inq[u] = False
for e in self.graph[u]:
if e.cap == 0:
continue
v = e.to
if dist[v] > dist[u] + e.cost:
dist[v] = dist[u] + e.cost
route[v] = e
if not inq[v]:
que.append(v)
inq[v] = True
if dist[t] == inf:
return inf, 0
flow = inf
v = t
while v != s:
e = route[v]
if flow > e.cap:
flow = e.cap
v = e.fron
c = 0
v = t
while v != s:
e = route[v]
e.cap -= flow
self.graph[e.to][e.rev].cap += flow
c += e.cost * flow
v = e.fron
return dist[t], flow
def calc_min_cost_flow(self, s, t, flow):
total_cost = 0
while flow > 0:
c,f = self.min_path(s, t)
if f == 0:
return inf
f = min(flow, f)
total_cost += c * f
flow -= f
return total_cost
def main():
n,m,f = LI()
uvcd = [LI() for _ in range(m)]
mf = MinCostFlow(n)
for u,v,c,d in uvcd:
mf.add_edge(u,v,c,d)
r = mf.calc_min_cost_flow(0, n-1, f)
if r == inf:
return -1
return r
# start = time.time()
print(main())
# pe(time.time() - start)
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
static const int MAX=100;
static const int INFTY=(1<<30);
class edge{
public:
int target, cap, cost, rev;
edge(int target = 0, int cap =0, int cost = 0, int rev =0) : target(target), cap(cap), cost(cost), rev(rev) {}
};
int V;
std::vector<edge> G[MAX];
int h[MAX], dist[MAX], prevv[MAX], preve[MAX];
void add_edge(const int &source, const int &target, const int &cap, const int &cost) {
G[source].push_back(edge(target, cap, cost, G[target].size()));
G[target].push_back(edge(source, 0, -cost, G[source].size()-1));
}
int min_cost_flow(int s, int t, int f) {
int res = 0;
std::fill(h, h+V, 0);
while(f > 0) {
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int> >, std::greater<std::pair<int, int> > > pq;
std::fill(dist, dist + V, INFTY);
dist[s] = 0;
pq.push({0, s});
while (!pq.empty()) {
std::pair<int, int> p = pq.top(); pq.pop();
int current = p.second;
if (dist[current] < p.first) continue;
for (int i = 0; i < G[current].size(); i++) {
edge &e = G[current][i];
if (e.cap > 0 && dist[e.target] > dist[current] + e.cost + h[current] - h[e.target]) {
dist[e.target] = dist[current] + e.cost + h[current] - h[e.target];
prevv[e.target] = current; preve[e.target] = i;
pq.push({dist[e.target], e.target});
}
}
}
if (dist[t] == INFTY) return -1;
for (int v = 0; v < V; v++) h[v] += dist[v];
int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = std::min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for (int v = t; v!=s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main()
{
int E, f, source, target, cap, cost;
std::scanf("%d %d %d", &V, &E, &f);
for (int i = 0; i < E; i++) {
std::scanf("%d %d %d %d", &source, &target, &cap, &cost);
add_edge(source, target, cap, cost);
}
std::printf("%d\n", min_cost_flow(0, V-1, f));
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <sstream>
#include <cmath>
#include <set>
#include <iomanip>
#include <deque>
#include <stdio.h>
using namespace std;
#define REP(i,n) for(int (i)=0;(i)<(int)(n);(i)++)
#define RREP(i,n) for(int (i)=(int)(n)-1;i>=0;i--)
#define REMOVE(Itr,n) (Itr).erase(remove((Itr).begin(),(Itr).end(),n),(Itr).end())
typedef long long ll;
template<class T> struct MinCostFlow {
struct Edge {
int to, rev;
T cap, cost;
Edge () {}
Edge (int _to, T _cap, T _cost, int _rev) :
to(_to), cap(_cap), cost(_cost), rev(_rev) {}
};
const T INF = numeric_limits<T>::max() / 2;
int N;
vector< vector<Edge> > G;
vector<T> h;
vector<T> dist;
vector<int> prevv, preve;
MinCostFlow (int n) : N(n), G(n), h(n), dist(n), prevv(n), preve(n) {}
void add_edge(int from, int to, T cap, T cost) {
G[from].push_back(Edge(to,cap,cost,G[to].size()));
G[to].push_back(Edge(from,0,-cost,G[from].size()-1));
}
T get_min(int s, int t, T f) {
T ret = 0;
for (int i=0; i<N; i++) h[i] = 0;
while (f > 0) {
priority_queue< pair<T,int>, vector< pair<T,int> >, greater< pair<T,int> > > que;
for (int i=0; i<N; i++) dist[i] = INF;
dist[s] = 0;
que.push(make_pair(0,s));
while (que.size() != 0) {
pair<int,int> p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first) continue;
for (int i=0; i<G[v].size(); i++) {
Edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(make_pair(dist[e.to], e.to));
}
}
}
if (dist[t] == INF) {
return -1;
}
for (int v=0; v<N; v++) h[v] += dist[v];
int d = f;
for (int v=t; v!=s; v=prevv[v]) {
d = min(d,G[prevv[v]][preve[v]].cap);
}
f -= d;
ret += d * h[t];
for (int v=t; v!=s; v=prevv[v]) {
Edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return ret;
}
};
int main() {
int V,E,F;
cin >> V >> E >> F;
MinCostFlow<int> inst(110);
REP(i,E) {
int a,b,c,d;
cin >> a >> b >> c >> d;
inst.add_edge(a,b,c,d);
}
cout << inst.get_min(0,V-1,F) << endl;
return 0;
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <cassert>
#include <iostream>
#include <vector>
#include <queue>
#include <utility>
#include <tuple>
#include <limits>
using namespace std;
struct MinCostFlowGraph {
private:
using ll = long long;
struct edge {
int to;
ll cap, cost;
int r_idx;
edge(int t, ll cap, ll cost, int r) :
to(t), cap(cap), cost(cost), r_idx(r) {}
};
vector<vector<edge>> G;
int sz;
public:
MinCostFlowGraph(int n) : G(n), sz(n) {}
void add_edge(int from, int to, ll cap, ll cost){
int i = G[to].size(), i_ = G[from].size();
G[from].emplace_back(to,cap,cost,i);
G[to].emplace_back(from,0,-cost,i_);
}
ll min_cost_flow(int from, int to, ll f){
ll ans = 0;
while(f > 0){
const ll INF = numeric_limits<ll>::max();
vector<ll> dist(sz,INF);
dist[from] = 0;
vector<ll> potential(sz);
vector<int> prev_v(sz,-1);
vector<int> prev_e(sz,-1);
priority_queue<pair<ll,int>> pq;
pq.emplace(0,from);
while(pq.size()){
// auto [d, v] = pq.top();
ll d, v;
tie(d,v) = pq.top();
d *= -1;
pq.pop();
if(dist[v] < d) continue;
for(size_t i = 0; i < G[v].size(); ++i){
const auto& e = G[v][i];
if(e.cap == 0) continue;
int v_ = e.to;
ll d_ = d + e.cost + potential[v] - potential[v_];
if(dist[v_] <= d_)
continue;
dist[v_] = d_;
prev_v[v_] = v;
prev_e[v_] = i;
pq.emplace(-d_,e.to);
}
}
if(dist[to] >= INF) return -1;
for(int i = 0; i < sz; ++i)
potential[i] += dist[i];
int v = to;
ll flow = f;
while(v != from){
int v_ = prev_v[v];
flow = min(flow,G[v_][prev_e[v]].cap);
v = v_;
}
v = to;
while(v != from){
int v_ = prev_v[v];
auto& e = G[v_][prev_e[v]];
e.cap -= flow;
ans += flow*e.cost;
G[v][e.r_idx].cap += flow;
v = v_;
}
f -= flow;
}
return ans;
}
};
int main(){
int n, m, f;
cin >> n >> m >> f;
MinCostFlowGraph G(n);
for(int i = 0; i < m; ++i){
long long u, v, c, d;
cin >> u >> v >> c >> d;
G.add_edge(u,v,c,d);
}
cout << G.min_cost_flow(0,n-1,f) << endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template<typename T, T INF>
class MinCostFlow{
public:
//辺を表す構造体(行き先、容量、コスト、逆辺)
struct edge{
int to,cap;
T cost;
int rev;
edge();
edge(int to,int cap,T cost,int rev):to(to),cap(cap),cost(cost),rev(rev){}
};
int V; //頂点数
vector<vector<edge> > G; //グラフの隣接リスト表現
vector<T> dist; //最短距離
vector<int> prevv,preve; //直前の頂点と辺
MinCostFlow():V(-1){}
MinCostFlow(int V):V(V), G(V), dist(V), prevv(V), preve(V){};
// fromからtoへ向かう容量cap、コストcostの辺をグラフに追加する。
void add_edge(int from,int to,int cap ,T cost){
assert(from>=0 && to >= 0);
assert(from<V && to<V);
G[from].push_back((edge){to,cap,cost,(int)G[to].size()});
G[to].push_back((edge){from,0,-cost,(int)G[from].size()-1});
}
//sからtへの流量fの最小費用流を求める
//流せない場合-1を返す
T flow(int s, int t, int f){
T res = 0;
while(f>0){
//ベルマンフォード法により,s-t間最短路を求める
fill(dist.begin(),dist.end(),INF);
dist[s] = 0;
bool update = true;
while(update){
update = false;
for(int v=0; v<V ;v++){
if(dist[v]==INF) continue;
for(int i=0; i<(int)G[v].size(); i++){
edge &e = G[v][i];
if(e.cap > 0 && dist[e.to] > dist[v] + e.cost) {
if(abs(dist[e.to] - dist[v] - e.cost) < 1e-8) continue; //double演算用
dist[e.to] = dist[v] + e.cost;
prevv[e.to] = v;
preve[e.to] = i;
update = true;
}
}
}
}
if(dist[t]==INF) return -1; //これ以上流せない。
//s−t間短路に沿って目一杯流す
int d = f;
for(int v=t; v!=s; v=prevv[v]) d = min(d, G[prevv[v]][preve[v]].cap);
f -= d;
res += d * dist[t];
for(int v=t; v!=s; v=prevv[v]){
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
};
int main(){
int V, E, F;
cin>>V>>E>>F;
MinCostFlow<long long, 1LL<<55> f(V);
for(int i=0;i<E;i++){
int u, v, c, d;
cin>>u>>v>>c>>d;
f.add_edge(u, v, c, d);
}
int ans = f.flow(0, V-1, F);
cout<<ans<<endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import std.stdio, std.array, std.string, std.conv, std.algorithm;
import std.typecons, std.range, std.random, std.math, std.container;
import std.numeric, std.bigint, core.bitop;
void main() {
auto s = readln.split.map!(to!int);
auto V = s[0];
auto E = s[1];
auto F = s[2];
auto mcf = new MinCostFlow(V);
foreach (_; 0..E) {
s = readln.split.map!(to!int);
mcf.add_edge(s[0], s[1], s[2], s[3]);
}
mcf.run(0, V-1, F).writeln;
}
class MinCostFlow {
alias Tuple!(int, "to", int, "cap", int, "cost", int, "rev") Edge;
immutable int INF = 1 << 29;
int V;
Edge[][] G;
int[] h;
int[] dist;
int[] prevv;
int[] preve;
this(int v) {
V = v;
G = new Edge[][](v);
h = new int[](v);
dist = new int[](v);
prevv = new int[](v);
preve = new int[](v);
}
void add_edge(int from, int to, int cap, int cost) {
G[from] ~= Edge(to, cap, cost, G[to].length.to!int);
G[to] ~= Edge(from, cap, cost, G[from].length.to!int - 1);
}
int run(int s, int t, int f) { // source, sink, flow
int res = 0;
h.fill(0);
while (f > 0) {
auto pq = new BinaryHeap!(Array!(Tuple!(int, int)), "a[0] < b[0]");
dist.fill(INF);
dist[s] = 0;
pq.insert(tuple(0, s));
while (!pq.empty) {
auto p = pq.front;
pq.removeFront;
int v = p[1];
if (dist[v] < p[0]) continue;
foreach (i; 0..G[v].length.to!int) {
auto e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
pq.insert(tuple(dist[e.to], e.to));
}
}
}
if (dist[t] == INF) {
return -1;
}
foreach (v; 0..V) {
h[v] += dist[v];
}
int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
G[prevv[v]][preve[v]].cap -= d;
G[v][G[prevv[v]][preve[v]].rev].cap += d;
}
}
return res;
}
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i64 = long long;
struct edge {
i64 from;
i64 to;
i64 cap;
i64 cost;
i64 rev;
};
i64 INF = 1e18;
i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g,
std::vector<i64> b) {
i64 ans = 0;
i64 U = *std::max_element(begin(b), end(b));
i64 delta = (1 << ((int)(std::log2(U)) + 1));
int n = g.size();
std::vector<i64> e = b;
std::vector<i64> p(n, 0);
for (int i = 0; i < n; i++) {
if (b[i] > 0) p[i] = 1e8;
}
int zero = 0;
for (auto x : e) {
if (x == 0) zero++;
}
for (; delta > 0; delta >>= 1) {
if (zero == n) break;
for (int s = 0; s < n; s++) {
if (!(e[s] >= delta)) continue;
std::vector<std::size_t> pv(n, -1);
std::vector<std::size_t> pe(n, -1);
std::vector<i64> dist(n, INF);
using P = std::pair<i64, i64>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
dist[s] = 0;
que.push({dist[s], s});
while (!que.empty()) {
int v = que.top().second;
i64 d = que.top().first;
que.pop();
if (dist[v] < d) continue;
for (std::size_t i = 0; i < g[v].size(); i++) {
const auto& e = g[v][i];
std::size_t u = e.to;
if (e.cap == 0) {
continue;
}
i64 ccc = e.cost + p[v] - p[u];
assert(ccc >= 0);
if (dist[u] > dist[v] + ccc) {
dist[u] = dist[v] + ccc;
pv[u] = v;
pe[u] = i;
que.push({dist[u], u});
}
}
}
for (int i = 0; i < n; i++) {
if (pv[i] != -1) p[i] += dist[i] - p[s];
}
p[s] += dist[s] - p[s];
int t = 0;
for (; t < n; t++) {
if (!(e[s] >= delta)) break;
if (e[t] <= -delta && pv[t] != -1) {
std::size_t u = t;
for (; pv[u] != -1; u = pv[u]) {
ans += delta * g[pv[u]][pe[u]].cost;
g[pv[u]][pe[u]].cap -= delta;
g[u][g[pv[u]][pe[u]].rev].cap += delta;
}
e[u] -= delta;
e[t] += delta;
if (e[u] == 0) zero++;
if (e[t] == 0) zero++;
}
}
}
}
for (int i = 0; i < n; i++) {
}
if (zero == n)
return ans;
else
return -1e18;
}
int main() {
i64 N, M, F;
cin >> N >> M >> F;
vector<vector<edge>> g(N + M);
vector<i64> e(N + M, 0);
int s = 0;
int t = N - 1;
e[s + M] = F;
e[t + M] = -F;
for (int i = 0; i < M; i++) {
i64 a, b, c, d;
cin >> a >> b >> c >> d;
e[i] = c;
e[a + M] -= c;
g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()});
g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1});
g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()});
g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1});
}
i64 ans = capacity_scaling_bflow(g, e);
if (ans == -1e18) {
cout << -1 << endl;
} else {
cout << ans << endl;
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i64 = long long;
struct edge {
i64 from;
i64 to;
i64 cap;
i64 cost;
i64 rev;
};
i64 INF = 1e8;
i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g,
std::vector<i64> b) {
i64 ans = 0;
i64 U = *std::max_element(begin(b), end(b));
i64 delta = (1 << ((int)(std::log2(U)) + 1));
int n = g.size();
std::vector<i64> e = b;
std::vector<i64> p(n, 0);
int zero = 0;
for (auto x : e) {
if (x == 0) zero++;
}
for (; delta > 0; delta >>= 1) {
if (zero == n) break;
while (true) {
std::vector<std::size_t> pv(n, -1);
std::vector<std::size_t> pe(n, -1);
std::vector<std::size_t> start(n, -1);
std::vector<i64> dist(n, INF);
using P = std::pair<i64, i64>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
bool t_exist = false;
for (int s = 0; s < n; s++) {
if (e[s] >= delta) {
dist[s] = 0;
start[s] = s;
que.push({dist[s], s});
}
if (e[s] <= -delta) t_exist = true;
}
if (que.empty()) break;
if (!t_exist) break;
while (!que.empty()) {
int v = que.top().second;
i64 d = que.top().first;
que.pop();
if (dist[v] < d) continue;
for (std::size_t i = 0; i < g[v].size(); i++) {
const auto& e = g[v][i];
std::size_t u = e.to;
if (e.cap == 0) continue;
assert(e.cost + p[v] - p[u] >= 0);
if (dist[u] > dist[v] + e.cost + p[v] - p[u]) {
dist[u] = dist[v] + e.cost + p[v] - p[u];
pv[u] = v;
pe[u] = i;
start[u] = start[v];
que.push({dist[u], u});
}
}
}
for (int i = 0; i < n; i++) {
p[i] += dist[i];
}
bool sended = false;
for (int t = 0; t < n; t++) {
if (e[t] <= -delta && pv[t] != -1 && e[start[t]] >= delta) {
sended = true;
std::size_t u = t;
for (; pv[u] != -1; u = pv[u]) {
ans += delta * g[pv[u]][pe[u]].cost;
g[pv[u]][pe[u]].cap -= delta;
g[u][g[pv[u]][pe[u]].rev].cap += delta;
}
e[u] -= delta;
e[t] += delta;
if (e[u] == 0) zero++;
if (e[t] == 0) zero++;
}
}
if (!sended) {
break;
}
}
}
if (zero == n)
return ans;
else
return -1e18;
}
int main() {
i64 N, M, F;
cin >> N >> M >> F;
vector<vector<edge>> g(N + M);
vector<i64> e(N + M, 0);
int s = 0;
int t = N - 1;
e[s + M] = F;
e[t + M] = -F;
for (int i = 0; i < M; i++) {
i64 a, b, c, d;
cin >> a >> b >> c >> d;
e[i] = c;
e[a + M] -= c;
g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()});
g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1});
g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()});
g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1});
}
i64 ans = capacity_scaling_bflow(g, e);
if (ans == -1e18) {
cout << -1 << endl;
} else {
cout << ans << endl;
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i64 = long long;
struct edge {
i64 from;
i64 to;
i64 cap;
i64 cost;
i64 rev;
};
i64 INF = 1e8;
i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g,
std::vector<i64> b) {
i64 ans = 0;
i64 U = *std::max_element(begin(b), end(b));
i64 delta = (1 << ((int)(std::log2(U)) + 1));
int n = g.size();
std::vector<i64> e = b;
std::vector<i64> p(n, 0);
int zero = 0;
for (auto x : e) {
if (x == 0) zero++;
}
for (; delta > 0; delta >>= 1) {
if (zero == n) break;
for (int s = 0; s < n; s++) {
if (!(e[s] >= delta)) continue;
std::vector<std::size_t> pv(n, -1);
std::vector<std::size_t> pe(n, -1);
std::vector<i64> dist(n, 1e18);
using P = std::pair<i64, i64>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
dist[s] = 0;
que.push({dist[s], s});
while (!que.empty()) {
int v = que.top().second;
i64 d = que.top().first;
que.pop();
if (dist[v] < d) continue;
for (std::size_t i = 0; i < g[v].size(); i++) {
const auto& e = g[v][i];
std::size_t u = e.to;
i64 ccc = e.cost + p[v] - p[u];
if (e.cap == 0) ccc = INF;
assert(ccc >= 0);
if (dist[u] > dist[v] + ccc) {
dist[u] = dist[v] + ccc;
pv[u] = v;
pe[u] = i;
que.push({dist[u], u});
}
}
}
for (int i = 0; i < n; i++) {
p[i] += dist[i];
}
int t = 0;
for (; t < n; t++) {
if (!(e[s] >= delta)) break;
if (e[t] <= -delta && pv[t] != -1 && dist[t] < INF) {
std::size_t u = t;
for (; pv[u] != -1; u = pv[u]) {
ans += delta * g[pv[u]][pe[u]].cost;
g[pv[u]][pe[u]].cap -= delta;
g[u][g[pv[u]][pe[u]].rev].cap += delta;
}
e[u] -= delta;
e[t] += delta;
if (e[u] == 0) zero++;
if (e[t] == 0) zero++;
}
}
}
}
if (zero == n)
return ans;
else
return -1e18;
}
int main() {
i64 N, M, F;
cin >> N >> M >> F;
vector<vector<edge>> g(N + M);
vector<i64> e(N + M, 0);
int s = 0;
int t = N - 1;
e[s + M] = F;
e[t + M] = -F;
for (int i = 0; i < M; i++) {
i64 a, b, c, d;
cin >> a >> b >> c >> d;
e[i] = c;
e[a + M] -= c;
g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()});
g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1});
g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()});
g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1});
}
i64 ans = capacity_scaling_bflow(g, e);
if (ans == -1e18) {
cout << -1 << endl;
} else {
cout << ans << endl;
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | class PQueue
attr_accessor :node
def initialize
@node = []
end
def insert(num)
i = @node.size
@node[i] = num
down_heap(i)
end
def extract
ret = @node[0]
if @node.size > 1
@node[0] = @node.pop()
up_heap(0)
else
@node = []
end
return ret
end
def delete(node)
i = @node.index(node)
break until i
if i == @node.size - 1
@node.pop
else
@node[i] = @node.pop
copy = @node.clone
down_heap(i)
if copy == @node
up_heap(i)
end
end
end
def modify(old, new)
delete(old)
insert(new)
end
def up_heap(i)
h = @node.size
largest = i
l = 2 * i + 1
largest = l if l < h && @node[l] > @node[largest]
r = 2 * i + 2
largest = r if r < h && @node[r] > @node[largest]
while largest != i
@node[i], @node[largest] = @node[largest], @node[i]
i = largest
l = 2 * i + 1
largest = l if l < h && @node[l] > @node[largest]
r = 2 * i + 2
largest = r if r < h && @node[r] > @node[largest]
end
end
def down_heap(i)
p = (i+1)/2-1
while i > 0 && @node[p] < @node[i]
@node[i], @node[p] = @node[p], @node[i]
i = p
p = (i+1)/2-1
end
end
end
INF = 1.0 / 0.0
class Node
attr_accessor :i, :c, :prev, :d, :pot, :ans
def initialize(i)
@i = i
@c = {}
@ans = {}
@prev = nil
@d = INF
@pot = 0
end
def <(other)
if self.d > other.d
return true
else
return false
end
end
def >(other)
if self.d < other.d
return true
else
return false
end
end
end
nv, ne, f = gets.split.map(&:to_i)
g = Array.new(nv){|i| Node.new(i)}
ne.times{|i|
u, v, c, d = gets.split.map(&:to_i)
g[u].c[v] = [c, d]
g[u].ans[v] = [0,d]
}
loop do
nv.times{|i|
g[i].d = INF
g[i].prev = nil
}
g[0].d = 0
q = PQueue.new
nv.times{|i|
q.insert(g[i])
}
while q.node.size > 0
u = q.extract
u.c.each{|v, val|
alt = u.d + val[1]
if g[v].d > alt
q.delete(g[v])
g[v].d = alt
g[v].prev = u.i
q.insert(g[v])
end
}
end
# p g
max = f
c = nv-1
path = [c]
while c != 0
p = g[c].prev
if p == nil
puts "-1"
exit
end
path.unshift(p)
max = g[p].c[c][0] if max > g[p].c[c][0]
c = p
end
# p path
# p max
if max < f then
#make potential
path.each{|i|
g[i].pot -= g[i].d
}
(path.size-1).times{|i|
u = path[i]
v = path[i+1]
g[u].ans[v][0] += max
}
# p g
f -= max
else
(path.size-1).times{|i|
u = path[i]
v = path[i+1]
g[u].ans[v][0] += f
}
break
end
#make sub-network
(path.size-1).times{|i|
u = path[i]
v = path[i+1]
g[v].c[u] ||= [0, -g[u].c[v][1]]
g[v].c[u][0] += max
g[u].c[v][0] -= max
if g[u].c[v][0] == 0
g[u].c.delete(v)
end
}
#make modified sub-network
g.size.times{|i|
g[i].c.each{|j, val|
# p "#{g[i].c[j][1]} #{g[i].pot} #{g[j].pot}"
g[i].c[j][1] -= g[i].pot - g[j].pot
}
}
# g.size.times{|i|
# p g[i]
# }
end
sum = 0
nv.times{|i|
g[i].ans.each{|k,v|
sum += v[0]*v[1]
}
}
puts sum |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from heapq import heappop, heappush
def trace(source, edge_trace):
v = source
for i in edge_trace:
e = edges[v][i]
yield e
v = e[1]
def min_cost_flow(source, sink, required_flow):
res = 0
while required_flow:
visited = set()
queue = [(0, source, tuple())]
while queue:
total_cost, v, edge_memo = heappop(queue)
if v in visited:
continue
elif v == sink:
dist = total_cost
edge_trace = edge_memo
break
for i, (remain, target, cost, _) in enumerate(edges[v]):
if remain and target not in visited:
heappush(queue, (total_cost + cost, target, edge_memo + (i,)))
else:
return -1
aug = min(required_flow, min(e[0] for e in trace(source, edge_trace)))
required_flow -= aug
res += aug * dist
for e in trace(source, edge_trace):
remain, target, cost, idx = e
e[0] -= aug
edges[target][idx][0] += aug
return res
n, m, f = map(int, input().split())
edges = [[] for _ in range(n)]
for _ in range(m):
s, t, c, d = map(int, input().split())
es, et = edges[s], edges[t]
ls, lt = len(es), len(et)
es.append([c, t, d, lt])
et.append([0, s, d, ls])
print(min_cost_flow(0, n - 1, f)) |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
struct node {
int id;
int cap;
int cost;
struct node *next;
};
struct node **list;
int **flow, *delta, *dist, *prev;
int *heap, *heap_index, heapsize;
void Insert(int, int, int, int);
void downheap(int);
void upheap(int);
void PQ_init(int);
int PQ_remove(void);
void PQ_update(int);
int Maxflow(int, int, int);
int main(void) {
int i, v, e, f, s, t, c, d, mincost = 0;
scanf("%d %d %d", &v, &e, &f);
list = (struct node **)malloc(sizeof(struct node *) * v);
flow = (int **)malloc(sizeof(int *) * v);
delta = (int *)malloc(sizeof(int) * v);
dist = (int *)malloc(sizeof(int) * v);
prev = (int *)malloc(sizeof(int) * v);
for (i = 0; i < v; i++) {
list[i] = NULL;
flow[i] = (int *)calloc(v, sizeof(int));
}
for (i = 0; i < e; i++) {
scanf("%d %d %d %d", &s, &t, &c, &d);
Insert(s, t, c, d);
}
while (f > 0 && Maxflow(0, v - 1, v)) {
int n = v - 1;
f -= delta[v - 1];
if (f < 0) delta[v - 1] += f;
do {
flow[prev[n]][n] += delta[v - 1];
flow[n][prev[n]] -= delta[v - 1];
n = prev[n];
} while (n);
}
if (f <= 0) {
for (i = 0; i < v; i++) {
struct node *n;
for (n = list[i]; n != NULL; n = n->next) {
mincost += flow[i][n->id] * n->cost;
}
}
printf("%d\n", mincost);
} else
printf("-1\n");
for (i = 0; i < v; i++) {
free(list[i]);
free(flow[i]);
}
free(list);
free(flow);
free(delta);
free(dist);
free(prev);
}
void Insert(int a, int b, int cap, int cost) {
struct node *p = (struct node *)malloc(sizeof(struct node));
p->id = b;
p->cap = cap;
p->cost = cost;
p->next = list[a];
list[a] = p;
p = (struct node *)malloc(sizeof(struct node));
p->id = a;
p->cap = 0;
p->cost = 0;
p->next = list[b];
list[b] = p;
}
void downheap(int k) {
int j, v = heap[k];
while (k < heapsize / 2) {
j = 2 * k + 1;
if (j < heapsize - 1 && dist[heap[j]] > dist[heap[j + 1]]) j++;
if (dist[v] <= dist[heap[j]]) break;
heap[k] = heap[j];
heap_index[heap[j]] = k;
k = j;
}
heap[k] = v;
heap_index[v] = k;
}
void upheap(int j) {
int k, v = heap[j];
while (j > 0) {
k = (j + 1) / 2 - 1;
if (dist[v] >= dist[heap[k]]) break;
heap[j] = heap[k];
heap_index[heap[k]] = j;
j = k;
}
heap[j] = v;
heap_index[v] = j;
}
void PQ_init(int size) {
int i;
heapsize = size;
heap = (int *)malloc(sizeof(int) * size);
heap_index = (int *)malloc(sizeof(int) * size);
for (i = 0; i < size; i++) {
heap[i] = i;
heap_index[i] = i;
}
for (i = heapsize / 2 - 1; i >= 0; i--) downheap(i);
}
int PQ_remove(void) {
int v = heap[0];
heap[0] = heap[heapsize - 1];
heap_index[heap[heapsize - 1]] = 0;
heapsize--;
downheap(0);
return v;
}
void PQ_update(int v) { upheap(heap_index[v]); }
int Maxflow(int s, int t, int size) {
struct node *n;
int i;
for (i = 0; i < size; i++) {
delta[i] = INT_MAX;
dist[i] = INT_MAX;
prev[i] = -1;
}
dist[s] = 0;
PQ_init(size);
while (heapsize) {
i = PQ_remove();
if (i == t) break;
if (dist[i] == INT_MAX) break;
for (n = list[i]; n != NULL; n = n->next) {
int v = n->id;
if (flow[i][v] < n->cap && dist[i] != INT_MAX) {
int newlen = dist[i] + n->cost;
if (newlen < dist[v]) {
dist[v] = newlen;
prev[v] = i;
delta[v] =
((delta[i]) < (n->cap - flow[i][v]) ? (delta[i])
: (n->cap - flow[i][v]));
PQ_update(v);
}
}
}
}
free(heap);
free(heap_index);
return dist[t] != INT_MAX;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // warm heart, wagging tail,and a smile just for you!
// ███████████
// ███╬╬╬╬╬╬╬╬╬╬███
// ███╬╬╬╬╬╬╬██╬╬╬╬╬╬███
// ███████████ ██╬╬╬╬╬████╬╬████╬╬╬╬╬██
// █████████╬╬╬╬╬████████████╬╬╬╬╬██╬╬╬╬╬╬███╬╬╬╬╬██
// ████████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████████╬╬╬╬╬╬██╬╬╬╬╬╬╬██
// ████╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████████╬╬╬╬╬╬╬╬╬╬╬██
// ███╬╬╬█╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬███╬╬╬╬╬╬╬█████
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬████████╬╬╬╬╬██
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬╬╬╬╬╬╬╬███
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬██
// ████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████╬╬╬╬╬████
// █████████████╬╬╬╬╬╬╬╬██╬╬╬╬╬████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬╬╬██████
// ████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬██████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██████╬╬╬╬╬╬╬███████████╬╬╬╬╬╬╬╬██╬╬╬██╬╬╬██
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████╬╬╬╬╬╬╬╬╬╬╬█╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬██
// ██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬▓▓▓▓▓▓╬╬╬████╬╬████╬╬╬╬╬╬╬▓▓▓▓▓▓▓▓▓█╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬███
// ██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██████▓▓▓▓▓▓▓╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬▓▓▓▓▓▓▓▓█╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬█████
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████████
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██
// ██████████████ ████╬╬╬╬╬╬███████████████████████████╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████
// ███████ █████ ███████████████████
#include "bits/stdc++.h"
using namespace std;
#define MOD 1000000007
#define INF 1LL<<60
#define fs first
#define sc second
#define pb push_back
#define int long long
#define FOR(i,a,b) for(int i=(a);i<(b);i++)
#define RFOR(i,a,b) for(int i = (b-1);i>=a;i--)
#define REP(i,n) FOR(i,0,n)
#define RREP(i,n) RFOR(i,0,n)
#define ITR(itr,mp) for(auto itr = (mp).begin(); itr != (mp).end(); ++itr)
#define RITR(itr,mp) for(auto itr = (mp).rbegin(); itr != (mp).rend(); ++itr)
#define range(i,a,b) (a)<=(i) && (i)<(b)
#define debug(x) cout << #x << " = " << (x) << endl;
typedef pair<int,int> P;
struct edge{int to,cap,cost,rev;};
const int MAX_V = 3e5;
int V;
vector<edge> G[MAX_V];
vector<int> h,dist,prevv(MAX_V),preve(MAX_V);
void add_edge(int from, int to, int cap, int cost){
G[from].pb((edge){to,cap,cost,G[to].size()});
G[to].pb((edge){from,0,-cost,G[from].size()-1});
}
int min_cost_flow(int s, int t, int f){
int res = 0;
h.assign(V,0);
while(f > 0){
priority_queue<P,vector<P>,greater<P>> que;
dist.assign(V,INF);
dist[s] = 0;
que.push(P(0,s));
while(!que.empty()){
P p = que.top();
que.pop();
int v = p.sc;
if(dist[v] < p.fs) continue;
REP(i,G[v].size()){
edge &e = G[v][i];
if(e.cap > 0 && dist[e.to] > dist[v]+e.cost+h[v]-h[e.to]){
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(P(dist[e.to],e.to));
}
}
}
if(dist[t] == INF) return -1;
REP(v,V) h[v] += dist[v];
int d = f;
for(int v = t; v != s; v = prevv[v]) d = min(d,G[prevv[v]][preve[v]].cap);
f -= d;
res += d*h[t];
for(int v = t; v != s; v = prevv[v]){
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
// Vを頂点数で更新する!!
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
int v,e,f;
cin >> v >> e >> f;
V = v;
REP(_,e){
int s,t,cap,dist;
cin >> s >> t >> cap >> dist;
add_edge(s,t,cap,dist);
}
cout << min_cost_flow(0,v-1,f) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using Int = int64_t;
using UInt = uint64_t;
using C = std::complex<double>;
template <typename T>
using RQ = std::priority_queue<T, std::vector<T>, std::greater<T>>;
int main() {
Int v, e, f;
std::cin >> v >> e >> f;
std::vector<Int> ss(e + 1), ts(e + 1), cs(e + 1), fs(e + 1), bs(e + 1);
for (Int i = (Int)(1); i < (Int)(e + 1); ++i) {
Int a, b, c, d;
std::cin >> a >> b >> c >> d;
ss[i] = a, ts[i] = b, cs[i] = d, fs[i] = 0, bs[i] = c;
}
std::vector<std::vector<Int>> es(v);
for (Int i = (Int)(1); i < (Int)(e + 1); ++i) {
Int s = ss[i], t = ts[i];
es[s].emplace_back(i);
es[t].emplace_back(-i);
}
Int res = 0;
Int source = 0, sink = v - 1;
while (f > 0) {
RQ<std::pair<Int, Int>> q;
q.emplace(0, source);
std::vector<Int> ps(v, -1), xs(v, -1), ys(v), hs(v);
xs[source] = 0;
ys[source] = f;
while (not q.empty()) {
Int d, s;
std::tie(d, s) = q.top();
q.pop();
if (not(d == xs[s])) continue;
;
for (Int i : es[s]) {
Int k = std::abs(i);
Int t = i > 0 ? ts[k] : ss[k];
Int tf = i > 0 ? bs[k] : fs[k];
if (not(tf > 0)) continue;
;
Int nd = d + cs[k] + hs[s] - hs[t];
if (not(xs[t] == -1 or xs[t] > nd)) continue;
;
xs[t] = nd;
ps[t] = i;
ys[t] = std::min(ys[s], tf);
q.emplace(nd, t);
}
}
Int tf = ys[sink];
if (false) fprintf(stderr, "tf = %ld\n", tf);
f -= tf;
if (f > 0 and tf == 0) {
res = -1;
break;
}
for (Int i = 0; i < (Int)(v); ++i) hs[i] += xs[i];
for (Int i = sink, k = ps[i]; i != source;
i = k > 0 ? ss[k] : ts[k], k = ps[i]) {
Int ak = std::abs(k);
if (false) fprintf(stderr, "i=%ld, k=%ld\n", i, k);
if (k > 0) {
res += tf * cs[ak];
fs[ak] += tf;
bs[ak] -= tf;
} else {
res -= tf * cs[ak];
fs[ak] -= tf;
bs[ak] += tf;
}
}
if (f == 0) break;
for (Int i = (Int)(1); i < (Int)(e + 1); ++i) {
if (false)
fprintf(stderr, "%ld -> %ld : cost=%ld : ->=%ld : <-=%ld\n", ss[i],
ts[i], cs[i], fs[i], bs[i]);
}
}
printf("%ld\n", res);
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct edge {
int to, cap, cost, rev;
};
static const int MAX_V = 10000;
int V;
vector<edge> G[MAX_V];
int dist[MAX_V];
int prevv[MAX_V], preve[MAX_V];
void addEdge(int from, int to, int cap, int cost) {
G[from].push_back((edge{to, cap, cost, (int)G[to].size()}));
G[to].push_back((edge{from, 0, -cost, (int)G[from].size() - 1}));
}
int minCostFlow(int s, int t, int f) {
int res = 0;
while (f > 0) {
fill(dist, dist + V, (long long)(2 * 1e9));
dist[s] = 0;
bool update = true;
while (update) {
update = false;
for (int v = (0); v < (int)(V); v++) {
if (dist[v] == (long long)(2 * 1e9)) continue;
for (int i = (0); i < (int)(G[v].size()); i++) {
edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
prevv[e.to] = v;
preve[e.to] = i;
update = true;
}
}
}
}
if (dist[t] == (long long)(2 * 1e9)) {
return -1;
}
int d = f;
for (int v = 0; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * dist[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main() {
int v, e, f;
cin >> v >> e >> f;
V = v;
for (int i = (0); i < (int)(e); i++) {
int u, v, c, d;
cin >> u >> v >> c >> d;
addEdge(u, v, c, d);
}
cout << minCostFlow(0, v - 1, f) << endl;
END:
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using Int = int64_t;
using UInt = uint64_t;
using C = std::complex<double>;
template <typename T>
using RQ = std::priority_queue<T, std::vector<T>, std::greater<T>>;
int main() {
Int v, e, f;
std::cin >> v >> e >> f;
std::vector<Int> ss(e + 1), ts(e + 1), cs(e + 1), fs(e + 1), bs(e + 1);
for (Int i = (Int)(1); i < (Int)(e + 1); ++i) {
Int a, b, c, d;
std::cin >> a >> b >> c >> d;
ss[i] = a, ts[i] = b, cs[i] = d, fs[i] = 0, bs[i] = c;
}
std::vector<std::vector<Int>> es(v);
for (Int i = (Int)(1); i < (Int)(e + 1); ++i) {
Int s = ss[i], t = ts[i];
es[s].emplace_back(i);
es[t].emplace_back(-i);
}
Int res = 0;
Int source = 0, sink = v - 1;
while (f > 0) {
RQ<std::pair<Int, Int>> q;
q.emplace(0, source);
std::vector<Int> ps(v, -1), xs(v, -1), ys(v);
ys[source] = (Int)1 << 53;
while (not q.empty()) {
Int d, s;
std::tie(d, s) = q.top();
q.pop();
for (Int i : es[s]) {
Int k = std::abs(i);
Int t = i > 0 ? ts[k] : ss[k];
Int tf = i > 0 ? bs[k] : fs[k];
if (not(tf > 0)) continue;
;
if (not(xs[t] == -1 or xs[t] > xs[s] + cs[k])) continue;
;
xs[t] = xs[s] + cs[k];
ps[t] = i;
ys[t] = std::min(ys[s], tf);
q.emplace(xs[s] + cs[k], t);
}
}
Int tf = ys[sink];
if (false) fprintf(stderr, "tf = %ld\n", tf);
f -= tf;
if (f > 0 and tf == 0) {
res = -1;
break;
}
for (Int i = sink, k = ps[i]; i != source;
i = k > 0 ? ss[k] : ts[k], k = ps[i]) {
Int ak = std::abs(k);
res += tf * cs[ak];
if (k > 0) {
fs[ak] += tf;
bs[ak] -= tf;
} else {
fs[ak] -= tf;
bs[ak] += tf;
}
}
if (f == 0) break;
for (Int i = (Int)(1); i < (Int)(e + 1); ++i) {
if (false)
fprintf(stderr, "%ld -> %ld : cost=%ld : ->=%ld : <-=%ld\n", ss[i],
ts[i], cs[i], fs[i], bs[i]);
}
}
printf("%ld\n", res);
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <stdexcept>
#include <cmath>
#include <utility>
#include <queue>
#include <limits>
#include <iostream>
#include <vector>
#include <cstddef>
#include <type_traits>
namespace loquat {
using vertex_t = size_t;
}
namespace loquat {
namespace edge_param {
struct to_ {
vertex_t to;
explicit to_(vertex_t t = 0)
: to(t)
{ }
};
template <typename T>
struct weight_ {
using weight_type = T;
weight_type weight;
explicit weight_(const weight_type& w = weight_type())
: weight(w)
{ }
};
template <typename T>
using weight = weight_<T>;
template <typename T>
struct capacity_ {
using capacity_type = T;
capacity_type capacity;
explicit capacity_(const capacity_type& c = capacity_type())
: capacity(c)
{ }
};
template <typename T>
using capacity = capacity_<T>;
}
namespace detail {
template <typename T, typename... Params>
struct edge_param_wrapper : public T, edge_param_wrapper<Params...> {
template <typename U, typename... Args>
explicit edge_param_wrapper(U&& x, Args&&... args)
: T(std::forward<U>(x))
, edge_param_wrapper<Params...>(std::forward<Args>(args)...)
{ }
};
template <typename T>
struct edge_param_wrapper<T> : public T {
template <typename U>
explicit edge_param_wrapper(U&& x)
: T(std::forward<U>(x))
{ }
};
}
template <typename... Params>
struct edge : public detail::edge_param_wrapper<edge_param::to_, Params...> {
template <typename... Args>
explicit edge(Args&&... args)
: detail::edge_param_wrapper<edge_param::to_, Params...>(
std::forward<Args>(args)...)
{ }
};
}
namespace loquat {
template <typename EdgeType>
struct has_weight {
private:
template <typename U>
static std::true_type check_type(typename U::weight_type *);
template <typename U>
static auto check_member(const U& x)
public:
static const bool value =
decltype(check_type<EdgeType>(nullptr))::value &&
decltype(check_member(std::declval<EdgeType>()))::value;
};
}
namespace loquat {
template <typename EdgeType>
class adjacency_list {
public:
using edge_type = EdgeType;
using edge_list = std::vector<edge_type>;
private:
std::vector<std::vector<EdgeType>> m_edges;
public:
explicit adjacency_list(size_t n)
: m_edges(n)
{ }
size_t size() const {
return m_edges.size();
}
const edge_list& operator[](vertex_t u) const {
return m_edges[u];
}
edge_list& operator[](vertex_t u){
return m_edges[u];
}
template <typename... Args>
void add_edge(vertex_t from, Args&&... args){
m_edges[from].emplace_back(std::forward<Args>(args)...);
}
void add_edge(vertex_t from, const edge_type& e){
m_edges[from].emplace_back(e);
}
};
}
namespace loquat {
namespace detail {
template <typename EdgeType>
auto negate_weight(EdgeType& e)
-> typename std::enable_if<has_weight<EdgeType>::value, void>::type
{
e.weight = -e.weight;
}
}
template <typename EdgeType>
struct residual_edge : public EdgeType {
using base_type = EdgeType;
size_t rev;
residual_edge(const base_type& e, size_t rev)
: base_type(e)
, rev(rev)
{ }
};
template <typename EdgeType>
adjacency_list<residual_edge<EdgeType>>
make_residual(const adjacency_list<EdgeType>& graph){
using edge_type = EdgeType;
using residual_type = residual_edge<edge_type>;
using capacity_type = typename edge_type::capacity_type;
const size_t n = graph.size();
adjacency_list<residual_type> result(n);
for(vertex_t u = 0; u < n; ++u){
for(const auto& e : graph[u]){
result.add_edge(u, residual_type(e, 0));
}
}
for(vertex_t u = 0; u < n; ++u){
const size_t m = graph[u].size();
for(size_t i = 0; i < m; ++i){
auto e = graph[u][i];
const auto v = e.to;
e.to = u;
e.capacity = capacity_type();
detail::negate_weight(e);
result[u][i].rev = result[v].size();
result.add_edge(v, residual_type(e, i));
}
}
return result;
}
}
namespace loquat {
template <typename EdgeType, typename Predicate>
adjacency_list<EdgeType> filter(
const adjacency_list<EdgeType>& graph,
Predicate pred)
{
const size_t n = graph.size();
adjacency_list<EdgeType> result(n);
for(vertex_t u = 0; u < n; ++u){
for(const auto& e : graph[u]){
if(pred(u, e)){ result.add_edge(u, e); }
}
}
return result;
}
}
namespace loquat {
template <typename T>
constexpr inline auto positive_infinity() noexcept
-> typename std::enable_if<std::is_integral<T>::value, T>::type
{
return std::numeric_limits<T>::max();
}
template <typename T>
constexpr inline auto is_positive_infinity(T x) noexcept
-> typename std::enable_if<std::is_integral<T>::value, bool>::type
{
return x == std::numeric_limits<T>::max();
}
}
namespace loquat {
class no_solution_error : public std::runtime_error {
public:
explicit no_solution_error(const char *what)
: std::runtime_error(what)
{ }
};
}
namespace loquat {
template <typename EdgeType>
std::vector<typename EdgeType::weight_type>
sssp_bellman_ford(vertex_t source, const adjacency_list<EdgeType>& graph){
using weight_type = typename EdgeType::weight_type;
const auto inf = positive_infinity<weight_type>();
const auto n = graph.size();
std::vector<weight_type> result(n, inf);
result[source] = weight_type();
bool finished = false;
for(size_t iter = 0; !finished && iter < n; ++iter){
finished = true;
for(loquat::vertex_t u = 0; u < n; ++u){
if(loquat::is_positive_infinity(result[u])){ continue; }
for(const auto& e : graph[u]){
const auto v = e.to;
if(result[u] + e.weight < result[v]){
result[v] = result[u] + e.weight;
finished = false;
}
}
}
}
if(!finished){
throw no_solution_error("graph has a negative cycle");
}
return result;
}
}
namespace loquat {
template <typename EdgeType>
typename EdgeType::weight_type
mincostflow_primal_dual(
typename EdgeType::capacity_type flow,
vertex_t source,
vertex_t sink,
adjacency_list<EdgeType>& graph)
{
using edge_type = EdgeType;
using weight_type = typename edge_type::weight_type;
const auto inf = positive_infinity<weight_type>();
const auto n = graph.size();
const auto predicate =
[](vertex_t, const edge_type& e) -> bool { return e.capacity > 0; };
auto h = sssp_bellman_ford(source, filter(graph, predicate));
std::vector<vertex_t> prev_vertex(n);
std::vector<size_t> prev_edge(n);
weight_type result = 0;
while(flow > 0){
using pair_type = std::pair<weight_type, vertex_t>;
std::priority_queue<
pair_type, std::vector<pair_type>, std::greater<pair_type>> pq;
std::vector<weight_type> d(n, inf);
pq.emplace(0, source);
d[source] = weight_type();
while(!pq.empty()){
const auto p = pq.top();
pq.pop();
const auto u = p.second;
if(d[u] < p.first){ continue; }
for(size_t i = 0; i < graph[u].size(); ++i){
const auto& e = graph[u][i];
if(e.capacity <= 0){ continue; }
const auto v = e.to;
const auto t = d[u] + e.weight + h[u] - h[v];
if(d[v] <= t){ continue; }
d[v] = t;
prev_vertex[v] = u;
prev_edge[v] = i;
pq.emplace(t, v);
}
}
if(is_positive_infinity(d[sink])){
throw no_solution_error("there are no enough capacities to flow");
}
for(size_t i = 0; i < n; ++i){ h[i] += d[i]; }
weight_type f = flow;
for(vertex_t v = sink; v != source; v = prev_vertex[v]){
const auto u = prev_vertex[v];
f = std::min(f, graph[u][prev_edge[v]].capacity);
}
flow -= f;
result += f * h[sink];
for(vertex_t v = sink; v != source; v = prev_vertex[v]){
const auto u = prev_vertex[v];
auto& e = graph[u][prev_edge[v]];
e.capacity -= f;
graph[v][e.rev].capacity += f;
}
}
return result;
}
}
using namespace std;
using edge = loquat::edge<
loquat::edge_param::weight<int>,
loquat::edge_param::capacity<int>>;
int main(){
ios_base::sync_with_stdio(false);
int n, m, f;
cin >> n >> m >> f;
loquat::adjacency_list<edge> g(n);
for(int i = 0; i < m; ++i){
int a, b, c, d;
cin >> a >> b >> c >> d;
g.add_edge(a, b, d, c);
}
const int source = 0, sink = n - 1;
auto residual = loquat::make_residual(g);
cout << loquat::mincostflow_primal_dual(f, source, sink, residual) << std::endl;
return 0;
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from heapq import heappop, heappush
def trace(source, edge_trace):
v = source
for i in edge_trace:
e = edges[v][i]
yield e
v = e[1]
def min_cost_flow(source, sink, required_flow):
res = 0
while required_flow:
dist = [-1] * n
queue = [(0, source, tuple())]
edge_trace = None
while queue:
total_cost, v, edge_memo = heappop(queue)
if dist[v] != -1:
continue
dist[v] = total_cost
if v == sink:
edge_trace = edge_memo
break
for i, (remain, target, cost, _) in enumerate(edges[v]):
if remain and dist[target] == -1:
heappush(queue, (total_cost + cost, target, edge_memo + (i,)))
if dist[sink] == -1:
return -1
aug = min(required_flow, min(e[0] for e in trace(source, edge_trace)))
required_flow -= aug
res += aug * dist[sink]
for e in trace(source, edge_trace):
remain, target, cost, idx = e
e[0] -= aug
edges[target][idx][0] += aug
return res
n, m, f = map(int, input().split())
edges = [[] for _ in range(n)]
for _ in range(m):
s, t, c, d = map(int, input().split())
es, et = edges[s], edges[t]
ls, lt = len(es), len(et)
es.append([c, t, d, lt])
et.append([0, s, d, ls])
print(min_cost_flow(0, n - 1, f)) |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using ld = long double;
template <class T, class S>
void cmin(T &a, const S &b) {
if (a > b) a = b;
}
template <class T, class S>
void cmax(T &a, const S &b) {
if (a < b) a = b;
}
ll dx[] = {0, 0, 1, -1};
ll dy[] = {1, -1, 0, 0};
ll W, H;
bool inrange(ll x, ll y) { return (0 <= x && x < W) && (0 <= y && y < H); }
using namespace std;
using Flow = ll;
using Cost = ll;
struct Edge {
ll s, to, rev, cost, source, sink;
Flow cap;
Edge(ll _s, ll _to) : s(_s), to(_to) { ; }
Edge(ll _s, ll _to, ll _c) : s(_s), to(_to), cost(_c) { ; }
Edge(ll _s, ll _to, Flow f, ll _rev) : s(_s), to(_to), cap(f), rev(_rev) { ; }
Edge(ll _s, ll _to, Flow f, ll _rev, ll _c)
: s(_s), to(_to), cost(_c), cap(f), rev(_rev) {
;
}
};
class MCF {
public:
using pair<ll, ll> = pair<ll, ll>;
using ve = vector<Edge>;
using vve = vector<ve>;
ll n;
vve G;
vector<ll> h, dist, prev, pree;
MCF(ll size) {
n = size;
G = vve(n);
h = dist = prev = pree = vector<ll>(n);
}
void add_edge(ll s, ll t, Flow ca, ll co) {
Edge e = Edge(t, ca, co, (ll)G[t].size());
G[s].push_back(e);
Edge ee = Edge(s, 0, -co, (ll)G[s].size() - 1);
G[t].push_back(ee);
}
ll mcf(ll s, ll t, Flow f) {
ll out = 0;
h = vector<ll>(n);
while (f > 0) {
priority_queue<pair<ll, ll>, vector<pair<ll, ll>>> q;
dist = vector<ll>(n, 1e9);
dist[s] = 0;
q.push(pair<ll, ll>(0, s));
while (!q.empty()) {
pair<ll, ll> p = q.top();
q.pop();
ll v = p.second;
if (dist[v] < -p.first) continue;
for (ll i = 0; i < G[t].size(); i++) {
Edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prev[e.to] = v;
pree[e.to] = i;
q.push(pair<ll, ll>(-dist[e.to], e.to));
}
}
}
if (dist[t] == 1e9) return -1;
for (ll i = 0; i < n; i++) h[i] += dist[i];
ll d = f;
for (ll v = t; v != s; v = prev[v]) d = min(d, G[prev[v]][pree[v]].cap);
f -= d;
out += d * h[t];
for (ll v = t; v != s; v = prev[v]) {
Edge &e = G[prev[v]][pree[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return out;
}
};
signed main() {
ll v, e, f;
cin >> v >> e >> f;
MCF hoge(v);
for (ll i = 0; i < e; i++) {
ll a, b, c, d;
cin >> a >> b >> c >> d;
hoge.add_edge(a, b, c, d);
}
cout << hoge.mcf(0, --v, f) << endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i64 = long long;
struct edge {
i64 from;
i64 to;
i64 cap;
i64 cost;
i64 rev;
};
i64 INF = 1e18;
i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g,
std::vector<i64> b) {
i64 ans = 0;
i64 U = *std::max_element(begin(b), end(b));
i64 delta = (1 << ((int)(std::log2(U)) + 1));
int n = g.size();
std::vector<i64> e = b;
std::vector<i64> p(n, 0);
int zero = 0;
for (auto x : e) {
if (x == 0) zero++;
}
for (; delta > 0; delta >>= 1) {
if (zero == n) break;
for (int s = 0; s < n; s++) {
if (!(e[s] >= delta)) continue;
std::vector<std::size_t> pv(n, -1);
std::vector<std::size_t> pe(n, -1);
std::vector<i64> dist(n, INF);
using P = std::pair<i64, i64>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
dist[s] = 0;
que.push({dist[s], s});
while (!que.empty()) {
int v = que.top().second;
i64 d = que.top().first;
que.pop();
if (dist[v] < d) continue;
for (std::size_t i = 0; i < g[v].size(); i++) {
const auto& e = g[v][i];
std::size_t u = e.to;
if (e.cap == 0) continue;
assert(e.cost + p[v] - p[u] >= 0);
if (dist[u] > dist[v] + e.cost + p[v] - p[u]) {
dist[u] = dist[v] + e.cost + p[v] - p[u];
pv[u] = v;
pe[u] = i;
que.push({dist[u], u});
}
}
}
for (int i = 0; i < n; i++) {
if (pv[i] != -1) p[i] += dist[i];
}
int t = 0;
for (; t < n; t++) {
if (!(e[s] >= delta)) break;
if (e[t] <= -delta && pv[t] != -1) {
std::size_t u = t;
for (; pv[u] != -1; u = pv[u]) {
ans += delta * g[pv[u]][pe[u]].cost;
g[pv[u]][pe[u]].cap -= delta;
g[u][g[pv[u]][pe[u]].rev].cap += delta;
}
e[u] -= delta;
e[t] += delta;
if (e[u] == 0) zero++;
if (e[t] == 0) zero++;
}
}
}
}
if (zero == n)
return ans;
else
return -1e18;
}
int main() {
i64 N, M, F;
cin >> N >> M >> F;
vector<vector<edge>> g(N + M);
vector<i64> e(N + M, 0);
int s = 0;
int t = N - 1;
e[s + M] = F;
e[t + M] = -F;
for (int i = 0; i < M; i++) {
i64 a, b, c, d;
cin >> a >> b >> c >> d;
e[i] = c;
e[a + M] -= c;
g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()});
g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1});
g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()});
g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1});
}
i64 ans = capacity_scaling_bflow(g, e);
if (ans == -1e18) {
cout << -1 << endl;
} else {
cout << ans << endl;
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
using namespace std;
constexpr int INF = 1e9;
struct Edge {
int to, cap, rev, weight;
Edge(int t, int c, int r, int w) : to(t), cap(c), rev(r), weight(w){}
};
using Edges = vector<Edge>;
using Graph = vector<Edges>;
class Flow {
public:
Flow(int v){
mGraph.resize(v);
mUsed.assign(v,false);
mVert = v;
}
void add_edge(int from, int to, int cap, int weight = 1){
mGraph[from].emplace_back(to,cap,mGraph[to].size(), weight); // directed
mGraph[to].emplace_back(from,0,mGraph[from].size()-1, weight);
}
// use after add all edges
int bipartite_matching(int x, int y){
int start = max(x,y)*2;
int end = max(x,y)*2 + 1 ;
for(int i = 0; i < x; ++i) add_edge(start, i, 1);
for(int i = 0; i < y; ++i) add_edge(i+x, end, 1);
return max_flow(start,end);
}
// verify : GRL_7_A
// ford-fulkerson
int dfs(int v, int t, int f){
if(v==t) return f;
mUsed[v] = true;
for(auto &e : mGraph[v]){
if(!mUsed[e.to] && e.cap > 0){
int d = dfs(e.to,t,min(f,e.cap));
if(d > 0){
e.cap -= d;
mGraph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t){
int flow = 0;
while(true){
mUsed.assign(mVert,false);
int f = dfs(s,t,INF);
if(f==0) break;
flow += f;
}
return flow;
}
// verify : GRL_6_A
// min_cost_flow
int min_cost_flow(int s, int t, int f){
int res = 0;
vector<int> prevv(mVert);
vector<int> preve(mVert);
while(f > 0){
// bellman_ford
vector<int> dst(mVert,INF);
dst[s] = 0;
for(int i = 0; i < mVert; ++i){
if(dst[i] == INF) continue;
for(int j = 0; j < mGraph[i].size(); ++j){
auto e = mGraph[i][j];
if(e.cap > 0 && dst[e.to] > dst[i]+e.weight){
dst[e.to] = dst[i] + e.weight;
prevv[e.to] = i;
preve[e.to] = j;
}
}
}
if(dst[t] == INF) return -1;
// 経路を後ろから辿り、流せる最大容量を確定
int d = f;
for(int i = t; i != s; i = prevv[i]){
d = min(d, mGraph[prevv[i]][preve[i]].cap);
}
f -= d;
res += d * dst[t];
// 流す
for(int i = t; i != s; i = prevv[i]){
Edge &e = mGraph[prevv[i]][preve[i]];
e.cap -= d;
mGraph[i][e.rev].cap += d;
}
}
return res;
}
private:
Graph mGraph;
vector<bool> mUsed;
int mVert;
};
int main(){
int V,E,F,u,v,c,d;
cin >> V >> E >> F;
Flow f(V);
for(int i=0; i < E; ++i){
cin >> u >> v >> c >> d;
f.add_edge(u,v,c,d);
}
cout << f.min_cost_flow(0,V-1,F) << '\n';
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const int MAX_V = 110;
static const int INF = (1 << 30);
struct edge {
int to, cap, cost, rev;
};
int V;
vector<edge> G[MAX_V];
int h[MAX_V], dist[MAX_V], prevv[MAX_V], preve[MAX_V];
void add_edge(int from, int to, int cap, int cost) {
G[from].push_back((edge){to, cap, cost, (int)G[to].size()});
G[to].push_back((edge){from, 0, -cost, (int)G[from].size() - 1});
}
int min_cost_flow(int s, int t, int f) {
int res = 0;
fill(h, h + V, 0);
while (f > 0) {
priority_queue<pair<int, int>, vector<pair<int, int> >,
greater<pair<int, int> > >
que;
fill(dist, dist + V, INF);
dist[s] = 0;
que.push(pair<int, int>(0, s));
while (!que.empty()) {
pair<int, int> p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first) continue;
for (int i = 0; i < G[v].size(); ++i) {
edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(pair<int, int>(dist[e.to], e.to));
}
}
}
if (dist[t] == INF) return -1;
for (int v = 0; v < V; ++v) h[v] += dist[v];
int d = f;
for (int v = t; v < s; v = prevv[v]) d = min(d, G[prevv[v]][preve[v]].cap);
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main(int argc, char const *argv[]) {
int E, F;
cin >> V >> E >> F;
for (int i = 0; i < E; ++i) {
int s, t, c, d;
cin >> s >> t >> c >> d;
add_edge(s, t, c, d);
}
cout << min_cost_flow(0, V - 1, F) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace MinimumCostFlow
{
class Edge : IComparable
{
internal int from, to, cap, cost;
public Edge(int from, int to)
{
this.from = from;
this.to = to;
}
public Edge(int u, int v, int c, int d)
{
from = u;
to = v;
cap = c;
cost = d;
}
public int CompareTo(object obj)
{
Edge e = obj as Edge;
return e.cost - cost;
}
}
class MinimumCostFlow
{
readonly int n, INFTY = int.MaxValue / 2;
Dictionary<int, List<Edge>> G;
public MinimumCostFlow(int V)
{
n = V;
G = new Dictionary<int, List<Edge>>();
for (int i = 0; i < n; i++) G.Add(i, new List<Edge>());
}
public void AddEdge(int from, int to, int cap, int cost)
{
G[from].Add(new Edge(from, to, cap, cost));
G[to].Add(new Edge(to, from, 0, -cost));
}
public int Solve(int s, int t, int F)
{
int[,] capacity = new int[n, n];
int[,] cost = new int[n, n];
int[,] flow = new int[n, n];
for (int i = 0; i < n; i++)
{
foreach (var e in G[i])
{
int u = e.from;
int v = e.to;
capacity[u, v] = e.cap;
cost[u, v] = e.cost;
}
}
int ret = 0;
int[] h = new int[n];
while (F > 0)
{
int[] d = Enumerable.Repeat(INFTY, n).ToArray();
int[] p = Enumerable.Repeat(-1, n).ToArray();
d[s] = 0;
PriorityQueue<Edge> que = new PriorityQueue<Edge>(); ???// "e < f" <=> "e.cost > f.cost"
que.Enqueue(new Edge(-2, s));
while (que.Count > 0)
{
Edge e = que.Dequeue();
if (p[e.to] != -1) continue;
p[e.to] = e.from;
foreach (var u in G[e.to])
{
if (capacity[u.from, u.to] - flow[u.from, u.to] > 0)
{
if (d[u.to] > d[u.from] + cost[u.from, u.to] + h[u.from] - h[u.to])
{
d[u.to] = d[u.from] + cost[u.from, u.to] + h[u.from] - h[u.to];
que.Enqueue(new Edge(u.from, u.to, 0, d[u.to]));
}
}
}
}
if (p[t] == -1) return -1;
int f = F;
for (int u = t; u != s; u = p[u])
{
f = Math.Min(f, capacity[p[u], u] - flow[p[u], u]);
}
for (int u = t; u != s; u = p[u])
{
ret += f * cost[p[u], u];
flow[p[u], u] += f;
flow[u, p[u]] -= f;
}
F -= f;
for (int u = 0; u < n; u++) h[u] += d[u];
}
return ret;
}
}
class PriorityQueue<T> where T : IComparable
{
List<T> heap;
int size;
public PriorityQueue() { heap = new List<T>(); }
public void Enqueue(T x)
{
heap.Add(x);
int i = size++;
while (i > 0)
{
int p = (i - 1) / 2;
if (Compare(heap[p], x) <= 0) break;
heap[i] = heap[p];
i = p;
}
heap[i] = x;
}
public T Dequeue()
{
T ret = heap[0];
T x = heap[--size];
int i = 0;
while (i * 2 + 1 < size)
{
int a = i * 2 + 1;
int b = i * 2 + 2;
if (b < size && Compare(heap[b], heap[a]) < 0) a = b;
if (Compare(heap[a], x) >= 0) break;
heap[i] = heap[a];
i = a;
}
heap[i] = x;
heap.RemoveAt(size);
return ret;
}
public int Count { get { return size; } }
private int Compare(T x, T y)
{
return y.CompareTo(x);
}
}
class Program
{
static void Main(string[] args)
{
string[] input = Console.ReadLine().Split(' ');
int V = int.Parse(input[0]);
int E = int.Parse(input[1]);
int F = int.Parse(input[2]);
MinimumCostFlow MCF = new MinimumCostFlow(V);
for (int i = 0; i < E; i++)
{
input = Console.ReadLine().Split(' ');
int u = int.Parse(input[0]);
int v = int.Parse(input[1]);
int c = int.Parse(input[2]);
int d = int.Parse(input[3]);
MCF.AddEdge(u, v, c, d);
}
Console.WriteLine(MCF.Solve(0, V - 1, F));
}
}
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxN = 1100;
bool mark[maxN];
int parentEdge[maxN], dis[maxN];
int n, k, m, st, fn, F, remFlow;
struct edge {
int u, v, weight, cap;
};
vector<int> g[maxN];
edge e[maxN * maxN];
int curID = 0;
edge make_edge(int u, int v, int w, int cap) {
edge e;
e.u = u;
e.v = v;
e.weight = w;
e.cap = cap;
return e;
}
void input() {
cin >> n >> m >> F;
for (int i = 1; i <= m; i++) {
int k1, k2, w, cap;
cin >> k1 >> k2;
k1++;
k2++;
cin >> cap >> w;
e[curID] = make_edge(k1, k2, w, cap);
g[k1].push_back(curID++);
}
}
int extract_min() {
int ret = 0;
for (int i = 1; i <= n; i++)
if (!mark[i] && dis[i] < dis[ret]) ret = i;
return ret;
}
void update(int v) {
mark[v] = true;
for (auto ID : g[v])
if (dis[e[ID].v] > dis[v] + e[ID].weight && e[ID].cap > 0) {
parentEdge[e[ID].v] = ID;
dis[e[ID].v] = dis[v] + e[ID].weight;
}
}
pair<int, int> dijkstra(int v = st) {
int pushed = remFlow;
int cost = 0;
fill(dis, dis + n + 1, INT_MAX / 2);
memset(mark, 0, (n + 10) * sizeof(mark[0]));
memset(parentEdge, -1, (n + 10) * sizeof(parentEdge[0]));
dis[v] = 0;
while (int v = extract_min()) {
update(v);
}
if (!mark[fn]) return {0, 0};
v = fn;
while (parentEdge[v] != -1) {
pushed = min(pushed, e[parentEdge[v]].cap);
v = e[parentEdge[v]].u;
}
v = fn;
while (parentEdge[v] != -1) {
cost += pushed * e[parentEdge[v]].weight;
e[parentEdge[v]].cap -= pushed;
e[parentEdge[v] ^ 1].cap += pushed;
v = e[parentEdge[v]].u;
}
return {pushed, cost};
}
int MinCostMaxFlow() {
int flow = 0, cost = 0;
remFlow = F;
while (true) {
auto ans = dijkstra();
if (ans.first == 0) break;
flow += ans.first;
remFlow -= ans.first;
cost += ans.second;
}
return cost;
}
void show() {
for (int i = 0; i < curID; i++) {
auto ed = e[i];
cout << i << " " << ed.u << " " << ed.v << " " << ed.cap << " " << ed.weight
<< endl;
}
}
int main() {
input();
st = 1;
fn = n;
int cost = MinCostMaxFlow();
if (remFlow > 0)
cout << -1 << endl;
else
cout << cost << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
namespace MCF {
const int MAXN = 120;
const int MAXM = 2100;
int to[MAXM];
int next[MAXM];
int first[MAXN];
int c[MAXM];
long long w[MAXM];
long long pot[MAXN];
int rev[MAXM];
long long ijk[MAXN];
int v[MAXN];
long long toc;
int tof;
int n;
int m;
void init(int _n) {
n = _n;
for (int i = 0; i < n; i++) first[i] = -1;
}
void ae(int a, int b, int cap, int wei) {
next[m] = first[a];
to[m] = b;
first[a] = m;
c[m] = cap;
w[m] = wei;
m++;
next[m] = first[b];
to[m] = a;
first[b] = m;
c[m] = 0;
w[m] = -wei;
m++;
}
int solve(int s, int t, int flo) {
toc = tof = 0;
while (tof < flo) {
for (int i = 0; i < n; i++) ijk[i] = 9999999999999LL;
for (int i = 0; i < n; i++) v[i] = 0;
priority_queue<pair<int, int> > Q;
ijk[s] = 0;
Q.push(make_pair(0, s));
while (Q.size()) {
int cost = -Q.top().first;
int at = Q.top().second;
Q.pop();
if (v[at]) continue;
v[at] = 1;
for (int i = first[at]; ~i; i = next[i]) {
int x = to[i];
if (v[x] || ijk[x] <= ijk[at] + w[i] + pot[x] - pot[at]) continue;
if (c[i] == 0) continue;
ijk[x] = ijk[at] + w[i] + pot[x] - pot[at];
rev[x] = i;
Q.push(make_pair(-ijk[x], x));
}
}
int flow = flo - tof;
if (!v[t]) return 0;
int at = t;
while (at != s) {
flow = min(flow, c[rev[at]]);
at = to[rev[at] ^ 1];
}
at = t;
tof += flow;
toc += flow * (ijk[t] + pot[s] - pot[t]);
at = t;
while (at != s) {
c[rev[at]] -= flow;
c[rev[at] ^ 1] += flow;
at = to[rev[at] ^ 1];
}
for (int i = 0; i < n; i++) pot[i] += ijk[i];
}
return 1;
}
} // namespace MCF
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
MCF::init(a);
for (int i = 0; i < b; i++) {
int p, q, r, s;
scanf("%d%d%d%d", &p, &q, &r, &s);
MCF::ae(p, q, r, s);
}
int res = MCF::solve(0, a - 1, c);
if (!res)
printf("-1\n");
else
printf("%lld\n", MCF::toc);
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
template <class A, size_t N, class T>
void Fill(A (&a)[N], const T &v) {
fill((T *)a, (T *)(a + N), v);
}
const int INF = 1 << 29;
struct Edge {
int src, dst;
int weight, cap;
int rev;
Edge(int src, int dst, int weight = 0, int cap = 0, int rev = -1)
: src(src), dst(dst), weight(weight), cap(cap), rev(rev) {}
};
struct Node : public vector<Edge> {};
bool operator<(const Edge &a, const Edge &b) { return a.weight < b.weight; }
bool operator>(const Edge &a, const Edge &b) { return b < a; }
void add_edge(vector<Node> &G, int src, int dst, int cap, int cost) {
G[src].push_back(Edge(src, dst, cost, cap, G[dst].size()));
G[dst].push_back(Edge(dst, src, -cost, 0, G[src].size() - 1));
}
int min_cost_flow(vector<Node> &G, int s, int t, int f) {
int res = 0;
int V = G.size();
vector<int> h(V, 0);
vector<int> prevv(V);
vector<int> preve(V);
if (s == t) return 0;
bool start = true;
while (f > 0) {
vector<int> dist(V, INF);
if (start) {
bool update = true;
dist[s] = 0;
while (update) {
update = false;
for (int v = 0; v < (V); v++) {
if (dist[v] == INF) continue;
for (int i = 0; i < (G[v].size()); i++) {
Edge &e = G[v][i];
if (e.cap > 0 && dist[e.dst] > dist[v] + e.weight) {
dist[e.dst] = dist[v] + e.weight;
prevv[e.dst] = v;
preve[e.dst] = i;
update = true;
}
}
}
}
start = 0;
} else {
priority_queue<pair<int, int>, vector<pair<int, int> >,
greater<pair<int, int> > >
que;
dist[s] = 0;
que.push(pair<int, int>(0, s));
while (!que.empty()) {
pair<int, int> p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first) continue;
for (int i = 0; i < (int)G[v].size(); i++) {
Edge &e = G[v][i];
if (e.cap > 0 && dist[e.dst] > dist[v] + e.weight + h[v] - h[e.dst]) {
dist[e.dst] = dist[v] + e.weight + h[v] - h[e.dst];
prevv[e.dst] = v;
preve[e.dst] = i;
que.push(pair<int, int>(dist[e.dst], e.dst));
}
}
}
}
if (dist[t] == INF) {
return -1;
}
for (int v = 0; v < V; v++) h[v] += dist[v];
int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
Edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main() {
int V, E, F;
cin >> V >> E >> F;
vector<Node> g(V + 1);
for (int i = 0; i < (E); i++) {
int u, v, c, d;
cin >> u >> v >> c >> d;
add_edge(g, u, v, c, d);
}
auto ans = min_cost_flow(g, 0, V - 1, F);
cout << ans << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<vector>
#include<string>
#include<algorithm>
#include<map>
#include<set>
#include<utility>
#include<cmath>
#include<cstring>
#include<queue>
#include<cstdio>
#include<sstream>
#define loop(i,a,b) for(int i=a;i<b;i++)
#define rep(i,a) loop(i,0,a)
#define pb push_back
#define mp make_pair
#define all(in) in.begin(),in.end()
const double PI=acos(-1);
const double EPS=1e-10;
const int inf=1e9;
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef pair<int,int> pii;
struct edge{
int to,cap,cost,rev;
};
typedef vector<edge> ve;
typedef vector<ve> vve;
class MCF{ //Minimum Cost Flow
public:
int n;
vve G;
vi h,dist,prev,pree;
MCF(int size){
n=size;
G=vve(n);
h=dist=prev=pree=vi(n);
}
void add_edge(int s,int t,int ca,int co){
edge e={t,ca,co,G[t].size()};
G[s].pb(e);
edge ee={s,0,-co,G[s].size()-1};
G[t].pb(ee);
}
int mcf(int s,int t,int f){
int out=0;
h=vi(n);
while(f>0){
priority_queue<pii,vector<pii> >q;
dist=vi(n,inf);
dist[s]=0;
q.push(pii(0,s));
while(!q.empty()){
pii p=q.top();q.pop();
int v=p.second;
if(dist[v]<-p.first)continue;
rep(i,G[v].size()){
edge &e=G[v][i];
if(e.cap>0&&dist[e.to]>dist[v]+e.cost+h[v]-h[e.to]){
dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];
prev[e.to]=v;
pree[e.to]=i;
// cout<<" "<<dist[e.to]<<endl;
q.push(pii(-dist[e.to],e.to));
}
}
}
// rep(i,n)dist[i]*=-1;
// rep(i,n)cout<<dist[i]<<endl;
if(dist[t]==inf)return -1;
rep(i,n)h[i]+=dist[i];
int d=f;
for(int v=t;v!=s;v=prev[v])d=min(d,G[prev[v]][pree[v]].cap);
f-=d;
out+=d*h[t];
for(int v=t;v!=s;v=prev[v]){
edge &e=G[prev[v]][pree[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
// cout<<f<<endl;
}
return out;
}
};
int main(){
int n,m,f;
cin>>n>>m>>f;
MCF mcf(n);
while(m--){
int a,b,c,d;
cin>>a>>b>>c>>d;
mcf.add_edge(a,b,c,d);
}
cout<<mcf.mcf(0,n-1,f);
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i64 = long long;
struct edge {
i64 from;
i64 to;
i64 cap;
i64 cost;
i64 rev;
};
i64 INF = 1e8;
i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g,
std::vector<i64> b) {
i64 ans = 0;
i64 U = *std::max_element(begin(b), end(b));
i64 delta = (1 << ((int)(std::log2(U)) + 1));
int n = g.size();
std::vector<i64> e = b;
std::vector<i64> p(n, 0);
int zero = 0;
for (auto x : e) {
if (x == 0) zero++;
}
for (; delta > 0; delta >>= 1) {
if (zero == n) break;
for (int s = 0; s < n; s++) {
if (!(e[s] >= delta)) continue;
std::vector<std::size_t> pv(n, -1);
std::vector<std::size_t> pe(n, -1);
std::vector<i64> dist(n, 1e18);
using P = std::pair<i64, i64>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
dist[s] = 0;
que.push({dist[s], s});
while (!que.empty()) {
int v = que.top().second;
i64 d = que.top().first;
que.pop();
if (dist[v] < d) continue;
for (std::size_t i = 0; i < g[v].size(); i++) {
const auto& e = g[v][i];
std::size_t u = e.to;
i64 ccc = e.cost + p[v] - p[u];
if (e.cap == 0) ccc = INF;
assert(ccc >= 0);
if (dist[u] > dist[v] + ccc) {
dist[u] = dist[v] + ccc;
pv[u] = v;
pe[u] = i;
que.push({dist[u], u});
}
}
}
for (int i = 0; i < n; i++) {
p[i] += dist[i];
}
int t = 0;
for (; t < n; t++) {
if (!(e[s] >= delta)) break;
if (e[t] <= -delta && pv[t] != -1) {
std::size_t u = t;
for (; pv[u] != -1; u = pv[u]) {
ans += delta * g[pv[u]][pe[u]].cost;
g[pv[u]][pe[u]].cap -= delta;
g[u][g[pv[u]][pe[u]].rev].cap += delta;
}
e[u] -= delta;
e[t] += delta;
if (e[u] == 0) zero++;
if (e[t] == 0) zero++;
}
}
}
}
if (zero == n)
return ans;
else
return -1e18;
}
int main() {
i64 N, M, F;
cin >> N >> M >> F;
vector<vector<edge>> g(N + M);
vector<i64> e(N + M, 0);
int s = 0;
int t = N - 1;
e[s + M] = F;
e[t + M] = -F;
for (int i = 0; i < M; i++) {
i64 a, b, c, d;
cin >> a >> b >> c >> d;
e[i] = c;
e[a + M] -= c;
g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()});
g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1});
g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()});
g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1});
}
i64 ans = capacity_scaling_bflow(g, e);
if (ans == -1e18) {
cout << -1 << endl;
} else {
cout << ans << endl;
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.*;
import java.util.*;
public class Main implements Runnable{
private ArrayList<ArrayList<Integer>> graph;
private Edge[] edges;
public static void main(String[] args) throws Exception {
new Thread(null, new Main(), "bridge", 16 * 1024 * 1024).start();
}
@Override
public void run() {
try {
solve();
} catch (Exception e) {
e.printStackTrace();
}
}
private void solve() throws Exception{
FastScanner scanner = new FastScanner(System.in);
int V = scanner.nextInt();
int E = scanner.nextInt();
int F = scanner.nextInt();
graph = new ArrayList<>(V);
edges = new Edge[E * 2];
for(int i = 0; i < V; ++i){
graph.add(new ArrayList<Integer>());
}
int edgeSize = 0;
for(int i = 0; i < E; ++i){
int u = scanner.nextInt();
int v = scanner.nextInt();
int cap = scanner.nextInt();
int cost = scanner.nextInt();
edges[edgeSize++] = new Edge(v, 0, cap, cost);
edges[edgeSize++] = new Edge(u, 0, 0, -cost);
graph.get(u).add(edgeSize - 2);
graph.get(v).add(edgeSize - 1);
}
costOfMaxFlow(F, 0, V - 1);
}
private void costOfMaxFlow(int F, int s, int t){
int V = graph.size();
int[] dist = new int[V];
int[] curFlow = new int[V];
int[] prevNode = new int[V];
int[] prevEdge = new int[V];
int totalFlow = 0;
int totalCost = 0;
while(totalFlow < F){
BellmanFord(s, dist, prevNode, prevEdge, curFlow);
if(dist[t] == Integer.MAX_VALUE){
break;
}
int pathFlow = Math.min(curFlow[t], F - totalFlow);
totalFlow += pathFlow;
for(int v = t; v != s; v = prevNode[v]){
Edge edge = edges[prevEdge[v]];
totalCost += edge.cost * pathFlow;
edge.flow += pathFlow;
edges[prevEdge[v] ^ 1].flow -= pathFlow;
}
}
if(totalFlow < F){
System.out.println("-1");
}
else{
System.out.println(totalCost);
}
}
private void BellmanFord(int s, int[] dist, int[] prevNode, int[] prevEdge, int[] curFlow){
Arrays.fill(dist, Integer.MAX_VALUE);
dist[s] = 0;
curFlow[s] = Integer.MAX_VALUE;
prevNode[s] = -1;
prevEdge[s] = -1;
LinkedList<Integer> queue = new LinkedList<>();
queue.add(s);
boolean[] visited = new boolean[dist.length];
while(!queue.isEmpty()){
Integer u = queue.poll();
if(visited[u]){
continue;
}
visited[u] = true;
for(int edgeIndex : graph.get(u)){
Edge edge = edges[edgeIndex];
if(edge.flow >= edge.cap){
continue;
}
if(dist[edge.v] > dist[u] + edge.cost){
dist[edge.v] = dist[u] + edge.cost;
prevNode[edge.v] = u;
prevEdge[edge.v] = edgeIndex;
curFlow[edge.v] = Math.min(curFlow[u], edge.cap - edge.flow);
queue.add(edge.v);
}
}
}
}
static class Edge{
int v;
int flow;
int cap;
int cost;
public Edge(int v, int flow, int cap, int cost){
this.v = v;
this.flow = flow;
this.cap = cap;
this.cost = cost;
}
}
static class FastScanner {
private InputStream in;
private final byte[] buffer = new byte[1024 * 8];
private int ptr = 0;
private int buflen = 0;
public FastScanner(InputStream in){
this.in = in;
}
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() {
if (hasNextByte()) return buffer[ptr++];
else return -1;
}
private static boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
private void skipUnprintable() {
while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;
}
public boolean hasNext() {
skipUnprintable();
return hasNextByte();
}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxN = 1100;
bool mark[maxN];
int parentEdge[maxN], dis[maxN];
int n, k, m, st, fn, F, remFlow;
struct edge {
int u, v, weight, cap;
};
vector<int> g[maxN];
edge e[maxN * maxN];
int curID = 0;
edge make_edge(int u, int v, int w, int cap) {
edge e;
e.u = u;
e.v = v;
e.weight = w;
e.cap = cap;
return e;
}
void input() {
cin >> n >> m >> F;
for (int i = 1; i <= m; i++) {
int k1, k2, w, cap;
cin >> k1 >> k2;
k1++;
k2++;
cin >> cap >> w;
e[curID] = make_edge(k1, k2, w, cap);
g[k1].push_back(curID++);
e[curID] = make_edge(k2, k1, -w, 0);
g[k2].push_back(curID++);
}
}
int extract_min() {
int ret = 0;
for (int i = 1; i <= n; i++)
if (!mark[i] && dis[i] < dis[ret]) ret = i;
return ret;
}
void update(int v) {
mark[v] = true;
for (auto ID : g[v])
if (dis[e[ID].v] > dis[v] + e[ID].weight && e[ID].cap > 0) {
parentEdge[e[ID].v] = ID;
dis[e[ID].v] = dis[v] + e[ID].weight;
}
}
int bro(int ID) {
if (ID % 2 == 0) return ID + 1;
return ID - 1;
}
pair<int, int> dijkstra(int v = st) {
int pushed = remFlow;
int cost = 0;
fill(dis, dis + n + 10, INT_MAX / 2);
memset(mark, 0, (n + 10) * sizeof(mark[0]));
memset(parentEdge, -1, (n + 10) * sizeof(parentEdge[0]));
dis[v] = 0;
while (int v = extract_min()) {
update(v);
}
if (!mark[fn]) return {0, 0};
v = fn;
while (parentEdge[v] != -1) {
pushed = min(pushed, e[parentEdge[v]].cap);
v = e[parentEdge[v]].u;
}
v = fn;
while (parentEdge[v] != -1) {
cost += pushed * e[parentEdge[v]].weight;
e[parentEdge[v]].cap -= pushed;
e[bro(parentEdge[v])].cap += pushed;
v = e[parentEdge[v]].u;
}
return {pushed, cost};
}
int MinCostMaxFlow() {
int flow = 0, cost = 0;
remFlow = F;
while (true) {
auto ans = dijkstra();
if (ans.first == 0) break;
flow += ans.first;
remFlow -= ans.first;
cost += ans.second;
}
return cost;
}
void show() {
for (int i = 0; i < curID; i++) {
auto ed = e[i];
cout << i << " " << ed.u << " " << ed.v << " " << ed.cap << " " << ed.weight
<< endl;
}
}
int main() {
input();
st = 1;
fn = n;
int cost = MinCostMaxFlow();
if (remFlow > 0)
cout << -1 << endl;
else
cout << cost << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | v_num, e_num, flow = (int(n) for n in input().split(" "))
edges = defaultdict(list)
for _ in range(e_num):
s1, t1, cap, cost = (int(n) for n in input().split(" "))
edges[s1].append([t1, cap, cost, len(edges[t1])])
edges[t1].append([s1, cap, cost, len(edges[s1])])
answer = 0
before_vertice = [float("inf") for n in range(v_num)]
before_edge = [float("inf") for n in range(v_num)]
sink = v_num - 1
while True:
distance = [float("inf") for n in range(v_num)]
distance[0] = 0
updated = 1
while updated:
updated = 0
for v in range(v_num):
if distance[v] == float("inf"):
continue
for i, (target, cap, cost, trace_i) in enumerate(edges[v]):
if cap > 0 and distance[target] > distance[v] + cost:
distance[target] = distance[v] + cost
before_vertice[target] = v
before_edge[target] = i
updated = 1
if distance[sink] == float("inf"):
print(-1)
break
decreased = flow
trace_i = sink
while trace_i != 0:
decreased = min(decreased, edges[before_vertice[trace_i]][before_edge[trace_i]][1])
trace_i = before_vertice[trace_i]
flow -= decreased
answer += decreased * distance[sink]
trace_i = sink
while trace_i != 0:
this_edge = edges[before_vertice[trace_i]][before_edge[trace_i]]
this_edge[1] -= decreased
trace_i = before_vertice[trace_i]
edges[trace_i][this_edge[3]][1] += decreased
if flow <= 0:
print(answer)
break |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct Edge {
Edge(int arg_to, int arg_capacity, int arg_cost, int arg_rev_index) {
to = arg_to;
capacity = arg_capacity;
cost = arg_cost;
rev_index = arg_rev_index;
}
int to, capacity, cost, rev_index;
};
int V;
vector<Edge> G[100];
int h[100];
int dist[100];
int pre_node[100], pre_edge[100];
void add_edge(int from, int to, int capacity, int cost) {
G[from].push_back(Edge(to, capacity, cost, G[to].size()));
G[to].push_back(Edge(from, 0, -cost, G[from].size() - 1));
}
int min_cost_flow(int source, int sink, int flow) {
int ret = 0;
for (int i = 0; i < V; i++) h[i] = 0;
while (flow > 0) {
priority_queue<pair<int, int>, vector<pair<int, int>>,
greater<pair<int, int>>>
Q;
for (int i = 0; i < V; i++) dist[i] = 2000000000;
dist[source] = 0;
Q.push(pair<int, int>(0, source));
while (!Q.empty()) {
pair<int, int> p = Q.top();
Q.pop();
int node_id = p.second;
if (dist[node_id] < p.first) continue;
for (int i = 0; i < G[node_id].size(); i++) {
Edge &e = G[node_id][i];
if (e.capacity > 0 &&
dist[e.to] > dist[node_id] + e.cost + h[node_id] - h[e.to]) {
dist[e.to] = dist[node_id] + e.cost + h[node_id] - h[e.to];
pre_node[e.to] = node_id;
pre_edge[e.to] = i;
Q.push(pair<int, int>(dist[e.to], e.to));
}
}
}
if (dist[sink] == 2000000000) {
return -1;
}
for (int node_id = 0; node_id < V; node_id++) h[node_id] += dist[node_id];
int tmp_flow = flow;
for (int node_id = sink; node_id != source; node_id = pre_node[node_id]) {
tmp_flow =
min(tmp_flow, G[pre_node[node_id]][pre_edge[node_id]].capacity);
}
flow -= tmp_flow;
ret += tmp_flow * h[sink];
for (int node_id = sink; node_id != source; node_id = pre_node[node_id]) {
Edge &e = G[pre_node[node_id]][pre_edge[node_id]];
e.capacity -= tmp_flow;
G[node_id][e.rev_index].capacity += tmp_flow;
}
}
return ret;
}
int main() {
int E, F;
scanf("%d %d %d", &V, &E, &F);
int from, to, capacity, cost;
for (int loop = 0; loop < E; loop++) {
scanf("%d %d %d %d", &from, &to, &capacity, &cost);
add_edge(from, to, capacity, cost);
}
printf("%d\n", min_cost_flow(0, V - 1, F));
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<vector>
#include<queue>
#include<algorithm>
#define MAX 101
#define inf 1<<29
using namespace std;
typedef pair<int,int> P;
struct edge{ int to,cap,cost,rev; };
int v;
vector<edge> e[MAX];
int h[MAX];
int dist[MAX];
int prevv[MAX],preve[MAX];
void add_edge(int from,int to,int cap,int cost){
e[from].push_back((edge){to,cap,cost,e[to].size()});
e[to].push_back((edge){from,0,-cost,e[from].size()-1});
}
int min_cost_flow(int s,int t,int f){
int res=0;
fill(h,h+v,0);
while(f>0){
priority_queue<P,vector<P>,greater<P> > pq;
fill(dist,dist+v,inf);
dist[s]=0;
pq.push(P(0,s));
while(pq.size()){
P p=pq.top();
pq.pop();
int u=p.second;
if(dist[u]<p.first)continue;
for(int i=0;i<e[u].size();i++){
edge &E=e[u][i];
if(E.cap>0 && dist[E.to]>dist[u]+E.cost+h[u]-h[E.to]){
dist[E.to]=dist[u]+E.cost+h[u]-h[E.to];
prevv[E.to]=u;
preve[E.to]=i;
pq.push(P(dist[E.to],E.to));
}
}
}
if(dist[t]==inf)return -1;
for(int i=0;i<v;i++)h[i]+=dist[i];
int d=f;
for(int u=t;u!=s;u=prevv[u]){
d=min(d,e[prevv[u]][preve[u]].cap);
}
f-=d;
res+=d*h[t];
for(int u=t;u!=s;u=prevv[u]){
edge &E=e[prevv[u]][preve[u]];
E.cap-=d;
e[u][E.rev].cap+=d;
}
}
return res;
}
int main()
{
int m,f,a,b,c,d;
cin>>v>>m>>f;
for(int i=0;i<m;i++){
cin>>a>>b>>c>>d;
add_edge(a,b,c,d);
}
cout<<min_cost_flow(0,v-1,f)<<endl;
return 0;
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
class min_cost_flow {
public:
struct edge {
int to, cap;
T cost;
int rev;
};
using pti = pair<T, int>;
vector<vector<edge> > G;
vector<T> h, dist;
vector<int> prevv, preve;
T inf;
int V;
min_cost_flow(int node_size) {
V = node_size;
inf = numeric_limits<T>::max() / 100;
G.resize(V), h.resize(V), dist.resize(V), prevv.resize(V), preve.resize(V);
}
void add_edge(int from, int to, int cap, T cost) {
G[from].push_back((edge){to, cap, cost, (int)G[to].size()});
G[to].push_back((edge){from, 0, -cost, (int)G[from].size() - 1});
}
T solve(int s, int t, int f) {
T res = 0;
fill(h.begin(), h.end(), 0);
while (f > 0) {
priority_queue<pti, vector<pti>, greater<pti> > que;
fill(dist.begin(), dist.end(), inf);
dist[s] = 0;
que.push(pti(0, s));
while (!que.empty()) {
pti p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first) {
continue;
}
for (int i = 0; i < (int)(G[v].size()); ++i) {
edge& e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v, preve[e.to] = i;
que.push(pti(dist[e.to], e.to));
}
}
}
if (dist[t] == inf) {
return -1;
}
for (int i = 0; i < (int)(V); ++i) {
h[i] += dist[i];
}
int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
edge& e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
};
int main() {
int n, e, f;
cin >> n >> e >> f;
min_cost_flow<int> mc(n);
for (int i = 0; i < (int)(e); ++i) {
int u, v, c, d;
cin >> u >> v >> c >> d;
mc.add_edge(u, v, c, d);
}
cout << mc.solve(0, n - 1, f) << "\n";
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | ああ
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1 << 30;
typedef struct {
int to, cap, cost, rev;
} Edge;
class MinCostFlow {
private:
int V;
vector<vector<Edge>> G;
public:
MinCostFlow(int V) : V(V) { G.resize(V); }
void add_edge(int u, int v, int c, int d) {
G[u].push_back({v, c, d, (int)G[v].size()});
G[v].push_back({u, 0, -d, (int)G[u].size() - 1});
}
int solve(int s, int t, int f) {
int res = 0;
while (f > 0) {
vector<int> d(V, INF);
vector<int> pars(V, -1);
vector<int> eids(V, -1);
d[s] = 0;
bool updated = true;
while (updated) {
updated = false;
for (int v = 0; v < V; v++)
if (d[v] != INF) {
for (int i = 0; i < G[v].size(); i++) {
auto edge = G[v][i];
if (edge.cap == 0) continue;
if (d[edge.to] > d[v] + edge.cost) {
d[edge.to] = d[v] + edge.cost;
pars[edge.to] = v;
eids[v] = i;
updated = true;
}
}
}
}
if (d[t] == INF) return -1;
int mc = INF;
int p = t;
while (true) {
p = pars[p];
if (p == -1) break;
mc = min(mc, G[p][eids[p]].cap);
}
res += mc * d[t];
f -= mc;
}
return res;
}
};
int V, E, F;
int main() {
cin >> V >> E >> F;
MinCostFlow mcf(V);
for (int i = 0; i < E; i++) {
int u, v, c, d;
cin >> u >> v >> c >> d;
mcf.add_edge(u, v, c, d);
}
cout << mcf.solve(0, V - 1, F) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using LL = long long;
constexpr LL LINF = 334ll << 53;
constexpr int INF = 15 << 26;
constexpr LL MOD = 1E9 + 7;
class MinimumCostFlow {
struct Edge {
int to;
long long cost, capacity;
int rev_id;
Edge(int to, long long cost, long long cap, int id)
: to(to), cost(cost), capacity(cap), rev_id(id){};
Edge() { Edge(0, 0, 0, 0); }
};
struct Prev {
LL cost;
int from, id;
};
using Graph = vector<vector<Edge>>;
using Flow = vector<vector<long long>>;
int n;
Graph graph;
Flow flow;
vector<Prev> prev;
vector<long long> potential;
public:
MinimumCostFlow(int n)
: n(n),
graph(n),
flow(n, vector<long long>(n)),
prev(n, {LINF, -1, -1}),
potential(n) {}
void addEdge(int a, int b, long long cap, long long cost) {
graph[a].emplace_back(b, cost, cap, (int)graph[b].size());
graph[b].emplace_back(a, -cost, 0, (int)graph[a].size() - 1);
}
long long minimumCostFlow(int s, int t, LL f) {
LL ret = 0;
for (bellman_ford(s); f > 0; dijkstra(s)) {
if (prev[t].cost == LINF) return -1;
for (int i = 0; i < n; ++i)
potential[i] = min(potential[i] + prev[i].cost, LINF);
LL d = f;
for (int v = t; v != s; v = prev[v].from) {
d = min(d, graph[prev[v].from][prev[v].id].capacity -
flow[prev[v].from][v]);
}
f -= d;
ret += d * potential[t];
for (int v = t; v != s; v = prev[v].from) {
flow[prev[v].from][v] += d;
flow[v][prev[v].from] -= d;
}
}
return ret;
}
private:
bool dijkstra(const int start) {
int visited = 0, N = graph.size();
fill(prev.begin(), prev.end(), (Prev){LINF, -1, -1});
priority_queue<tuple<LL, int, int, int>, vector<tuple<LL, int, int, int>>,
greater<tuple<LL, int, int, int>>>
pque;
pque.emplace(0, start, 0, -1);
LL cost;
int place, from, id;
while (!pque.empty()) {
tie(cost, place, from, id) = pque.top();
pque.pop();
if (prev[place].from != -1) continue;
prev[place] = {cost, from, id};
visited++;
if (visited == N) return true;
for (int i = 0; i < (int)graph[place].size(); ++i) {
auto e = &graph[place][i];
if (e->capacity > flow[place][e->to] && prev[e->to].from == -1) {
pque.emplace(e->cost + cost - potential[e->to] + potential[place],
e->to, place, i);
}
}
}
return false;
}
bool bellman_ford(const int start) {
int s = graph.size();
bool update = false;
prev[start] = (Prev){0ll, start, -1};
for (int i = 0; i < s; ++i, update = false) {
for (int j = 0; j < s; ++j) {
int k = 0;
for (auto &e : graph[j]) {
if (e.capacity == 0) continue;
if (prev[j].cost != LINF && prev[e.to].cost > prev[j].cost + e.cost) {
prev[e.to].cost = prev[j].cost + e.cost;
prev[e.to].from = j;
prev[e.to].id = k;
update = true;
if (i == s - 1) return false;
}
++k;
}
}
if (!update) break;
}
return true;
}
};
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n, m;
LL flow;
cin >> n >> m >> flow;
MinimumCostFlow mcf(n);
for (int i = 0; i < m; i++) {
int a, b;
LL cost, cap;
cin >> a >> b >> cap >> cost;
mcf.addEdge(a, b, cap, cost);
}
cout << mcf.minimumCostFlow(0, n - 1, flow) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using Int = int64_t;
using UInt = uint64_t;
using C = std::complex<double>;
template <typename T>
using RQ = std::priority_queue<T, std::vector<T>, std::greater<T>>;
int main() {
Int v, e, f;
std::cin >> v >> e >> f;
std::vector<Int> ss(e + 1), ts(e + 1), cs(e + 1), fs(e + 1), bs(e + 1);
for (Int i = (Int)(1); i < (Int)(e + 1); ++i) {
Int a, b, c, d;
std::cin >> a >> b >> c >> d;
ss[i] = a, ts[i] = b, cs[i] = d, fs[i] = 0, bs[i] = c;
}
std::vector<std::vector<Int>> es(v);
for (Int i = (Int)(1); i < (Int)(e + 1); ++i) {
Int s = ss[i], t = ts[i];
es[s].emplace_back(i);
es[t].emplace_back(-i);
}
Int res = 0;
Int source = 0, sink = v - 1;
while (f > 0) {
RQ<std::pair<Int, Int>> q;
q.emplace(0, source);
std::vector<Int> ps(v, -1), xs(v, -1), ys(v);
ys[source] = f;
while (not q.empty()) {
Int d, s;
std::tie(d, s) = q.top();
q.pop();
for (Int i : es[s]) {
Int k = std::abs(i);
Int t = i > 0 ? ts[k] : ss[k];
Int tf = i > 0 ? bs[k] : fs[k];
if (not(tf > 0)) continue;
;
if (not(xs[t] == -1 or xs[t] > xs[s] + cs[k])) continue;
;
xs[t] = xs[s] + cs[k];
ps[t] = i;
ys[t] = std::min(ys[s], tf);
q.emplace(xs[s] + cs[k], t);
}
}
Int tf = ys[sink];
if (false) fprintf(stderr, "tf = %ld\n", tf);
f -= tf;
if (f > 0 and tf == 0) {
res = -1;
break;
}
for (Int i = sink, k = ps[i]; i != source;
i = k > 0 ? ss[k] : ts[k], k = ps[i]) {
Int ak = std::abs(k);
res += tf * cs[ak];
if (k > 0) {
fs[ak] += tf;
bs[ak] -= tf;
} else {
fs[ak] -= tf;
bs[ak] += tf;
}
}
if (f == 0) break;
for (Int i = (Int)(1); i < (Int)(e + 1); ++i) {
if (false)
fprintf(stderr, "%ld -> %ld : cost=%ld : ->=%ld : <-=%ld\n", ss[i],
ts[i], cs[i], fs[i], bs[i]);
}
}
printf("%ld\n", res);
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
struct node {
int id;
int cap;
int cost;
struct node *next;
};
struct node **list;
int **flow, *dist, *prev, *preve, *h;
int *heap, *heap_index, heapsize;
void Insert(int, int, int, int);
void downheap(int);
void upheap(int);
void PQ_init(int);
int PQ_remove(void);
void PQ_update(int);
int Maxflow(int, int, int);
int main(void) {
int i, v, e, f, s, t, c, d, mincost = 0;
scanf("%d %d %d", &v, &e, &f);
list = (struct node **)malloc(sizeof(struct node *) * v);
flow = (int **)malloc(sizeof(int *) * v);
dist = (int *)malloc(sizeof(int) * v);
prev = (int *)malloc(sizeof(int) * v);
preve = (int *)malloc(sizeof(int) * v);
h = (int *)calloc(v, sizeof(int));
for (i = 0; i < v; i++) {
list[i] = NULL;
flow[i] = (int *)calloc(v, sizeof(int));
}
for (i = 0; i < e; i++) {
scanf("%d %d %d %d", &s, &t, &c, &d);
Insert(s, t, c, d);
}
while (f > 0 && Maxflow(0, v - 1, v)) {
int n, delta = f;
for (n = v - 1; n != 0; n = prev[n]) {
delta = ((delta) < (preve[n] - flow[prev[n]][n])
? (delta)
: (preve[n] - flow[prev[n]][n]));
}
f -= delta;
for (n = v - 1; n != 0; n = prev[n]) {
flow[prev[n]][n] += delta;
flow[n][prev[n]] -= delta;
}
for (i = 0; i < v; i++) h[i] = dist[i];
}
if (f == 0) {
for (i = 0; i < v; i++) {
struct node *n;
for (n = list[i]; n != NULL; n = n->next) {
if (n->cap > 0) mincost += flow[i][n->id] * n->cost;
}
}
printf("%d\n", mincost);
} else
printf("-1\n");
for (i = 0; i < v; i++) {
free(list[i]);
free(flow[i]);
}
free(list);
free(flow);
free(dist);
free(prev);
free(preve);
free(h);
}
void Insert(int a, int b, int cap, int cost) {
struct node *p = (struct node *)malloc(sizeof(struct node));
p->id = b;
p->cap = cap;
p->cost = cost;
p->next = list[a];
list[a] = p;
p = (struct node *)malloc(sizeof(struct node));
p->id = a;
p->cap = 0;
p->cost = -cost;
p->next = list[b];
list[b] = p;
}
void downheap(int k) {
int j, v = heap[k];
while (k < heapsize / 2) {
j = 2 * k + 1;
if (j < heapsize - 1 && dist[heap[j]] > dist[heap[j + 1]]) j++;
if (dist[v] <= dist[heap[j]]) break;
heap[k] = heap[j];
heap_index[heap[j]] = k;
k = j;
}
heap[k] = v;
heap_index[v] = k;
}
void upheap(int j) {
int k, v = heap[j];
while (j > 0) {
k = (j + 1) / 2 - 1;
if (dist[v] >= dist[heap[k]]) break;
heap[j] = heap[k];
heap_index[heap[k]] = j;
j = k;
}
heap[j] = v;
heap_index[v] = j;
}
void PQ_init(int size) {
int i;
heapsize = size;
heap = (int *)malloc(sizeof(int) * size);
heap_index = (int *)malloc(sizeof(int) * size);
for (i = 0; i < size; i++) {
heap[i] = i;
heap_index[i] = i;
}
for (i = heapsize / 2 - 1; i >= 0; i--) downheap(i);
}
int PQ_remove(void) {
int v = heap[0];
heap[0] = heap[heapsize - 1];
heap_index[heap[heapsize - 1]] = 0;
heapsize--;
downheap(0);
return v;
}
void PQ_update(int v) { upheap(heap_index[v]); }
int Maxflow(int s, int t, int size) {
struct node *n;
int i;
for (i = 0; i < size; i++) {
dist[i] = INT_MAX;
prev[i] = -1;
preve[i] = -1;
}
dist[s] = 0;
PQ_init(size);
while (heapsize) {
i = PQ_remove();
if (dist[i] == INT_MAX) break;
for (n = list[i]; n != NULL; n = n->next) {
int v = n->id;
if (flow[i][v] < n->cap) {
int newlen = dist[i] + n->cost + h[i] - h[v];
if (newlen < dist[v]) {
dist[v] = newlen;
prev[v] = i;
preve[v] = n->cap;
PQ_update(v);
}
}
}
}
free(heap);
free(heap_index);
return dist[t] != INT_MAX;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 105;
struct Edge {
int from, to, cap, flow, cost;
Edge(int u, int v, int c, int f, int w)
: from(u), to(v), cap(c), flow(f), cost(w) {}
};
int n, m, tf;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int a[maxn];
int p[maxn];
inline void addedge(int u, int v, int c, int w) {
edges.push_back(Edge(u, v, c, 0, w));
edges.push_back(Edge(v, u, 0, 0, -w));
int id = edges.size() - 2;
G[u].push_back(id);
G[v].push_back(id + 1);
}
inline bool spfa(int s, int t, int& flow, int& cost) {
for (int i = 0; i < n; i++) d[i] = INF;
d[s] = 0;
inq[s] = 1;
a[s] = INF;
queue<int> q;
q.push(s);
while (q.size()) {
int u = q.front();
q.pop();
inq[u] = 0;
for (int id : G[u]) {
Edge& e = edges[id];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = id;
a[e.to] = min(a[u], e.cap - e.flow);
if (!inq[e.to]) {
inq[e.to] = 1;
q.push(e.to);
}
}
}
}
if (d[t] == INF) return 0;
flow += a[t];
cost += d[t] * a[t];
for (int u = t; u != s; u = edges[p[u]].from) {
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
}
return 1;
}
inline int mcmf(int s, int t) {
int flow = 0, cost = 0;
while (spfa(s, t, flow, cost) && flow < tf)
;
if (flow)
return cost;
else
return -1;
}
int main() {
cin >> n >> m >> tf;
for (int i = 0; i < m; i++) {
int u, v, c, w;
cin >> u >> v >> c >> w;
addedge(u, v, c, w);
}
cout << mcmf(0, n - 1) << '\n';
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct edge {
int to, cap, cost, rev;
};
int V;
vector<edge> G[100];
vector<int> h(100);
int dist[100];
int prevv[100], preve[100];
void add_edge(int from, int to, int cap, int cost) {
G[from].push_back((edge){to, cap, cost, (int)G[to].size()});
G[to].push_back((edge){from, 0, -cost, (int)G[from].size() - 1});
}
int shortest_path(int s, vector<int> &d) {
int v = d.size();
for (long long i = 0; i < (long long)(d.size()); i++) d[i] = (1e9 + 1);
d[s] = 0;
for (long long loop = 0; loop < (long long)(v); loop++) {
bool update = false;
for (long long i = 0; i < (long long)(100); i++) {
for (auto e : G[i]) {
if (d[i] != (1e9 + 1) && d[e.to] > d[i] + e.cost) {
d[e.to] = d[i] + e.cost;
update = true;
}
}
}
if (!update) break;
if (loop == v - 1) return true;
}
return false;
}
int min_cost_flow(int s, int t, int f) {
int res = 0;
for (long long i = 0; i < (long long)(h.size()); i++) h[i] = 0;
shortest_path(s, h);
bool times = 0;
while (f > 0) {
if (times > 0) {
priority_queue<pair<int, int>, vector<pair<int, int> >,
greater<pair<int, int> > >
que;
fill(dist, dist + V, (1e9 + 1));
dist[s] = 0;
que.push(pair<int, int>(0, s));
while (!que.empty()) {
pair<int, int> p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first) continue;
for (int i = 0; i < G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(pair<int, int>(dist[e.to], e.to));
}
}
}
}
times++;
if (dist[t] == (1e9 + 1)) return -1;
for (int v = 0; v < V; v++) h[v] += dist[v];
int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main() {
int e, f;
cin >> V >> e >> f;
for (long long i = 0; i < (long long)(e); i++) {
int u, v, c, d;
cin >> u >> v >> c >> d;
add_edge(u, v, c, d);
}
cout << min_cost_flow(0, V - 1, f) << endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAX = 100;
const int INF = 1 << 25;
class edge {
public:
int to, cap, cost, rev;
edge() {}
edge(int to, int cop, int cost, int rev)
: to(to), cap(cap), cost(cost), rev(rev) {}
};
int V;
vector<edge> G[MAX];
int h[MAX];
int dist[MAX];
int prevv[MAX], preve[MAX];
int col[MAX];
void add_edge(int from, int to, int cap, int cost) {
G[from].push_back(edge(to, cap, cost, G[to].size()));
G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
return;
}
int mincostflow(int s, int t, int f) {
int res = 0;
for (int i = 0; i < V; i++) h[i] = 0;
while (f > 0) {
priority_queue<pair<int, int> > Q;
for (int i = 0; i < V; i++) {
dist[i] = INF;
col[i] = 0;
}
dist[s] = 0;
Q.push(pair<int, int>(0, s));
col[s] = 1;
while (!Q.empty()) {
pair<int, int> p = Q.top();
Q.pop();
int v = p.second;
col[v] = 2;
if (dist[v] < p.first * (-1)) continue;
for (int i = 0; i < G[v].size(); i++) {
edge e = G[v][i];
if (col[e.to] == 2) continue;
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
Q.push(pair<int, int>(dist[e.to] * (-1), e.to));
col[e.to] = 1;
}
}
}
if (dist[t] == INF) return -1;
for (int v = 0; v < V; v++) {
h[v] += dist[v];
}
int d = f;
for (int v = t; v != s; v = prevv[v]) d = min(d, G[prevv[v]][preve[v]].cap);
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
edge e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main() {
cin >> V;
int E, F;
cin >> E >> F;
int u, v, c, d;
for (int i = 0; i < E; i++) {
cin >> u >> v >> c >> d;
add_edge(u, v, c, d);
}
cout << mincostflow(0, V - 1, F) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | '''
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import sys
import csv
import argparse
import time
'''
import heapq
INF = sys.maxint/3
class Edge:
def __init__(self, to, cap, cost, rev):
self.to = to
self.cap = cap
self.cost = cost
self.rev = rev
def print_attributes(self):
print "to: {0}, cap: {1}, cost: {2}, rev: {3}".format(self.to, self.cap, self.cost, self.rev)
class MinimumCostFlow:
def __init__(self, V, E):
self.V = V
self.E = E
self.G = [[] for i in range(V)]
def add_edge(self, s, t, cap, cost):
forward_edge = Edge(t, cap, cost, len(self.G[t]))
self.G[s].append(forward_edge)
backward_edge = Edge(s, 0, -cost, len(self.G[s])-1)
self.G[t].append(backward_edge)
def print_edges(self):
print "==== print edges ===="
for i in range(self.V):
print "\nedges from {}".format(i)
for e in self.G[i]:
e.print_attributes()
def minimum_cost_flow(self, s, t, f):
res = 0
h = [0] * self.V
while f>0:
pque = []
dist = [INF for i in range(self.V)]
prev_v = [0 for i in range(self.V)]
prev_e = [0 for i in range(self.V)]
dist[s] = 0
heapq.heappush(pque, (0, s))
while(len(pque)!=0):
p = heapq.heappop(pque)
v = p[1]
if (dist[v] < p[0]):
continue
for i in range(len(self.G[v])):
e = self.G[v][i]
if (e.cap>0 and dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]):
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]
prev_v[e.to] = v
prev_e[e.to] = i
heapq.heappush(pque, (dist[e.to], e.to))
if dist[t] == INF:
return -1
for v in range(self.V):
h[v] += dist[v]
d = f
v = t
while v!=s:
d = min(d, self.G[prev_v[v]][prev_e[v]].cap)
v = prev_v[v]
f -= d
res += d * h[t]
v = t
while v!=s:
e = self.G[prev_v[v]][prev_e[v]]
e.cap -= d
self.G[v][e.rev].cap += d
v = prev_v[v]
return res
def main():
V, E, F = map(int, raw_input().split())
mcf = MinimumCostFlow(V, E)
for i in range(E):
u, v, c, d = map(int, raw_input().split())
mcf.add_edge(u, v, c, d)
#print "minimum cost flow: {}".format(mcf.minimum_cost_flow(0, V-1, F))
print mcf.minimum_cost_flow(0, V-1, F)
if __name__ == '__main__':
main()
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int v, e;
vector<pair<int, int> > adj[110], revadj[110];
int capacity[1010], cost[1010], flowingthrough[1010], dis[110], pre[110],
preedge[110], endofedge[1010];
void bellmanford() {
fill_n(dis, v, 1e9);
dis[0] = 0;
for (int i = 0; i < v; i++) {
for (auto e : adj[i]) {
if (flowingthrough[e.second] != capacity[e.second]) {
if (dis[e.first] > dis[i] + cost[e.second]) {
dis[e.first] = dis[i] + cost[e.second];
pre[e.first] = i;
preedge[e.first] = e.second;
}
}
}
for (auto e : revadj[i]) {
if (flowingthrough[e.second]) {
if (dis[e.first] > dis[i] - cost[e.second]) {
dis[e.first] = dis[i] - cost[e.second];
pre[e.first] = i;
preedge[e.first] = e.second;
}
}
}
}
}
pair<int, int> mincostmaxflow() {
int ans = 0;
int totalcost = 0;
while (1) {
bellmanford();
if (dis[v - 1] == 1e9) break;
ans++;
int a = v - 1;
while (a) {
int e = preedge[a];
if (endofedge[e] == a)
capacity[e]--, totalcost += cost[e];
else
capacity[e]++, totalcost -= cost[e];
a = pre[a];
}
}
return {ans, totalcost};
}
int f;
int main() {
scanf("%d%d%d", &v, &e, &f);
for (int i = 0; i < e; i++) {
int a, b;
scanf("%d%d%d%d", &a, &b, &capacity[i], &cost[i]);
endofedge[i] = b;
adj[a].emplace_back(b, i);
revadj[b].emplace_back(a, i);
}
adj[v - 1].emplace_back(v, e);
cost[e] = 0;
endofedge[e] = v;
capacity[e] = f;
v++;
auto ans = mincostmaxflow();
if (ans.first != f)
printf("-1\n");
else
printf("%d\n", ans.second);
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from heapq import heappop, heappush
def trace(source, edge_trace):
v = source
for i in edge_trace:
e = edges[v][i]
yield e
v = e[1]
def min_cost_flow(source, sink, required_flow):
res = 0
while required_flow:
dist = [-1] * n
queue = [(0, source, tuple())]
edge_trace = None
while queue:
total_cost, v, edge_memo = heappop(queue)
if dist[v] != -1:
continue
dist[v] = total_cost
if v == sink:
edge_trace = edge_memo
break
for i, (remain, target, cost, _) in enumerate(edges[v]):
if remain and dist[target] == -1:
heappush(queue, (total_cost + cost, target, edge_memo + (i,)))
if dist[sink] == -1:
return -1
aug = min(e[0] for e in trace(source, edge_trace))
required_flow -= aug
res += aug * dist[sink]
for e in trace(source, edge_trace):
remain, target, cost, idx = e
e[0] -= aug
edges[target][idx][0] += aug
return res
n, m, f = map(int, input().split())
edges = [[] for _ in range(n)]
for _ in range(m):
s, t, c, d = map(int, input().split())
es, et = edges[s], edges[t]
ls, lt = len(es), len(et)
es.append([c, t, d, lt])
et.append([0, s, d, ls])
print(min_cost_flow(0, n - 1, f)) |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from collections import defaultdict
v_num, e_num, flow = (int(n) for n in input().split(" "))
edges = defaultdict(list)
for _ in range(e_num):
s1, t1, cap, cost = (int(n) for n in input().split(" "))
edges[s1].append([t1, cap, cost, len(edges[t1])])
edges[t1].append([s1, cap, cost, len(edges[s1])])
answer = 0
before_vertice = [float("inf") for n in range(v_num)]
before_edge = [float("inf") for n in range(v_num)]
sink = v_num - 1
while True:
distance = [float("inf") for n in range(v_num)]
distance[0] = 0
updated = 1
while updated:
updated = 0
for v in range(v_num):
if distance[v] == float("inf"):
continue
for i, (target, cap, cost, trace_i) in enumerate(edges[v]):
if cap > 0 and distance[target] > distance[v] + cost:
distance[target] = distance[v] + cost
before_vertice[target] = v
before_edge[target] = i
updated = 1
if distance[sink] == float("inf"):
print(-1)
break
decreased = flow
trace_i = sink
while trace_i != 0:
decreased = min(decreased, edges[before_vertice[trace_i]][before_edge[trace_i]][1])
trace_i = before_vertice[trace_i]
flow -= decreased
answer += decreased * distance[sink]
trace_i = sink
while trace_i != 0:
this_edge = edges[before_vertice[trace_i]][before_edge[trace_i]]
this_edge[1] -= decreased
trace_i = before_vertice[trace_i]
edges[trace_i][this_edge[3]][1] += decreased
if flow <= 0:
print(answer)
break |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long int INF = 2000000000;
struct edge {
int to, cap, cost, rev;
edge(int t, int ca, int co, int re) {
to = t;
cap = ca;
cost = co;
rev = re;
}
};
vector<edge> G[40];
int prv[40], pre[40], d[40];
int v, e, flow;
void addedge(int from, int to, int cap, int cost) {
G[from].push_back(edge(to, cap, cost, G[to].size()));
G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
}
int minimumcost(int s, int t, int f) {
int res = 0;
while (f > 0) {
fill(d, d + v, INF);
d[s] = 0;
bool ud = true;
while (ud) {
ud = false;
for (int i = 0; i < v; i++) {
if (d[i] == INF) continue;
for (int j = 0; j < G[i].size(); j++) {
edge &e = G[i][j];
if (e.cap > 0 && d[e.to] > d[i] + e.cost) {
d[e.to] = d[i] + e.cost;
prv[e.to] = i;
pre[e.to] = j;
ud = true;
}
}
}
}
if (d[t] == INF) return -1;
int dis = f;
for (int w = t; w != s; w = prv[w]) {
dis = min(dis, G[prv[w]][pre[w]].cost);
}
f -= dis;
for (int w = t; w != s; w = prv[w]) {
G[prv[w]][pre[w]].cap -= dis;
G[w][G[prv[w]][pre[w]].rev].cap += dis;
}
res += dis * d[t];
}
return res;
}
int main() {
cin >> v >> e >> flow;
for (int i = 0; i < e; i++) {
int s, t, c, d;
cin >> s >> t >> c >> d;
addedge(s, t, c, d);
}
cout << minimumcost(0, v - 1, flow) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T, typename U>
struct min_cost_flow_graph {
struct edge {
int from, to;
T cap, f;
U cost;
};
vector<edge> edges;
vector<vector<int>> g;
int n, st, fin;
T required_flow, flow;
U cost;
min_cost_flow_graph(int n, int st, int fin, T required_flow)
: n(n), st(st), fin(fin), required_flow(required_flow) {
assert(0 <= st && st < n && 0 <= fin && fin < n && st != fin);
g.resize(n);
flow = 0;
cost = 0;
}
void clear_graph() {
for (const edge &e : edges) {
e.f = 0;
}
flow = 0;
cost = 0;
}
void add(int from, int to, T cap = 1, T rev_cap = 0, U cost = 1) {
assert(0 <= from && from < n && 0 <= to && to < n);
g[from].emplace_back(edges.size());
edges.push_back({from, to, cap, 0, cost});
g[to].emplace_back(edges.size());
edges.push_back({to, from, rev_cap, 0, -cost});
}
U min_cost_flow() {
while (flow < required_flow) {
T dist[n];
fill(dist, dist + n, numeric_limits<T>::max());
dist[st] = 0;
int prevv[n], preve[n];
for (bool update = true; update;) {
update = false;
for (int id = 0; id < edges.size(); id++) {
edge &e = edges[id];
if (0 < e.cap - e.f && dist[e.from] + e.cost < dist[e.to]) {
dist[e.to] = dist[e.from] + e.cost;
prevv[e.to] = e.from;
preve[e.to] = id;
update = true;
}
}
}
if (dist[fin] == numeric_limits<T>::max()) {
return -1;
}
T d = numeric_limits<U>::max();
for (int v = fin; v != st; v = prevv[v]) {
d = min(d, edges[preve[v]].cap - edges[preve[v]].f);
}
flow += d;
cost += d * dist[fin];
for (int v = fin; v != st; v = prevv[v]) {
edges[preve[v]].f += d;
edges[preve[v] ^ 1].f -= d;
}
}
return cost;
}
};
int main() {
int n, m, f;
cin >> n >> m >> f;
min_cost_flow_graph<int, int> g(n, 0, n - 1, f);
for (int i = 0; i < m; i++) {
int from, to, cap, cost;
cin >> from >> to >> cap >> cost;
g.add(from, to, cap, 0, cost);
}
cout << g.min_cost_flow() << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr int INF = 1e9;
struct Edge {
int to, cap, rev, weight;
Edge(int t, int c, int r, int w) : to(t), cap(c), rev(r), weight(w) {}
};
using Edges = vector<Edge>;
using Graph = vector<Edges>;
class Flow {
public:
Flow(int v) {
mGraph.resize(v);
mUsed.assign(v, false);
mVert = v;
}
void add_edge(int from, int to, int cap, int weight = 1) {
mGraph[from].emplace_back(to, cap, mGraph[to].size(), weight);
mGraph[to].emplace_back(from, 0, mGraph[from].size() - 1, weight);
}
int bipartite_matching(int x, int y) {
int start = max(x, y) * 2;
int end = max(x, y) * 2 + 1;
for (int i = 0; i < x; ++i) add_edge(start, i, 1);
for (int i = 0; i < y; ++i) add_edge(i + x, end, 1);
return max_flow(start, end);
}
int dfs(int v, int t, int f) {
if (v == t) return f;
mUsed[v] = true;
for (auto &e : mGraph[v]) {
if (!mUsed[e.to] && e.cap > 0) {
int d = dfs(e.to, t, min(f, e.cap));
if (d > 0) {
e.cap -= d;
mGraph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s, int t) {
int flow = 0;
while (true) {
mUsed.assign(mVert, false);
int f = dfs(s, t, INF);
if (f == 0) break;
flow += f;
}
return flow;
}
int min_cost_flow(int s, int t, int f) {
int res = 0;
vector<int> prevv(mVert);
vector<int> preve(mVert);
while (f > 0) {
vector<int> dst(mVert, INF);
dst[s] = 0;
while (true) {
bool update = false;
for (int i = 0; i < mVert; ++i) {
if (dst[i] == INF) continue;
for (int j = 0; j < mGraph[i].size(); ++j) {
auto e = mGraph[i][j];
if (e.cap > 0 && dst[e.to] > dst[i] + e.weight) {
dst[e.to] = dst[i] + e.weight;
prevv[e.to] = i;
preve[e.to] = j;
update = true;
}
}
}
if (!update) break;
}
if (dst[t] == INF) return -1;
int d = f;
for (int i = t; i != s; i = prevv[i]) {
d = min(d, mGraph[prevv[i]][preve[i]].cap);
}
f -= d;
res += d * dst[t];
for (int i = t; i != s; i = prevv[i]) {
Edge &e = mGraph[prevv[i]][preve[i]];
e.cap -= d;
mGraph[i][e.rev].cap += d;
}
}
return res;
}
private:
Graph mGraph;
vector<bool> mUsed;
int mVert;
};
int main() {
int V, E, F, u, v, c, d;
cin >> V >> E >> F;
Flow f(V);
for (int i = 0; i < E; ++i) {
cin >> u >> v >> c >> d;
f.add_edge(u, v, c, d);
}
cout << f.min_cost_flow(0, V - 1, F) << '\n';
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.PriorityQueue;
import java.util.Scanner;
@SuppressWarnings("unchecked")
class MinCostFlow{
class Edge{
int to,cap,cost,rev;
Edge(int to,int cap,int cost,int rev){this.to=to;this.cap=cap;this.cost=cost;this.rev=rev;}
}
List<Edge> edges[];
void add_edge(int from,int to,int cap,int cost){
edges[from].add(new Edge(to,cap,cost,edges[to].size()));
edges[to].add(new Edge(from,0,-cost,edges[from].size()-1));
}
int[] dis;
int[] h;
int[] prevv;
Edge[] preve;
MinCostFlow(int V){
edges = new ArrayList[V];
dis =new int[V];
h = new int[V];
prevv=new int[V];
preve=new Edge[V];
for(int i=0;i<V;++i)edges[i]=new ArrayList<>();
}
int get(int s,int t,int f){
int res = 0;
class Node{
int v,cost;
Node(int v,int cost){this.v=v;this.cost=cost;}
}
Arrays.fill(h,0);
while(f>0){
Arrays.fill(dis, Integer.MAX_VALUE);
dis[s]=0;
PriorityQueue<Node> que = new PriorityQueue<>((a,b)->a.cost-b.cost);
que.add(new Node(s,0));
while(!que.isEmpty()){
Node node = que.poll();
if(dis[node.v]<node.cost)continue;
for(Edge e : edges[node.v])if(dis[node.v]+e.cost + (h[e.to]-h[node.v]) <dis[e.to] && e.cap>0){
dis[e.to] = dis[node.v]+e.cost + (h[e.to]-h[node.v]);
prevv[e.to]=node.v;
preve[e.to]=e;
que.add(new Node(e.to, dis[e.to]));
}
}
for(int i=0;i<h.length;++i)System.out.print(dis[i]+" ");
System.out.println();
if(dis[t]==Integer.MAX_VALUE)return -1;
for(int i=0;i<h.length;++i)h[i] -= dis[i];
int d = f;
for(int v=t;v!=s;v=prevv[v])d=Math.min(d, preve[v].cap);
res += d * -h[t];
f-=d;
for(int v=t;v!=s;v=prevv[v]){
preve[v].cap-=d;
edges[v].get(preve[v].rev).cap+=d;
}
}
return res;
}
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int V = scan.nextInt();
int E = scan.nextInt();
int F = scan.nextInt();
MinCostFlow mcf = new MinCostFlow(V);
while(E-->0){
int u = scan.nextInt();
int v = scan.nextInt();
int c = scan.nextInt();
int d = scan.nextInt();
mcf.add_edge(u, v, c, d);
}
System.out.println(mcf.get(0,V-1,F));
}
}
class Main{
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int V = scan.nextInt();
int E = scan.nextInt();
int F = scan.nextInt();
MinCostFlow mcf = new MinCostFlow(V);
while(E-->0){
int u = scan.nextInt();
int v = scan.nextInt();
int c = scan.nextInt();
int d = scan.nextInt();
mcf.add_edge(u, v, c, d);
}
System.out.println(mcf.get(0,V-1,F));
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from heapq import heappop, heappush
def trace(source, edge_trace):
v = source
for i in edge_trace:
e = edges[v][i]
yield e
v = e[1]
def min_cost_flow(source, sink, required_flow):
res = 0
while required_flow:
visited = set()
queue = [(0, source, tuple())]
while queue:
total_cost, v, edge_memo = heappop(queue)
if v in visited:
continue
elif v == sink:
dist = total_cost
edge_trace = edge_memo
break
visited.add(v)
for i, (remain, target, cost, _) in enumerate(edges[v]):
if remain and target not in visited:
heappush(queue, (total_cost + cost, target, edge_memo + (i,)))
else:
return -1
aug = min(required_flow, min(e[0] for e in trace(source, edge_trace)))
required_flow -= aug
res += aug * dist
for e in trace(source, edge_trace):
remain, target, cost, idx = e
e[0] -= aug
edges[target][idx][0] += aug
return res
n, m, f = map(int, input().split())
edges = [[] for _ in range(n)]
for _ in range(m):
s, t, c, d = map(int, input().split())
es, et = edges[s], edges[t]
ls, lt = len(es), len(et)
es.append([c, t, d, lt])
et.append([0, s, d, ls])
print(min_cost_flow(0, n - 1, f)) |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
class Edge {
public:
int from;
int to;
int flow;
Edge(int f, int t, int d) {
from = f;
to = t;
flow = d;
}
};
class Shortest_path_result {
public:
int sum_of_cost;
vector<int> path;
vector<int> distance;
vector<int> predecessor;
Shortest_path_result() {}
};
class Graph {
public:
int INF;
int n;
vector<set<int> > vertices_list;
vector<map<int, int> > cost_list;
vector<map<int, int> > capacity_list;
vector<int> potential_list;
Graph() {}
Graph(int n) {
INF = 1e9;
this->n = n;
vertices_list.insert(vertices_list.begin(), n, set<int>());
cost_list.insert(cost_list.begin(), n, map<int, int>());
capacity_list.insert(capacity_list.begin(), n, map<int, int>());
potential_list = vector<int>(n, 0);
}
void insert_edge(int b, int e, int cost, int capacity) {
vertices_list[b].insert(e);
cost_list[b][e] = cost;
capacity_list[b][e] = capacity;
}
void delete_edge(int b, int e) {
vertices_list[b].erase(e);
cost_list[b].erase(e);
capacity_list[b].erase(e);
}
int degree_of_vertex(int a) { return vertices_list[a].size(); }
bool edge_search(int a, int b) {
return vertices_list[a].find(b) != vertices_list[a].end();
}
bool path_search(int a, int b, set<int> visited = set<int>()) {
visited.insert(a);
set<int>::iterator itr;
for (itr = vertices_list[a].begin(); itr != vertices_list[a].end(); itr++) {
if ((*itr) == b) {
return true;
}
if (visited.find(*itr) == visited.end()) {
if (path_search(*itr, b, visited)) {
return true;
}
}
}
return false;
}
Shortest_path_result solve_dijkstra(int start, int goal) {
set<int> visited = set<int>();
vector<int> distance = vector<int>(n, INF);
vector<int> predecessor = vector<int>(n);
priority_queue<pair<int, int>, vector<pair<int, int> >,
greater<pair<int, int> > >
pq;
pq.push(pair<int, int>(0, start));
while (!pq.empty()) {
pair<int, int> p = pq.top();
pq.pop();
int nv = p.second;
if (distance[nv] < p.first) {
continue;
}
distance[nv] = p.first;
for (set<int>::iterator itr = vertices_list[nv].begin();
itr != vertices_list[nv].end(); itr++) {
int next = (*itr);
if (distance[next] > distance[nv] + cost_list[nv][next]) {
distance[next] = distance[nv] + cost_list[nv][next];
predecessor[next] = nv;
pq.push(pair<int, int>(distance[next], next));
}
}
}
Shortest_path_result result;
result.path = vector<int>();
result.path.push_back(goal);
while (true) {
int now = result.path.back();
int pre = predecessor[now];
result.path.push_back(pre);
if (pre == start) {
reverse(result.path.begin(), result.path.end());
break;
}
}
result.sum_of_cost = distance[goal];
result.distance = distance;
result.predecessor = predecessor;
return result;
}
pair<int, vector<Edge> > solve_mincostflow(int s, int t, int flow_size) {
vector<map<int, int> > flow_list = vector<map<int, int> >(n);
vector<map<int, int> > origin_cost = cost_list;
int sum_flow_cost = 0;
while (flow_size > 0) {
Shortest_path_result res;
vector<int> path;
int min_capa = INF;
res = solve_dijkstra(s, t);
if (res.sum_of_cost == INF) {
sum_flow_cost = 0;
break;
}
path = res.path;
for (int i = 0; i < n; i++) {
potential_list[i] = potential_list[i] - res.distance[i];
}
vector<int>::iterator itr = path.begin();
itr++;
for (; itr != path.end(); itr++) {
if (min_capa > capacity_list[*(itr - 1)][*itr]) {
min_capa = capacity_list[*(itr - 1)][*itr];
}
}
if (min_capa > flow_size) {
min_capa = flow_size;
}
itr = path.begin();
itr++;
for (; itr != path.end(); itr++) {
if (flow_list[*(itr - 1)].find(*itr) == flow_list[*(itr - 1)].end()) {
flow_list[*(itr - 1)][*itr] = min_capa;
} else {
flow_list[*(itr - 1)][*itr] += min_capa;
}
}
flow_size = flow_size - min_capa;
itr = path.begin();
for (itr++; itr != path.end(); itr++) {
int capa, cost;
int from, to;
from = *(itr - 1);
to = *itr;
capa = capacity_list[from][to];
cost = cost_list[from][to];
delete_edge(from, to);
if (capa - min_capa > 0) {
insert_edge(from, to, cost, capa - min_capa);
}
insert_edge(to, from, -1 * cost, min_capa);
}
for (int b = 0; b > n; b++) {
map<int, int>::iterator itr;
for (itr = cost_list[b].begin(); itr != cost_list[b].end(); itr++) {
(*itr).second =
(*itr).second - potential_list[itr->first] + potential_list[b];
}
}
}
for (int i = 0; i < n; i++) {
map<int, int>::iterator itr;
for (itr = flow_list[i].begin(); itr != flow_list[i].end(); itr++) {
sum_flow_cost += origin_cost[i][itr->first] * itr->second;
}
}
if (sum_flow_cost == 0) {
cout << "-1" << endl;
} else {
cout << sum_flow_cost << endl;
}
return pair<int, vector<Edge> >();
}
void print(void) {
int i = 0;
vector<set<int> >::iterator itr;
set<int>::iterator itr_c;
for (itr = vertices_list.begin(); itr != vertices_list.end(); itr++) {
cout << i << ":";
for (itr_c = (*itr).begin(); itr_c != (*itr).end(); itr_c++) {
cout << *itr_c << "(" << capacity_list[i][*itr_c] << ")"
<< ",";
}
i++;
cout << endl;
}
}
};
int main() {
const int inf = 1e9;
int v, e, flow;
Graph g;
cin >> v >> e >> flow;
g = Graph(v);
int from, to, cost, cap;
for (int i = 0; i < e; i++) {
cin >> from >> to >> cap >> cost;
g.insert_edge(from, to, cost, cap);
}
g.solve_mincostflow(0, v - 1, flow);
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = (1ll << 60);
struct Edge {
long long s, t, c, d, u;
};
long long minCostFlow(vector<vector<Edge>> &G, long long s, long long t,
long long F) {
long long V = G.size();
long long cost = 0;
while (F) {
vector<long long> dist(V, INF);
dist[s] = 0;
vector<long long> prev(V), prevCap(V);
for (long long i = 0; i < V - 1; i++)
for (auto edges : G)
for (Edge e : edges) {
if (e.u < e.c) {
if (dist[e.t] > dist[e.s] + e.d) {
prev[e.t] = e.s;
prevCap[e.t] = (e.c - e.u);
dist[e.t] = dist[e.s] + e.d;
}
}
if (0 < e.u) {
if (dist[e.s] > dist[e.t] - e.d) {
prev[e.s] = e.t;
prevCap[e.s] = e.u;
dist[e.s] = dist[e.t] - e.d;
}
}
}
if (dist[t] == INF) break;
long long minCapacity = F;
for (long long v = t; v != s; v = prev[v])
minCapacity = min(minCapacity, prevCap[v]);
for (long long v = t; v != s; v = prev[v]) {
for (Edge &e : G[prev[v]])
if (e.t == v) {
e.u += minCapacity;
cost += e.d * minCapacity;
break;
} else if (e.s == v) {
e.u -= minCapacity;
cost -= e.d * minCapacity;
break;
}
}
F -= minCapacity;
}
return cost;
}
int main() {
long long V, E, F;
cin >> V >> E >> F;
vector<vector<Edge>> G(V);
for (long long i = 0; i < E; i++) {
Edge e;
cin >> e.s >> e.t >> e.c >> e.d;
e.u = 0;
G[e.s].push_back(e);
}
cout << minCostFlow(G, 0, V - 1, F) << endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from collections import defaultdict
import sys
sys.setrecursionlimit(200000)
def dfs(source, used, all_weight, connect):
max_weight = all_weight
max_source = source
used[source] = 1
for target, weight in connect[source]:
if not used[target]:
now_weight = all_weight + weight
this_source, this_weight = dfs(target, used, now_weight, connect)
if max_weight < this_weight:
max_weight = this_weight
max_source = this_source
return [max_source, max_weight]
vertice = int(input())
connect = defaultdict(list)
for _ in range(vertice - 1):
v1, v2, weight = (int(n) for n in input().split(" "))
connect[v1].append([v2, weight])
connect[v2].append([v1, weight])
answer = 0
start_v = 0
for i in range(2):
used = [0 for n in range(vertice)]
start_v, answer = dfs(start_v, used, 0, connect)
print(answer) |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
namespace MCF {
const int MAXN = 120;
const int MAXM = 2100;
int to[MAXM];
int next[MAXM];
int first[MAXN];
int c[MAXM];
int w[MAXM];
int pot[MAXN];
int rev[MAXM];
int ijk[MAXN];
int v[MAXN];
int toc;
int tof;
int n;
int m;
void init(int _n) {
n = _n;
for (int i = 0; i < n; i++) first[i] = -1;
}
void ae(int a, int b, int cap, int wei) {
next[m] = first[a];
to[m] = b;
first[a] = m;
c[m] = cap;
w[m] = wei;
m++;
next[m] = first[b];
to[m] = a;
first[b] = m;
c[m] = 0;
w[m] = -wei;
m++;
}
int solve(int s, int t, int flo) {
toc = tof = 0;
while (tof < flo) {
for (int i = 0; i < n; i++) ijk[i] = 999999999;
for (int i = 0; i < n; i++) v[i] = 0;
priority_queue<pair<int, int> > Q;
ijk[s] = 0;
Q.push(make_pair(0, s));
while (Q.size()) {
int cost = -Q.top().first;
int at = Q.top().second;
Q.pop();
if (v[at]) continue;
v[at] = 1;
for (int i = first[at]; ~i; i = next[i]) {
int x = to[i];
if (v[x] || ijk[x] <= ijk[at] + w[i] + pot[x] - pot[at]) continue;
if (c[i] == 0) continue;
ijk[x] = ijk[at] + w[i] + pot[x] - pot[at];
rev[x] = i;
Q.push(make_pair(-ijk[x], x));
}
}
int flow = flo - tof;
if (!v[t]) return 0;
int at = t;
while (at != s) {
flow = min(flow, c[rev[at]]);
at = to[rev[at] ^ 1];
}
at = t;
tof += flow;
toc += flow * (ijk[t] + pot[s] - pot[t]);
at = t;
while (at != s) {
c[rev[at]] -= flow;
c[rev[at] ^ 1] += flow;
at = to[rev[at] ^ 1];
}
for (int i = 0; i < n; i++) pot[i] += ijk[i];
}
return 1;
}
} // namespace MCF
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
MCF::init(a);
for (int i = 0; i < b; i++) {
int p, q, r, s;
scanf("%d%d%d%d", &p, &q, &r, &s);
MCF::ae(p, q, r, s);
}
int res = MCF::solve(0, a - 1, c);
if (!res)
printf("-1\n");
else
printf("%d\n", MCF::toc);
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC target("avx")
using namespace std;
template <typename T1, typename T2>
ostream& operator<<(ostream& o, const pair<T1, T2> p) {
o << "(" << p.first << ":" << p.second << ")";
return o;
}
template <typename iterator>
inline size_t argmin(iterator begin, iterator end) {
return distance(begin, min_element(begin, end));
}
template <typename iterator>
inline size_t argmax(iterator begin, iterator end) {
return distance(begin, max_element(begin, end));
}
template <typename T>
T& maxset(T& to, const T& val) {
return to = max(to, val);
}
template <typename T>
T& minset(T& to, const T& val) {
return to = min(to, val);
}
void bye(string s, int code = 0) {
cout << s << endl;
exit(0);
}
mt19937_64 randdev(8901016);
inline long long int rand_range(long long int l, long long int h) {
return uniform_int_distribution<long long int>(l, h)(randdev);
}
namespace {
class MaiScanner {
public:
template <typename T>
void input_integer(T& var) {
var = 0;
T sign = 1;
int cc = getchar_unlocked();
for (; cc < '0' || '9' < cc; cc = getchar_unlocked())
if (cc == '-') sign = -1;
for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked())
var = (var << 3) + (var << 1) + cc - '0';
var = var * sign;
}
inline int c() { return getchar_unlocked(); }
inline MaiScanner& operator>>(int& var) {
input_integer<int>(var);
return *this;
}
inline MaiScanner& operator>>(long long& var) {
input_integer<long long>(var);
return *this;
}
inline MaiScanner& operator>>(string& var) {
int cc = getchar_unlocked();
for (; !(0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked())
;
for (; (0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked())
var.push_back(cc);
return *this;
}
template <typename IT>
void in(IT begin, IT end) {
for (auto it = begin; it != end; ++it) *this >> *it;
}
};
} // namespace
MaiScanner scanner;
class Flow {
public:
size_t n;
struct Arrow {
int from, to;
int left;
int cap;
Arrow(int from = 0, int to = 0, int w = 1)
: from(from), to(to), left(w), cap(w) {}
bool operator<(const Arrow& a) const {
return (left != a.left) ? left < a.left
: (left < a.left) | (cap < a.cap) |
(from < a.from) | (to < a.to);
}
bool operator==(const Arrow& a) const {
return (from == a.from) && (to == a.to) && (left == a.left) &&
(cap == a.cap);
}
};
vector<vector<int>> vertex_to;
vector<vector<int>> vertex_from;
vector<Arrow> arrows;
Flow(int n) : n(n), vertex_to(n), vertex_from(n) {}
void connect(int from, int to, int left) {
vertex_to[from].push_back(arrows.size());
vertex_from[to].push_back(arrows.size());
arrows.emplace_back(from, to, left);
}
};
Flow::int minconstflow(Flow& graph, const vector<Flow::int>& cost, int i_source,
int i_sink, Flow::int flow, Flow::int inf) {
Flow::int result = 0;
vector<Flow::int> ofs(graph.n);
vector<Flow::int> dist(graph.n);
static function<Flow::int(int, Flow::int)> _dfs = [&](int idx, Flow::int f) {
if (idx == i_source) return f;
for (int ei : graph.vertex_from[idx]) {
auto& edge = graph.arrows[ei];
if (dist[edge.to] ==
dist[edge.from] + cost[ei] + ofs[edge.from] - ofs[edge.to]) {
f = _dfs(edge.from, min(f, edge.left));
edge.left -= f;
return f;
}
}
return f;
};
while (flow > 0) {
fill(dist.begin(), dist.end(), inf);
priority_queue<pair<Flow::int, int>> pq;
pq.emplace(0, i_source);
dist[i_source] = 0;
while (!pq.empty()) {
auto p = pq.top();
pq.pop();
Flow::int d = -p.first;
int idx = p.second;
if (dist[idx] < d) continue;
for (int ei : graph.vertex_to[idx]) {
auto edge = graph.arrows[ei];
if (0 < edge.left &&
dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to] < dist[edge.to]) {
dist[edge.to] = dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to];
pq.emplace(-dist[edge.to], edge.to);
}
}
}
if (dist[i_sink] == inf) return -1;
for (int i = 0; i < graph.n; ++i) ofs[i] += dist[i];
Flow::int z = _dfs(i_sink, flow);
flow -= z;
result += z * ofs[i_sink];
}
return result;
}
long long int m, n, kei;
int main() {
long long int f;
scanner >> n >> m >> f;
Flow graph(n);
vector<int> cost(m);
for (auto i = 0ll; (i) < (m); ++(i)) {
int u, v, c, d;
scanner >> u >> v >> c >> d;
graph.connect(u, v, c);
cost[i] = d;
}
auto ans = minconstflow(graph, cost, 0, n - 1, f, (long long int)1e8);
cout << ans << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i64 = long long;
struct edge {
i64 from;
i64 to;
i64 cap;
i64 cost;
i64 rev;
};
i64 INF = 1e18;
i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g,
std::vector<i64> b) {
i64 ans = 0;
i64 U = *std::max_element(begin(b), end(b));
i64 delta = (1 << ((int)(std::log2(U)) + 1));
int n = g.size();
std::vector<i64> e = b;
std::vector<i64> p(n, 1e8);
int zero = 0;
for (auto x : e) {
if (x == 0) zero++;
}
for (; delta > 0; delta >>= 1) {
if (zero == n) break;
for (int s = 0; s < n; s++) {
if (!(e[s] >= delta)) continue;
std::vector<std::size_t> pv(n, -1);
std::vector<std::size_t> pe(n, -1);
std::vector<i64> dist(n, INF);
using P = std::pair<i64, i64>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
dist[s] = 0;
que.push({dist[s], s});
while (!que.empty()) {
int v = que.top().second;
i64 d = que.top().first;
que.pop();
if (dist[v] < d) continue;
for (std::size_t i = 0; i < g[v].size(); i++) {
const auto& e = g[v][i];
std::size_t u = e.to;
if (e.cap == 0) {
continue;
}
i64 ccc = e.cost + p[v] - p[u];
assert(ccc >= 0);
if (dist[u] > dist[v] + ccc) {
dist[u] = dist[v] + ccc;
pv[u] = v;
pe[u] = i;
que.push({dist[u], u});
}
}
}
for (int i = 0; i < n; i++) {
if (pv[i] != -1) p[i] += dist[i] - p[s];
}
p[s] += dist[s] - p[s];
int t = 0;
for (; t < n; t++) {
if (!(e[s] >= delta)) break;
if (e[t] <= -delta && pv[t] != -1) {
std::size_t u = t;
for (; pv[u] != -1; u = pv[u]) {
ans += delta * g[pv[u]][pe[u]].cost;
g[pv[u]][pe[u]].cap -= delta;
g[u][g[pv[u]][pe[u]].rev].cap += delta;
}
e[u] -= delta;
e[t] += delta;
if (e[u] == 0) zero++;
if (e[t] == 0) zero++;
}
}
}
}
for (int i = 0; i < n; i++) {
}
if (zero == n)
return ans;
else
return -1e18;
}
int main() {
i64 N, M, F;
cin >> N >> M >> F;
vector<vector<edge>> g(N + M);
vector<i64> e(N + M, 0);
int s = 0;
int t = N - 1;
e[s + M] = F;
e[t + M] = -F;
for (int i = 0; i < M; i++) {
i64 a, b, c, d;
cin >> a >> b >> c >> d;
e[i] = c;
e[a + M] -= c;
g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()});
g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1});
g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()});
g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1});
}
i64 ans = capacity_scaling_bflow(g, e);
if (ans == -1e18) {
cout << -1 << endl;
} else {
cout << ans << endl;
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
namespace {
template <class T>
ostream& operator<<(ostream& os, const vector<T>& vs) {
if (vs.empty()) return os << "[]";
auto i = vs.begin();
os << "[" << *i;
for (++i; i != vs.end(); ++i) os << " " << *i;
return os << "]";
}
template <class T>
istream& operator>>(istream& is, vector<T>& vs) {
for (auto it = vs.begin(); it != vs.end(); it++) is >> *it;
return is;
}
const int INF = 1 << 28;
struct Edge {
int from, to, cap, cost, rev;
Edge() {}
Edge(int from, int to, int cap, int cost, int rev = -1)
: from(from), to(to), cap(cap), cost(cost), rev(rev) {}
};
struct Graph {
int V;
vector<vector<Edge> > G;
vector<bool> used;
Graph(int V) : V(V) {
G.clear();
G.resize(V);
used.clear();
used.resize(V);
}
void addEdge(int from, int to, int cap, int cost) {
G[from].push_back(Edge(from, to, cap, cost, G[to].size()));
G[to].push_back(Edge(to, from, 0, -cost, int(G[from].size()) - 1));
}
int minCostFlow(int from, int to, int flow) {
vector<int> dist(V, INF);
dist[from] = 0;
vector<int> prevv(V), preve(V);
int ret = 0;
while (flow > 0) {
fill(dist.begin(), dist.end(), INF);
dist[from] = 0;
bool update = true;
while (update) {
update = false;
for (int v = 0; v < V; v++) {
if (dist[v] == INF) continue;
for (int i = 0; i < int(G[v].size()); i++) {
auto& e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
prevv[e.to] = v;
preve[e.to] = i;
update = true;
}
}
}
}
if (dist[to] == INF) return -1;
int d = flow;
for (int v = to; v != from; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
flow -= d;
ret += d * dist[to];
for (int v = to; v != from; v = prevv[v]) {
Edge& e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return ret;
}
};
int V, E, F;
Graph* g;
void input() {
cin >> V >> E >> F;
g = new Graph(V);
for (int i = 0; i < E; i++) {
int from, to, cap, cost;
cin >> from >> to >> cap >> cost;
g->addEdge(from, to, cap, cost);
}
}
void solve() { cout << g->minCostFlow(0, V - 1, F) << endl; }
} // namespace
int main() {
input();
solve();
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1000000007LL;
const int inf = 1e9;
const long long INF = 1e18;
const int MAX_V = 100;
struct edge {
int to, cap, cost, rev;
edge(int to, int cap, int cost, int rev)
: to(to), cap(cap), cost(cost), rev(rev) {}
};
vector<edge> G[MAX_V];
int h[MAX_V];
int dist[MAX_V];
int prevv[MAX_V], preve[MAX_V];
int V;
void add_edge(int from, int to, int cap, int cost) {
G[from].emplace_back(to, cap, cost, G[to].size());
G[to].emplace_back(from, 0, -cost, G[from].size() - 1);
}
int min_cost_flow(int s, int t, int f) {
int res = 0;
fill(h, h + V, 0);
while (f > 0) {
priority_queue<pair<int, int>, vector<pair<int, int>>,
greater<pair<int, int>>>
que;
fill(dist, dist + V, inf);
dist[s] = 0;
que.push(pair<int, int>(0, s));
while (!que.empty()) {
pair<int, int> p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first) continue;
for (int i = 0; i < G[v].size(); i++) {
edge e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(pair<int, int>(dist[e.to], e.to));
}
}
}
if (dist[t] == inf) return -1;
for (int v = 0; v < V; v++) h[v] += dist[v];
int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main() {
cin >> V;
int E, F;
cin >> E >> F;
for (int i = 0; i < E; i++) {
int u, v, c, d;
cin >> u >> v >> c >> d;
add_edge(u, v, c, d);
}
cout << min_cost_flow(0, V - 1, F) << endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr int INF = 10000000;
constexpr int MAX = 1000000;
struct Edge {
int to;
int cap;
int cost;
int rev;
Edge(int to, int cap, int cost, int rev)
: to(to), cap(cap), cost(cost), rev(rev) {}
};
int V, E, F;
vector<Edge> G[MAX];
int h[MAX];
int dist[MAX];
int prevv[MAX], preve[MAX];
auto add_edge(int from, int to, int cap, int cost) -> void {
G[from].push_back(Edge(to, cap, cost, G[to].size()));
G[to].push_back(Edge(from, 0, -cost, G[to].size() - 1));
}
auto min_cost_flow(int s, int t, int f) -> int {
auto res = 0;
fill(h, h + V, 0);
while (f > 0) {
priority_queue<pair<int, int>, vector<pair<int, int>>,
greater<pair<int, int>>>
que;
fill(dist, dist + V, INF);
dist[s] = 0;
que.push(pair<int, int>(0, s));
while (!que.empty()) {
pair<int, int> p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first) continue;
for (auto i = 0; i < G[v].size(); i++) {
Edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(pair<int, int>(dist[e.to], e.to));
}
}
}
if (dist[t] == INF) {
return -1;
}
for (int v = 0; v < V; v++) {
h[v] += dist[v];
}
int d = f;
for (auto v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for (auto v = t; v != s; v = prevv[v]) {
Edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
auto main(int argc, char const *argv[]) -> int {
int n;
cin >> V >> E >> F;
for (auto i = 0; i < E; i++) {
int u, v, c, d;
cin >> u >> v >> c >> d;
add_edge(u, v, c, d);
}
cout << min_cost_flow(0, V - 1, F) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
class Edge {
public:
int from;
int to;
int flow;
Edge(int f, int t, int d) {
from = f;
to = t;
flow = d;
}
};
class Shortest_path_result {
public:
int sum_of_cost;
vector<int> path;
vector<int> distance;
vector<int> predecessor;
Shortest_path_result() {}
};
class Graph {
public:
int INF;
int n;
vector<set<int> > vertices_list;
vector<map<int, int> > cost_list;
vector<map<int, int> > capacity_list;
vector<int> potential_list;
Graph() {}
Graph(int n) {
INF = 1e9;
this->n = n;
vertices_list.insert(vertices_list.begin(), n, set<int>());
cost_list.insert(cost_list.begin(), n, map<int, int>());
capacity_list.insert(capacity_list.begin(), n, map<int, int>());
potential_list = vector<int>(n, 0);
}
void insert_edge(int b, int e, int cost, int capacity) {
vertices_list[b].insert(e);
cost_list[b][e] = cost;
capacity_list[b][e] = capacity;
}
void delete_edge(int b, int e) {
vertices_list[b].erase(e);
cost_list[b].erase(e);
capacity_list[b].erase(e);
}
int degree_of_vertex(int a) { return vertices_list[a].size(); }
bool edge_search(int a, int b) {
return vertices_list[a].find(b) != vertices_list[a].end();
}
bool path_search(int a, int b, set<int> visited = set<int>()) {
visited.insert(a);
set<int>::iterator itr;
for (itr = vertices_list[a].begin(); itr != vertices_list[a].end(); itr++) {
if ((*itr) == b) {
return true;
}
if (visited.find(*itr) == visited.end()) {
if (path_search(*itr, b, visited)) {
return true;
}
}
}
return false;
}
Shortest_path_result solve_dijkstra(int start, int goal) {
set<int> visited = set<int>();
vector<int> distance = vector<int>(n, INF);
vector<int> predecessor = vector<int>(n);
priority_queue<pair<int, int>, vector<pair<int, int> >,
greater<pair<int, int> > >
pq;
pq.push(pair<int, int>(0, start));
while (!pq.empty()) {
pair<int, int> p = pq.top();
pq.pop();
int nv = p.second;
if (distance[nv] < p.first) {
continue;
}
distance[nv] = p.first;
for (set<int>::iterator itr = vertices_list[nv].begin();
itr != vertices_list[nv].end(); itr++) {
int next = (*itr);
if (distance[next] > distance[nv] + cost_list[nv][next]) {
distance[next] = distance[nv] + cost_list[nv][next];
predecessor[next] = nv;
pq.push(pair<int, int>(distance[next], next));
}
}
}
Shortest_path_result result;
if (distance[goal] == INF) {
} else {
result.path = vector<int>();
result.path.push_back(goal);
if (start != goal) {
while (true) {
int now = result.path.back();
int pre = predecessor[now];
result.path.push_back(pre);
if (pre == start) {
reverse(result.path.begin(), result.path.end());
break;
}
}
}
}
result.path = vector<int>();
result.sum_of_cost = distance[goal];
result.distance = distance;
result.predecessor = predecessor;
return result;
}
pair<int, vector<Edge> > solve_mincostflow(int s, int t, int flow_size) {
vector<map<int, int> > flow_list = vector<map<int, int> >(n);
vector<map<int, int> > origin_cost = cost_list;
bool feasible_flag = true;
int sum_flow_cost = 0;
while (flow_size > 0) {
Shortest_path_result res;
vector<int> path;
int min_capa = INF;
res = solve_dijkstra(s, t);
cout << res.sum_of_cost << endl;
if (res.sum_of_cost == INF) {
feasible_flag = false;
break;
}
path = res.path;
for (int i = 0; i < n; i++) {
potential_list[i] = potential_list[i] - res.distance[i];
}
vector<int>::iterator itr = path.begin();
itr++;
for (; itr != path.end(); itr++) {
if (min_capa > capacity_list[*(itr - 1)][*itr]) {
min_capa = capacity_list[*(itr - 1)][*itr];
}
}
if (min_capa > flow_size) {
min_capa = flow_size;
}
itr = path.begin();
itr++;
for (; itr != path.end(); itr++) {
if (flow_list[*(itr - 1)].find(*itr) == flow_list[*(itr - 1)].end()) {
flow_list[*(itr - 1)][*itr] = min_capa;
} else {
flow_list[*(itr - 1)][*itr] += min_capa;
}
}
flow_size = flow_size - min_capa;
itr = path.begin();
for (itr++; itr != path.end(); itr++) {
int capa, cost;
int from, to;
from = *(itr - 1);
to = *itr;
capa = capacity_list[from][to];
cost = cost_list[from][to];
delete_edge(from, to);
if (capa - min_capa > 0) {
insert_edge(from, to, cost, capa - min_capa);
}
insert_edge(to, from, -1 * cost, min_capa);
}
for (int b = 0; b > n; b++) {
map<int, int>::iterator itr;
for (itr = cost_list[b].begin(); itr != cost_list[b].end(); itr++) {
(*itr).second =
(*itr).second - potential_list[itr->first] + potential_list[b];
}
}
}
for (int i = 0; i < n; i++) {
map<int, int>::iterator itr;
for (itr = flow_list[i].begin(); itr != flow_list[i].end(); itr++) {
sum_flow_cost += origin_cost[i][itr->first] * itr->second;
}
}
if (!feasible_flag) {
cout << "-1" << endl;
} else {
cout << sum_flow_cost << endl;
}
return pair<int, vector<Edge> >();
}
void print(void) {
int i = 0;
vector<set<int> >::iterator itr;
set<int>::iterator itr_c;
for (itr = vertices_list.begin(); itr != vertices_list.end(); itr++) {
cout << i << ":";
for (itr_c = (*itr).begin(); itr_c != (*itr).end(); itr_c++) {
cout << *itr_c << "(" << capacity_list[i][*itr_c] << ")"
<< ",";
}
i++;
cout << endl;
}
}
};
int main() {
const int inf = 1e9;
int v, e, flow;
Graph g;
Shortest_path_result res;
int r;
cin >> v >> e >> r;
g = Graph(v);
int from, to, cost, cap;
for (int i = 0; i < e; i++) {
cin >> from >> to >> cost;
g.insert_edge(from, to, cost, 0);
}
res = g.solve_dijkstra(r, v - 1);
for (int i = 0; i < v; i++) {
if (res.distance[i] == inf) {
cout << "INF" << endl;
} else {
cout << res.distance[i] << endl;
}
}
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct Order {
bool operator()(pair<long, long> const& a, pair<long, long> const& b) const {
return a.first > b.first || ((a.first == b.first) && (a.second > b.second));
}
};
struct edge {
long to, cap, dis, rev;
};
class Primal_dual {
private:
vector<vector<edge>> E;
vector<long> pt;
vector<long> dist;
vector<pair<long, long>> prev;
size_t V;
public:
Primal_dual() : V(0) {}
Primal_dual(size_t v)
: E(v, vector<edge>(0)), pt(v, 0), prev(v), dist(v), V(v) {}
size_t size() { return V; }
void add_edge(long from, long to, long cap, long dis) {
E[from].push_back({to, cap, dis, (long)E[to].size()});
E[to].push_back({from, 0, -dis, (long)E[from].size() - 1});
}
short dijekstra(long start, long goal) {
priority_queue<pair<long, long>, vector<pair<long, long>>, Order> que;
for (long i = 0; i < (V); i++) dist[i] = 2147483647;
dist[start] = 0;
que.push(pair<long, long>(0, start));
while (!que.empty()) {
pair<long, long> next = que.top();
que.pop();
long next_v = next.second;
if (dist[next_v] < next.first) continue;
for (long i = 0; i < (E[next_v].size()); i++) {
edge* e = &E[next_v][i];
if (e->cap > 0 &&
dist[e->to] > (dist[next_v] + e->dis + pt[next_v] - pt[e->to])) {
dist[e->to] = (dist[next_v] + e->dis + pt[next_v] - pt[e->to]);
prev[e->to] = {next_v, i};
que.push(pair<long, long>(dist[e->to], e->to));
}
}
}
if (dist[goal] == 2147483647)
return 1;
else
return 0;
}
short min_cost_flow(long start, long goal, long F) {
long sum_cost = 0;
while (F > 0) {
if (dijekstra(start, goal)) return (-1);
for (long i = 0; i < (V); i++) pt[i] += dist[i];
long flow = F;
for (long node = goal; node != start; node = prev[node].first) {
flow = min(flow, E[prev[node].first][prev[node].second].cap);
}
F -= flow;
sum_cost += (flow * pt[goal]);
for (long node = goal; node != start; node = prev[node].first) {
edge* e = &E[prev[node].first][prev[node].second];
e->cap -= flow;
E[node][e->rev].cap += flow;
}
}
return sum_cost;
}
};
int main(void) {
long V, E, F;
cin >> V >> E >> F;
Primal_dual pd(V);
long u, v, c, d;
for (long i = 0; i < (E); i++) {
cin >> u >> v >> c >> d;
pd.add_edge(u, v, c, d);
}
cout << pd.min_cost_flow(0, V - 1, F) << endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
class Edge {
public:
int from;
int to;
int flow;
Edge(int f, int t, int d) {
from = f;
to = t;
flow = d;
}
};
class Shortest_path_result {
public:
int sum_of_cost;
vector<int> path;
vector<int> distance;
vector<int> predecessor;
Shortest_path_result() {}
};
class Graph {
public:
int INF;
int n;
vector<set<int> > vertices_list;
vector<map<int, int> > cost_list;
vector<map<int, int> > capacity_list;
vector<int> potential_list;
Graph() {}
Graph(int n) {
INF = 1e9;
this->n = n;
vertices_list.insert(vertices_list.begin(), n, set<int>());
cost_list.insert(cost_list.begin(), n, map<int, int>());
capacity_list.insert(capacity_list.begin(), n, map<int, int>());
potential_list = vector<int>(n, 0);
}
void insert_edge(int b, int e, int cost, int capacity) {
vertices_list[b].insert(e);
cost_list[b][e] = cost;
capacity_list[b][e] = capacity;
}
void delete_edge(int b, int e) {
vertices_list[b].erase(e);
cost_list[b].erase(e);
capacity_list[b].erase(e);
}
int degree_of_vertex(int a) { return vertices_list[a].size(); }
bool edge_search(int a, int b) {
return vertices_list[a].find(b) != vertices_list[a].end();
}
bool path_search(int a, int b, set<int> visited = set<int>()) {
visited.insert(a);
set<int>::iterator itr;
for (itr = vertices_list[a].begin(); itr != vertices_list[a].end(); itr++) {
if ((*itr) == b) {
return true;
}
if (visited.find(*itr) == visited.end()) {
if (path_search(*itr, b, visited)) {
return true;
}
}
}
return false;
}
Shortest_path_result solve_dijkstra(int start, int goal) {
set<int> visited = set<int>();
vector<int> distance = vector<int>(n, INF);
vector<int> predecessor = vector<int>(n);
priority_queue<pair<int, int>, vector<pair<int, int> >,
greater<pair<int, int> > >
pq;
pq.push(pair<int, int>(0, start));
while (!pq.empty()) {
pair<int, int> p = pq.top();
pq.pop();
int nv = p.second;
if (distance[nv] < p.first) {
continue;
}
distance[nv] = p.first;
for (set<int>::iterator itr = vertices_list[nv].begin();
itr != vertices_list[nv].end(); itr++) {
int next = (*itr);
if (distance[next] > distance[nv] + cost_list[nv][next]) {
distance[next] = distance[nv] + cost_list[nv][next];
predecessor[next] = nv;
pq.push(pair<int, int>(distance[next], next));
}
}
}
Shortest_path_result result;
result.path = vector<int>();
result.path.push_back(goal);
while (true) {
int now = result.path.back();
int pre = predecessor[now];
result.path.push_back(pre);
if (pre == start) {
reverse(result.path.begin(), result.path.end());
break;
}
}
result.sum_of_cost = distance[goal];
result.distance = distance;
result.predecessor = predecessor;
return result;
}
pair<int, vector<Edge> > solve_mincostflow(int s, int t, int flow_size) {
vector<map<int, int> > flow_list = vector<map<int, int> >(n);
vector<map<int, int> > origin_cost = cost_list;
int sum_flow_cost = 0;
while (flow_size > 0) {
Shortest_path_result res;
vector<int> path;
int min_capa = INF;
res = solve_dijkstra(s, t);
path = res.path;
for (int i = 0; i < n; i++) {
potential_list[i] = potential_list[i] - res.distance[i];
}
vector<int>::iterator itr = path.begin();
itr++;
for (; itr != path.end(); itr++) {
if (min_capa > capacity_list[*(itr - 1)][*itr]) {
min_capa = capacity_list[*(itr - 1)][*itr];
}
}
itr = path.begin();
itr++;
for (; itr != path.end(); itr++) {
if (flow_list[*(itr - 1)].find(*itr) == flow_list[*(itr - 1)].end()) {
flow_list[*(itr - 1)][*itr] = min_capa;
} else {
flow_list[*(itr - 1)][*itr] += min_capa;
}
}
flow_size = flow_size - min_capa;
itr = path.begin();
for (itr++; itr != path.end(); itr++) {
int capa, cost;
int from, to;
from = *(itr - 1);
to = *itr;
capa = capacity_list[from][to];
cost = cost_list[from][to];
delete_edge(from, to);
if (capa - min_capa > 0) {
insert_edge(from, to, cost, capa - min_capa);
}
insert_edge(to, from, -1 * cost, min_capa);
}
for (int b = 0; b > n; b++) {
map<int, int>::iterator itr;
for (itr = cost_list[b].begin(); itr != cost_list[b].end(); itr++) {
(*itr).second =
(*itr).second - potential_list[itr->first] + potential_list[b];
}
}
}
for (int i = 0; i < n; i++) {
map<int, int>::iterator itr;
for (itr = flow_list[i].begin(); itr != flow_list[i].end(); itr++) {
sum_flow_cost += origin_cost[i][itr->first] * itr->second;
}
}
cout << sum_flow_cost << endl;
return pair<int, vector<Edge> >();
}
void print(void) {
int i = 0;
vector<set<int> >::iterator itr;
set<int>::iterator itr_c;
for (itr = vertices_list.begin(); itr != vertices_list.end(); itr++) {
cout << i << ":";
for (itr_c = (*itr).begin(); itr_c != (*itr).end(); itr_c++) {
cout << *itr_c << "(" << capacity_list[i][*itr_c] << ")"
<< ",";
}
i++;
cout << endl;
}
}
};
int main() {
const int inf = 1e9;
int v, e, flow;
Graph g;
cin >> v >> e >> flow;
g = Graph(v);
int from, to, cost, cap;
for (int i = 0; i < e; i++) {
cin >> from >> to >> cap >> cost;
g.insert_edge(from, to, cost, cap);
}
g.solve_mincostflow(0, v - 1, flow);
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // clang-format off
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define main signed main()
#define loop(i, a, n) for (int i = (a); i < (n); i++)
#define rep(i, n) loop(i, 0, n)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define prec(n) fixed << setprecision(n)
constexpr int INF = sizeof(int) == sizeof(long long) ? 1000000000000000000LL : 1000000000;
constexpr int MOD = 1000000007;
constexpr double PI = 3.14159265358979;
template<typename A, typename B> bool cmin(A &a, const B &b) { return a > b ? (a = b, true) : false; }
template<typename A, typename B> bool cmax(A &a, const B &b) { return a < b ? (a = b, true) : false; }
constexpr bool odd(const int n) { return n & 1; }
constexpr bool even(const int n) { return ~n & 1; }
template<typename T = int> T in() { T x; cin >> x; return x; }
template<typename T = int> T in(T &&x) { T z(forward<T>(x)); cin >> z; return z; }
template<typename T> istream &operator>>(istream &is, vector<T> &v) { for (T &x : v) is >> x; return is; }
template<typename A, typename B> istream &operator>>(istream &is, pair<A, B> &p) { return is >> p.first >> p.second; }
template<typename T> ostream &operator<<(ostream &os, const vector<vector<T>> &v) { int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "" : "\n"); return os; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "" : " "); return os; }
template<typename A, typename B> ostream &operator<<(ostream &os, const pair<A, B> &p) { return os << p.first << ' ' << p.second; }
template<typename Head, typename Value> auto vectors(const Head &head, const Value &v) { return vector<Value>(head, v); }
template<typename Head, typename... Tail> auto vectors(Head x, Tail... tail) { auto inner = vectors(tail...); return vector<decltype(inner)>(x, inner); }
// clang-format on
using Flow = int;
using Cost = int;
class PrimalDual {
public:
struct Edge {
int d;
Flow c, f;
Cost w;
int r;
bool is_r;
Edge(int d, Flow c, Flow f, Cost w, int r, bool is_r) : d(d), c(c), f(f), w(w), r(r), is_r(is_r) {}
};
int n;
vector<vector<Edge>> g;
PrimalDual(int n) : n(n), g(n) {}
void addEdge(int src, int dst, Flow cap, Cost cost) { // 有向辺
int rsrc = g[dst].size();
int rdst = g[src].size();
g[src].emplace_back(dst, cap, 0, cost, rsrc, false);
g[dst].emplace_back(src, cap, cap, -cost, rdst, true);
}
template<Cost inf = numeric_limits<Cost>::max() / 8> Cost solve(int s, int t, Flow f) {
Cost res = 0;
vector<Cost> h(n), dist(n);
vector<int> prevv(n), preve(n);
using state = pair<Cost, int>;
priority_queue<state, vector<state>, greater<state>> q;
fill(h.begin(), h.end(), 0);
while (f > 0) {
fill(dist.begin(), dist.end(), inf);
dist[s] = 0;
q.emplace(0, s);
while (q.size()) {
Cost cd;
int v;
tie(cd, v) = q.top();
q.pop();
if (dist[v] < cd) continue;
for (int i = 0; i < g[v].size(); ++i) {
const Edge &e = g[v][i];
if (residue(e) == 0) continue;
if (dist[e.d] + h[e.d] > cd + h[v] + e.w) {
dist[e.d] = dist[v] + e.w + h[v] - h[e.d];
prevv[e.d] = v;
preve[e.d] = i;
q.emplace(dist[e.d], e.d);
}
}
}
if (dist[t] == INF) return -1;
for (int i = 0; i < n; ++i) h[i] += dist[i];
Flow d = f;
for (int v = t; v != s; v = prevv[v]) cmin(d, residue(g[prevv[v]][preve[v]]));
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
Edge &e = g[prevv[v]][preve[v]];
e.f += d;
g[v][e.r].f -= d;
}
}
return res;
}
Flow residue(const Edge &e) { return e.c - e.f; }
};
main {
int v, e, f;
cin >> v >> e >> f;
PrimalDual pd(v);
rep(i, e) {
int a, b, c, d;
cin >> a >> b >> c >> d;
pd.addEdge(a, b, c, d);
}
cout << pd.solve(0, v - 1, f) << endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.Closeable;
import java.io.FileInputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.PriorityQueue;
import java.util.TreeMap;
public class Main {
static ContestScanner in;static Writer out;public static void main(String[] args)
{try{in=new ContestScanner();out=new Writer();Main solve=new Main();solve.solve();
in.close();out.flush();out.close();}catch(IOException e){e.printStackTrace();}}
static void dump(int[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();}
static void dump(int[]a,int n){for(int i=0;i<a.length;i++)out.printf("%"+n+"d ",a[i]);out.println();}
static void dump(long[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();}
static void dump(char[]a){for(int i=0;i<a.length;i++)out.print(a[i]);out.println();}
static long pow(long a,int n){long r=1;while(n>0){if((n&1)==1)r*=a;a*=a;n>>=1;}return r;}
static String itob(int a,int l){return String.format("%"+l+"s",Integer.toBinaryString(a)).replace(' ','0');}
static void sort(int[]a){m_sort(a,0,a.length,new int[a.length]);}
static void sort(int[]a,int l){m_sort(a,0,l,new int[l]);}
static void sort(int[]a,int l,int[]buf){m_sort(a,0,l,buf);}
static void sort(int[]a,int s,int l,int[]buf){m_sort(a,s,l,buf);}
static void m_sort(int[]a,int s,int sz,int[]b)
{if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;}
m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz;
while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];}
while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i];
} /* qsort(3.5s)<<msort(9.5s)<<<shuffle+qsort(17s)<Arrays.sort(Integer)(20s) */
static void sort(long[]a){m_sort(a,0,a.length,new long[a.length]);}
static void sort(long[]a,int l){m_sort(a,0,l,new long[l]);}
static void sort(long[]a,int l,long[]buf){m_sort(a,0,l,buf);}
static void sort(long[]a,int s,int l,long[]buf){m_sort(a,s,l,buf);}
static void m_sort(long[]a,int s,int sz,long[]b)
{if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;}
m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz;
while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];}
while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i];}
static void swap(long[] a,int i,int j){final long t=a[i];a[i]=a[j];a[j]=t;}
static void swap(int[] a,int i,int j){final int t=a[i];a[i]=a[j];a[j]=t;}
static int binarySearchSmallerMax(int[]a,int v)// get maximum index which a[idx]<=v
{int l=-1,r=a.length-1,s=0;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;}
static int binarySearchSmallerMax(int[]a,int v,int l,int r)
{int s=-1;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;}
static List<Integer>[]createGraph(int n)
{List<Integer>[]g=new List[n];for(int i=0;i<n;i++)g[i]=new ArrayList<>();return g;}
void solve() throws NumberFormatException, IOException{
final int n = in.nextInt();
final int m = in.nextInt();
int f = in.nextInt();
List<Edge>[] node = new List[n];
for(int i=0; i<n; i++) node[i] = new ArrayList<>();
for(int i=0; i<m; i++){
int a = in.nextInt();
int b = in.nextInt();
int c = in.nextInt();
int d = in.nextInt();
Edge e = new Edge(b, c, d);
Edge r = new Edge(a, 0, -d);
e.rev = r;
r.rev = e;
node[a].add(e);
node[b].add(r);
}
final int s = 0, t = n-1;
int[] h = new int[n];
int[] dist = new int[n];
int[] preV = new int[n];
int[] preE = new int[n];
final int inf = Integer.MAX_VALUE;
PriorityQueue<Pos> qu = new PriorityQueue<>();
int res = 0;
while(f>0){
Arrays.fill(dist, inf);
dist[s] = 0;
qu.clear();
qu.add(new Pos(s, 0));
while(!qu.isEmpty()){
Pos p = qu.poll();
if(dist[p.v]<p.d) continue;
dist[p.v] = p.d;
final int sz = node[p.v].size();
for(int i=0; i<sz; i++){
Edge e = node[p.v].get(i);
final int nd = e.cost+p.d + h[p.v]-h[e.to];
if(e.cap>0 && nd < dist[e.to]){
preV[e.to] = p.v;
preE[e.to] = i;
qu.add(new Pos(e.to, nd));
}
}
}
if(dist[t]==inf) break;
for(int i=0; i<n; i++) h[i] += dist[i];
int minf = f;
for(int i=t; i!=s; i=preV[i]){
minf = Math.min(minf, node[preV[i]].get(preE[i]).cap);
}
f -= minf;
res += minf*h[t];
for(int i=t; i!=s; i=preV[i]){
node[preV[i]].get(preE[i]).cap -= minf;
node[preV[i]].get(preE[i]).rev.cap += minf;
}
}
System.out.println(res);
}
}
class Pos implements Comparable<Pos>{
int v, d;
public Pos(int v, int d) {
this.v = v;
this.d = d;
}
@Override
public int compareTo(Pos o) {
return d-o.d;
}
}
class Edge{
int to, cap, cost;
Edge rev;
Edge(int t, int c, int co){
to = t;
cap = c;
cost = co;
}
void rev(Edge r){
rev = r;
}
}
class MultiSet<T> extends HashMap<T, Integer>{
@Override public Integer get(Object key){return containsKey(key)?super.get(key):0;}
public void add(T key,int v){put(key,get(key)+v);}
public void add(T key){put(key,get(key)+1);}
public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);}
public MultiSet<T> merge(MultiSet<T> set)
{MultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;}
for(Entry<T,Integer>e:s.entrySet())l.add(e.getKey(),e.getValue());return l;}
}
class OrderedMultiSet<T> extends TreeMap<T, Integer>{
@Override public Integer get(Object key){return containsKey(key)?super.get(key):0;}
public void add(T key,int v){put(key,get(key)+v);}
public void add(T key){put(key,get(key)+1);}
public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);}
public OrderedMultiSet<T> merge(OrderedMultiSet<T> set)
{OrderedMultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;}
while(!s.isEmpty()){l.add(s.firstEntry().getKey(),s.pollFirstEntry().getValue());}return l;}
}
class Pair implements Comparable<Pair>{
int a,b;final int hash;Pair(int a,int b){this.a=a;this.b=b;hash=(a<<16|a>>16)^b;}
public boolean equals(Object obj){Pair o=(Pair)(obj);return a==o.a&&b==o.b;}
public int hashCode(){return hash;}
public int compareTo(Pair o){if(a!=o.a)return a<o.a?-1:1;else if(b!=o.b)return b<o.b?-1:1;return 0;}
}
class Timer{
long time;public void set(){time=System.currentTimeMillis();}
public long stop(){return time=System.currentTimeMillis()-time;}
public void print(){System.out.println("Time: "+(System.currentTimeMillis()-time)+"ms");}
@Override public String toString(){return"Time: "+time+"ms";}
}
class Writer extends PrintWriter{
public Writer(String filename)throws IOException
{super(new BufferedWriter(new FileWriter(filename)));}
public Writer()throws IOException{super(System.out);}
}
class ContestScanner implements Closeable{
private BufferedReader in;private int c=-2;
public ContestScanner()throws IOException
{in=new BufferedReader(new InputStreamReader(System.in));}
public ContestScanner(String filename)throws IOException
{in=new BufferedReader(new InputStreamReader(new FileInputStream(filename)));}
public String nextToken()throws IOException {
StringBuilder sb=new StringBuilder();
while((c=in.read())!=-1&&Character.isWhitespace(c));
while(c!=-1&&!Character.isWhitespace(c)){sb.append((char)c);c=in.read();}
return sb.toString();
}
public String readLine()throws IOException{
StringBuilder sb=new StringBuilder();if(c==-2)c=in.read();
while(c!=-1&&c!='\n'&&c!='\r'){sb.append((char)c);c=in.read();}
return sb.toString();
}
public long nextLong()throws IOException,NumberFormatException
{return Long.parseLong(nextToken());}
public int nextInt()throws NumberFormatException,IOException
{return(int)nextLong();}
public double nextDouble()throws NumberFormatException,IOException
{return Double.parseDouble(nextToken());}
public void close() throws IOException {in.close();}
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i64 = long long;
struct edge {
i64 from;
i64 to;
i64 cap;
i64 cost;
i64 rev;
};
i64 INF = 1e18;
i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g,
std::vector<i64> b) {
i64 ans = 0;
i64 U = *std::max_element(begin(b), end(b));
i64 delta = (1 << ((int)(std::log2(U)) + 1));
int n = g.size();
std::vector<i64> e = b;
std::vector<i64> p(n, 0);
for (int i = 0; i < n; i++) {
if (b[i] > 0) p[i] = 1e8;
}
int zero = 0;
for (auto x : e) {
if (x == 0) zero++;
}
for (; delta > 0; delta >>= 1) {
if (zero == n) break;
for (int s = 0; s < n; s++) {
if (!(e[s] >= delta)) continue;
std::vector<std::size_t> pv(n, -1);
std::vector<std::size_t> pe(n, -1);
std::vector<i64> dist(n, INF);
using P = std::pair<i64, i64>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
dist[s] = 0;
que.push({dist[s], s});
while (!que.empty()) {
int v = que.top().second;
i64 d = que.top().first;
que.pop();
if (dist[v] < d) continue;
for (std::size_t i = 0; i < g[v].size(); i++) {
const auto& e = g[v][i];
std::size_t u = e.to;
if (e.cap == 0) {
continue;
}
i64 ccc = e.cost + p[v] - p[u];
assert(ccc >= 0);
if (dist[u] > dist[v] + ccc) {
dist[u] = dist[v] + ccc;
pv[u] = v;
pe[u] = i;
que.push({dist[u], u});
}
}
}
for (int i = 0; i < n; i++) {
if (pv[i] != -1)
p[i] += dist[i] - p[s];
else
p[i] += (i64)1e8 - p[s];
}
p[s] += dist[s] - p[s];
int t = 0;
for (; t < n; t++) {
if (!(e[s] >= delta)) break;
if (e[t] <= -delta && pv[t] != -1) {
std::size_t u = t;
for (; pv[u] != -1; u = pv[u]) {
ans += delta * g[pv[u]][pe[u]].cost;
g[pv[u]][pe[u]].cap -= delta;
g[u][g[pv[u]][pe[u]].rev].cap += delta;
}
e[u] -= delta;
e[t] += delta;
if (e[u] == 0) zero++;
if (e[t] == 0) zero++;
}
}
}
}
for (int i = 0; i < n; i++) {
}
if (zero == n)
return ans;
else
return -1e18;
}
int main() {
i64 N, M, F;
cin >> N >> M >> F;
vector<vector<edge>> g(N + M);
vector<i64> e(N + M, 0);
int s = 0;
int t = N - 1;
e[s + M] = F;
e[t + M] = -F;
for (int i = 0; i < M; i++) {
i64 a, b, c, d;
cin >> a >> b >> c >> d;
e[i] = c;
e[a + M] -= c;
g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()});
g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1});
g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()});
g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1});
}
i64 ans = capacity_scaling_bflow(g, e);
if (ans == -1e18) {
cout << -1 << endl;
} else {
cout << ans << endl;
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct SuccessiveShortestPath {
struct Edge {
int to, cap, cost, rev;
};
int n, init;
vector<vector<Edge>> g;
vector<int> dist, pv, pe;
SuccessiveShortestPath() {}
SuccessiveShortestPath(int n, int INF = 1e9)
: n(n), g(n), init(INF), dist(n), pv(n), pe(n) {}
void addEdge(int u, int v, int cap, int cost) {
int szU = g[u].size();
int szV = g[v].size();
g[u].push_back({v, cap, cost, szV});
g[v].push_back({u, 0, -cost, szU - 1});
}
int bellmanFord(int s, int t) {
dist = vector<int>(n, init);
dist[s] = 0;
bool update = true;
while (update) {
update = false;
for (int u = 0; u < n; ++u) {
for (int i = 0; i < g[u].size(); ++i) {
Edge& e = g[u][i];
int v = e.to;
if (e.cap > 0 && dist[v] > dist[u] + e.cost) {
dist[v] = dist[u] + e.cost;
pv[v] = u;
pe[v] = i;
update = true;
}
}
}
}
return dist[t];
}
int build(int s, int t, int f) {
int res = 0;
while (f > 0) {
if (bellmanFord(s, t) == init) return -1;
int x = f;
for (int u = t; u != s; u = pv[u]) {
x = min(x, g[pv[u]][pe[u]].cap);
}
f -= x;
res += x * dist[t];
for (int u = t; u != s; u = pv[u]) {
Edge& e = g[pv[u]][pe[u]];
e.cap -= x;
g[e.to][e.rev].cap += x;
}
}
return res;
}
};
int main() {
int n, m, f;
cin >> n >> m >> f;
SuccessiveShortestPath ssp(n);
while (m--) {
int u, v, c, d;
cin >> u >> v >> c >> d;
ssp.addEdge(u, v, c, d);
}
cout << ssp.build(0, n - 1, f) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
os << "sz=" << v.size() << "\n[";
for (const auto& p : v) {
os << p << ",";
}
os << "]\n";
return os;
}
template <typename S, typename T>
ostream& operator<<(ostream& os, const pair<S, T>& p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
constexpr ll MOD = 1e9 + 7;
template <typename T>
constexpr T INF = numeric_limits<T>::max() / 100;
class CostFlow {
public:
using T = ll;
struct Edge {
Edge(const int from_, const int to_, const int reverse_, const T capacity_,
const T cost_)
: from{from_},
to{to_},
reverse{reverse_},
capacity{capacity_},
flow{0},
cost{cost_} {}
int from;
int to;
int reverse;
T capacity;
T flow;
T cost;
};
CostFlow(const int v) : m_v{v} {
m_table.resize(v);
m_dist.resize(v);
m_potential.resize(v);
m_prev_v.resize(v);
m_prev_e.resize(v);
}
void addEdge(const int from, const int to, const T capacity, const T cost) {
m_table[from].push_back(
Edge{from, to, (int)m_table[to].size(), capacity, cost});
m_table[to].push_back(
Edge{to, from, (int)m_table[from].size() - 1, 0, -cost});
}
T minCostFlow(const int s, const int t, int f) {
using P = pair<T, int>;
T res = 0;
fill(m_potential.begin(), m_potential.end(), 0);
while (f > 0) {
priority_queue<P, vector<P>, greater<P>> q;
fill(m_dist.begin(), m_dist.end(), INF<T>);
m_dist[s] = 0;
q.push(make_pair(0, s));
while (not q.empty()) {
const P p = q.top();
q.pop();
const int v = p.second;
if (m_dist[v] < p.first) {
continue;
}
for (int i = 0; i < m_table[v].size(); i++) {
const auto& e = m_table[v][i];
if (e.capacity > e.flow and m_dist[e.to] > m_dist[v] + e.cost +
m_potential[v] -
m_potential[e.to]) {
m_dist[e.to] =
m_dist[v] + e.cost + m_potential[v] - m_potential[e.to];
m_prev_v[e.to] = v;
m_prev_e[e.to] = i;
q.push(make_pair(m_dist[e.to], e.to));
}
}
}
if (m_dist[t] == INF<T>) {
return -1;
}
for (int v = 0; v < m_v; v++) {
m_potential[v] += m_dist[v];
}
T d = f;
for (int v = t; v != s; v = m_prev_v[v]) {
const auto& e = m_table[m_prev_v[v]][m_prev_e[v]];
d = min(d, e.capacity - e.flow);
}
f -= d;
res += d * m_potential[t];
for (int v = t; v != s; v = m_prev_v[v]) {
auto& e = m_table[m_prev_v[v]][m_prev_e[v]];
e.flow += d;
m_table[v][e.reverse].flow -= d;
}
}
return res;
}
private:
const int m_v;
vector<vector<Edge>> m_table;
vector<T> m_dist;
vector<T> m_potential;
vector<int> m_prev_v;
vector<int> m_prev_e;
};
int main() {
int V, E;
ll F;
std::cin >> V >> E >> F;
CostFlow f(V);
for (ll i = 0; i < E; i++) {
int u, v;
ll c, d;
cin >> u >> v >> c >> d;
f.addEdge(u, v, c, d);
}
cout << f.minCostFlow(0, V - 1, F);
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | class PQueue
attr_accessor :node
def initialize
@node = []
end
def insert(num)
i = @node.size
@node[i] = num
down_heap(i)
end
def extract
ret = @node[0]
if @node.size > 1
@node[0] = @node.pop()
up_heap(0)
else
@node = []
end
return ret
end
def delete(node)
i = @node.index(node)
break unless i
if i == @node.size - 1
@node.pop
else
@node[i] = @node.pop
copy = @node.clone
down_heap(i)
if copy == @node
up_heap(i)
end
end
end
def modify(old, new)
delete(old)
insert(new)
end
def up_heap(i)
h = @node.size
largest = i
l = 2 * i + 1
largest = l if l < h && @node[l] > @node[largest]
r = 2 * i + 2
largest = r if r < h && @node[r] > @node[largest]
while largest != i
@node[i], @node[largest] = @node[largest], @node[i]
i = largest
l = 2 * i + 1
largest = l if l < h && @node[l] > @node[largest]
r = 2 * i + 2
largest = r if r < h && @node[r] > @node[largest]
end
end
def down_heap(i)
p = (i+1)/2-1
while i > 0 && @node[p] < @node[i]
@node[i], @node[p] = @node[p], @node[i]
i = p
p = (i+1)/2-1
end
end
end
INF = 1.0 / 0.0
class Node
attr_accessor :i, :c, :prev, :d, :pot, :ans
def initialize(i)
@i = i
@c = {}
@ans = {}
@prev = nil
@d = INF
@pot = 0
end
def <(other)
if self.d > other.d
return true
else
return false
end
end
def >(other)
if self.d < other.d
return true
else
return false
end
end
end
nv, ne, f = gets.split.map(&:to_i)
g = Array.new(nv){|i| Node.new(i)}
ne.times{|i|
u, v, c, d = gets.split.map(&:to_i)
g[u].c[v] = [c, d]
g[u].ans[v] = [0,d]
}
loop do
nv.times{|i|
g[i].d = INF
g[i].prev = nil
}
g[0].d = 0
q = PQueue.new
nv.times{|i|
q.insert(g[i])
}
while q.node.size > 0
u = q.extract
u.c.each{|v, val|
alt = u.d + val[1]
if g[v].d > alt
q.delete(g[v])
g[v].d = alt
g[v].prev = u.i
q.insert(g[v])
end
}
end
# p g
max = f
c = nv-1
path = [c]
while c != 0
p = g[c].prev
if p == nil
puts "-1"
exit
end
path.unshift(p)
max = g[p].c[c][0] if max > g[p].c[c][0]
c = p
end
# p path
# p max
if max < f then
#make potential
path.each{|i|
g[i].pot -= g[i].d
}
(path.size-1).times{|i|
u = path[i]
v = path[i+1]
g[u].ans[v][0] += max
}
# p g
f -= max
else
(path.size-1).times{|i|
u = path[i]
v = path[i+1]
g[u].ans[v][0] += f
}
break
end
#make sub-network
(path.size-1).times{|i|
u = path[i]
v = path[i+1]
g[v].c[u] ||= [0, -g[u].c[v][1]]
g[v].c[u][0] += max
g[u].c[v][0] -= max
if g[u].c[v][0] == 0
g[u].c.delete(v)
end
}
#make modified sub-network
g.size.times{|i|
g[i].c.each{|j, val|
# p "#{g[i].c[j][1]} #{g[i].pot} #{g[j].pot}"
g[i].c[j][1] -= g[i].pot - g[j].pot
}
}
# g.size.times{|i|
# p g[i]
# }
end
sum = 0
nv.times{|i|
g[i].ans.each{|k,v|
sum += v[0]*v[1]
}
}
puts sum |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
class Edge {
public:
int from;
int to;
int flow;
Edge(int f, int t, int d) {
from = f;
to = t;
flow = d;
}
};
class Shortest_path_result {
public:
int sum_of_cost;
vector<int> path;
vector<int> distance;
vector<int> predecessor;
Shortest_path_result() {}
};
class Graph {
public:
int INF;
int n;
vector<set<int> > vertices_list;
vector<map<int, int> > cost_list;
vector<map<int, int> > capacity_list;
vector<int> potential_list;
Graph() {}
Graph(int n) {
INF = 1e9;
this->n = n;
vertices_list.insert(vertices_list.begin(), n, set<int>());
cost_list.insert(cost_list.begin(), n, map<int, int>());
capacity_list.insert(capacity_list.begin(), n, map<int, int>());
potential_list = vector<int>(n, 0);
}
void insert_edge(int b, int e, int cost, int capacity) {
vertices_list[b].insert(e);
cost_list[b][e] = cost;
capacity_list[b][e] = capacity;
}
void delete_edge(int b, int e) {
vertices_list[b].erase(e);
cost_list[b].erase(e);
capacity_list[b].erase(e);
}
int degree_of_vertex(int a) { return vertices_list[a].size(); }
bool edge_search(int a, int b) {
return vertices_list[a].find(b) != vertices_list[a].end();
}
bool path_search(int a, int b, set<int> visited = set<int>()) {
visited.insert(a);
set<int>::iterator itr;
for (itr = vertices_list[a].begin(); itr != vertices_list[a].end(); itr++) {
if ((*itr) == b) {
return true;
}
if (visited.find(*itr) == visited.end()) {
if (path_search(*itr, b, visited)) {
return true;
}
}
}
return false;
}
Shortest_path_result solve_dijkstra(int start, int goal) {
set<int> visited = set<int>();
vector<int> distance = vector<int>(n, INF);
vector<int> predecessor = vector<int>(n);
priority_queue<pair<int, int>, vector<pair<int, int> >,
greater<pair<int, int> > >
pq;
pq.push(pair<int, int>(0, start));
while (!pq.empty()) {
pair<int, int> p = pq.top();
pq.pop();
int nv = p.second;
if (distance[nv] < p.first) {
continue;
}
distance[nv] = p.first;
for (set<int>::iterator itr = vertices_list[nv].begin();
itr != vertices_list[nv].end(); itr++) {
int next = (*itr);
if (distance[next] > distance[nv] + cost_list[nv][next]) {
distance[next] = distance[nv] + cost_list[nv][next];
predecessor[next] = nv;
pq.push(pair<int, int>(distance[next], next));
}
}
}
Shortest_path_result result;
result.path = vector<int>();
result.path.push_back(goal);
while (true) {
int now = result.path.back();
int pre = predecessor[now];
result.path.push_back(pre);
if (pre == start) {
reverse(result.path.begin(), result.path.end());
break;
}
}
result.sum_of_cost = distance[goal];
result.distance = distance;
result.predecessor = predecessor;
return result;
}
pair<int, vector<Edge> > solve_mincostflow(int s, int t, int flow_size) {
vector<map<int, int> > flow_list = vector<map<int, int> >(n);
vector<map<int, int> > origin_cost = cost_list;
int sum_flow_cost = 0;
while (flow_size > 0) {
Shortest_path_result res;
vector<int> path;
int min_capa = INF;
res = solve_dijkstra(s, t);
if (res.sum_of_cost == INF) {
break;
}
path = res.path;
for (int i = 0; i < n; i++) {
potential_list[i] = potential_list[i] - res.distance[i];
}
vector<int>::iterator itr = path.begin();
itr++;
for (; itr != path.end(); itr++) {
if (min_capa > capacity_list[*(itr - 1)][*itr]) {
min_capa = capacity_list[*(itr - 1)][*itr];
}
}
if (min_capa > flow_size) {
min_capa = flow_size;
}
itr = path.begin();
itr++;
for (; itr != path.end(); itr++) {
if (flow_list[*(itr - 1)].find(*itr) == flow_list[*(itr - 1)].end()) {
flow_list[*(itr - 1)][*itr] = min_capa;
} else {
flow_list[*(itr - 1)][*itr] += min_capa;
}
}
flow_size = flow_size - min_capa;
itr = path.begin();
for (itr++; itr != path.end(); itr++) {
int capa, cost;
int from, to;
from = *(itr - 1);
to = *itr;
capa = capacity_list[from][to];
cost = cost_list[from][to];
delete_edge(from, to);
if (capa - min_capa > 0) {
insert_edge(from, to, cost, capa - min_capa);
}
insert_edge(to, from, -1 * cost, min_capa);
}
for (int b = 0; b > n; b++) {
map<int, int>::iterator itr;
for (itr = cost_list[b].begin(); itr != cost_list[b].end(); itr++) {
(*itr).second =
(*itr).second - potential_list[itr->first] + potential_list[b];
}
}
}
for (int i = 0; i < n; i++) {
map<int, int>::iterator itr;
for (itr = flow_list[i].begin(); itr != flow_list[i].end(); itr++) {
sum_flow_cost += origin_cost[i][itr->first] * itr->second;
}
}
if (sum_flow_cost == 0) {
cout << "-1" << endl;
} else {
cout << sum_flow_cost << endl;
}
return pair<int, vector<Edge> >();
}
void print(void) {
int i = 0;
vector<set<int> >::iterator itr;
set<int>::iterator itr_c;
for (itr = vertices_list.begin(); itr != vertices_list.end(); itr++) {
cout << i << ":";
for (itr_c = (*itr).begin(); itr_c != (*itr).end(); itr_c++) {
cout << *itr_c << "(" << capacity_list[i][*itr_c] << ")"
<< ",";
}
i++;
cout << endl;
}
}
};
int main() {
const int inf = 1e9;
int v, e, flow;
Graph g;
cin >> v >> e >> flow;
g = Graph(v);
int from, to, cost, cap;
for (int i = 0; i < e; i++) {
cin >> from >> to >> cap >> cost;
g.insert_edge(from, to, cost, cap);
}
g.solve_mincostflow(0, v - 1, flow);
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INFL = (int)1e9;
const long long int INFLL = (long long int)1e18;
const double INFD = numeric_limits<double>::infinity();
const double PI = 3.14159265358979323846;
bool nearlyeq(double x, double y) { return abs(x - y) < 1e-9; }
bool inrange(int x, int t) { return x >= 0 && x < t; }
long long int rndf(double x) {
return (long long int)(x + (x >= 0 ? 0.5 : -0.5));
}
long long int floorsqrt(double x) {
long long int m = (long long int)sqrt(x);
return m + (m * m <= (long long int)(x) ? 0 : -1);
}
long long int ceilsqrt(double x) {
long long int m = (long long int)sqrt(x);
return m + ((long long int)x <= m * m ? 0 : 1);
}
long long int rnddiv(long long int a, long long int b) {
return (a / b + (a % b * 2 >= b ? 1 : 0));
}
long long int ceildiv(long long int a, long long int b) {
return (a / b + (a % b == 0 ? 0 : 1));
}
long long int gcd(long long int m, long long int n) {
if (n == 0)
return m;
else
return gcd(n, m % n);
}
struct graph_t {
int n;
int m;
vector<pair<int, int> > edges;
vector<long long int> vals;
vector<long long int> costs;
vector<long long int> caps;
};
class Mincostflow {
private:
struct edgedata {
int eid, from, to;
long long int cap, cost;
int dual_p;
};
struct node {
int id;
bool done;
long long int d;
int from;
int from_p;
int from_eid;
vector<edgedata> edges;
};
struct pq_t {
int id;
long long int d;
bool operator<(const pq_t& another) const {
return d != another.d ? d > another.d : id > another.id;
}
};
vector<node> nodes;
int n, m;
int source, sink;
edgedata* empty_edge;
bool overflow;
public:
Mincostflow(graph_t G, int s, int t) {
n = G.n;
m = G.edges.size();
nodes.resize(n);
for (int i = 0; i < (int)n; i++)
nodes[i] = {i, false, LLONG_MAX, -1, -1, m, {}};
empty_edge = new edgedata;
for (int i = 0; i < (int)m; i++) {
int a = G.edges[i].first;
int b = G.edges[i].second;
nodes[a].edges.push_back(
{i, a, b, G.caps[i], G.costs[i], (int)nodes[b].edges.size()});
nodes[b].edges.push_back(
{i - m, b, a, 0, -G.costs[i], (int)nodes[a].edges.size() - 1});
}
source = s;
sink = t;
overflow = false;
}
bool add_flow(long long int f) {
if (overflow) return false;
while (f > 0) {
for (int i = 0; i < (int)n; i++) {
nodes[i].done = false;
nodes[i].from = -1;
nodes[i].from_p = -1;
nodes[i].from_eid = m;
nodes[i].d = LLONG_MAX;
}
nodes[source].d = 0;
priority_queue<pq_t> pq;
pq.push({nodes[source].id, nodes[source].d});
while (pq.size()) {
int a = pq.top().id;
pq.pop();
if (nodes[a].done) continue;
nodes[a].done = true;
for (int j = 0; j < (int)nodes[a].edges.size(); j++) {
edgedata e = nodes[a].edges[j];
if (e.cap == 0) continue;
int b = e.to;
if (nodes[b].done) continue;
long long int buf = nodes[a].d + e.cost;
if (buf < nodes[b].d) {
nodes[b].d = buf;
nodes[b].from = a;
nodes[b].from_p = j;
nodes[b].from_eid = e.eid;
pq.push({nodes[b].id, nodes[b].d});
}
}
}
if (!nodes[sink].done) {
overflow = true;
return false;
}
int a = sink;
long long int df = f;
while (a != source) {
df = min(df, nodes[nodes[a].from].edges[nodes[a].from_p].cap);
a = nodes[a].from;
}
a = sink;
while (a != source) {
nodes[nodes[a].from].edges[nodes[a].from_p].cap -= df;
nodes[a]
.edges[nodes[nodes[a].from].edges[nodes[a].from_p].dual_p]
.cap += df;
a = nodes[a].from;
}
f -= df;
}
return true;
}
vector<long long int> get_eid_flow() {
vector<long long int> ret(m, -1);
if (overflow) return ret;
for (int i = 0; i < (int)n; i++) {
for (auto e : nodes[i].edges) {
if (e.eid < 0) ret[e.eid + m] = e.cap;
}
}
return ret;
}
long long int get_flow() {
long long int ret = 0;
if (overflow) return -1;
for (auto e : nodes[sink].edges) {
if (e.eid < 0) ret += e.cap;
}
return ret;
}
long long int get_cost() {
long long int ret = 0;
if (overflow) return -1;
for (int i = 0; i < (int)n; i++) {
for (auto e : nodes[i].edges) {
if (e.eid < 0) ret -= e.cap * e.cost;
}
}
return ret;
}
};
int main() {
graph_t G;
cin >> G.n;
cin >> G.m;
long long int f;
cin >> f;
for (int i = 0; i < (int)G.m; i++) {
int s, t;
cin >> s >> t;
long long int cap, cost;
cin >> cap >> cost;
G.edges.push_back({s, t});
G.caps.push_back(cap);
G.costs.push_back(cost);
}
Mincostflow mcf(G, 0, G.n - 1);
if (mcf.add_flow(f))
cout << mcf.get_cost() << endl;
else
cout << -1 << endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Comparator;
import java.util.InputMismatchException;
import java.util.TreeSet;
public class Main {
static InputStream is;
static PrintWriter out;
static String INPUT = "";
static final long INF = Long.MAX_VALUE / 2;
int len;
int[][] up;
int[] tin;
int[] tout;
int time;
private static void solve() {
//PrintWriter pr = new PrintWriter(System.out);
int V = ni();
int E = ni();
int F = ni();
int[] u = new int[E];
int[] v = new int[E];
int[] c = new int[E];
int[] d = new int[E];
for(int i=0;i<E;i++){
u[i] = ni();
v[i] = ni();
c[i] = ni();
d[i] = ni();
}
int[][][] cost = packWD(V, u, v, d);
int[][][] capacity = packWD(V, u, v, c);
System.out.println(solveMinCostFlow(cost, capacity, 0, V-1, F));
}
public static int solveMinCostFlow(int[][][] cost, int[][][] capacity, int src, int sink, int all)
{
int n = cost.length;
int[][] flow = new int[n][];
for(int i = 0;i < n;i++) {
flow[i] = new int[cost[i].length];
}
// unweighted invgraph
// ?????°?????????cur???i??????=next?????¨???????????°????????§cur???next?????????????????????????????????
int[][][] ig = new int[n][][];
{
int[] p = new int[n];
for(int i = 0;i < n;i++){
for(int j = 0;j < cost[i].length;j++)p[cost[i][j][0]]++;
}
for(int i = 0;i < n;i++)ig[i] = new int[p[i]][2];
for(int i = n-1;i >= 0;i--){
for(int j = 0;j < cost[i].length;j++){
int u = --p[cost[i][j][0]];
ig[cost[i][j][0]][u][0] = i;
ig[cost[i][j][0]][u][1] = j;
}
}
}
int mincost = 0;
int[] pot = new int[n]; // ??????????????£???
final int[] d = new int[n];
TreeSet<Integer> q = new TreeSet<Integer>(new Comparator<Integer>(){
public int compare(Integer a, Integer b)
{
if(d[a] - d[b] != 0)return d[a] - d[b];
return a - b;
}
});
while(all > 0){
// src~sink?????????????????¢???
int[] prev = new int[n];
int[] myind = new int[n];
Arrays.fill(prev, -1);
Arrays.fill(d, Integer.MAX_VALUE / 2);
d[src] = 0;
q.add(src);
while(!q.isEmpty()){
int cur = q.pollFirst();
for(int i = 0;i < cost[cur].length;i++) {
int next = cost[cur][i][0];
if(capacity[cur][i][1] - flow[cur][i] > 0){
int nd = d[cur] + cost[cur][i][1] + pot[cur] - pot[next];
if(d[next] > nd){
q.remove(next);
d[next] = nd;
prev[next] = cur;
myind[next] = i;
q.add(next);
}
}
}
for(int i = 0;i < ig[cur].length;i++) {
int next = ig[cur][i][0];
int cind = ig[cur][i][1];
if(flow[next][cind] > 0){
int nd = d[cur] - cost[next][cind][1] + pot[cur] - pot[next];
if(d[next] > nd){
q.remove(next);
d[next] = nd;
prev[next] = cur;
myind[next] = -cind-1;
q.add(next);
}
}
}
}
if(prev[sink] == -1)break;
int minflow = all;
int sumcost = 0;
for(int i = sink;i != src;i = prev[i]){
if(myind[i] >= 0){
minflow = Math.min(minflow, capacity[prev[i]][myind[i]][1] - flow[prev[i]][myind[i]]);
sumcost += cost[prev[i]][myind[i]][1];
}else{
// cur->next
// prev[i]->i
// i????????£??????
// ig[cur][j][0]=next?????¨???g[next][ig[cur][j][1]] = cur
int ind = -myind[i]-1;
// tr(prev[i], ind);
minflow = Math.min(minflow, flow[i][ind]);
sumcost -= cost[i][ind][1];
}
}
mincost += minflow * sumcost;
for(int i = sink;i != src;i = prev[i]){
if(myind[i] >= 0){
flow[prev[i]][myind[i]] += minflow;
}else{
int ind = -myind[i]-1;
flow[i][ind] -= minflow;
}
}
all -= minflow;
for(int i = 0;i < n;i++){
pot[i] += d[i];
}
}
return mincost;
}
public static int[][][] packWD(int n, int[] from, int[] to, int[] w)
{
int[][][] g = new int[n][][];
int[] p = new int[n];
for(int f : from)p[f]++;
for(int i = 0;i < n;i++)g[i] = new int[p[i]][2];
for(int i = 0;i < from.length;i++){
--p[from[i]];
g[from[i]][p[from[i]]][0] = to[i];
g[from[i]][p[from[i]]][1] = w[i];
}
return g;
}
public static void main(String[] args) throws Exception
{
long S = System.currentTimeMillis();
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
solve();
out.flush();
long G = System.currentTimeMillis();
tr(G-S+"ms");
}
private static boolean eof()
{
if(lenbuf == -1)return true;
int lptr = ptrbuf;
while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false;
try {
is.mark(1000);
while(true){
int b = is.read();
if(b == -1){
is.reset();
return true;
}else if(!isSpaceChar(b)){
is.reset();
return false;
}
}
} catch (IOException e) {
return true;
}
}
private static byte[] inbuf = new byte[1024];
static int lenbuf = 0, ptrbuf = 0;
private static int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
// private static boolean isSpaceChar(int c) { return !(c >= 32 && c <= 126); }
private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private static double nd() { return Double.parseDouble(ns()); }
private static char nc() { return (char)skip(); }
private static String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private static char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private static char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private static int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private static int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); }
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
#define inf 1000000000
using namespace std;
struct edge{
int to, cap, cost, rev;
edge(int a, int b, int c, int d){
to = a, cap = b, cost = c, rev = d;
}
};
int V, E, F;
vector<edge> G[1005];
int dist[1005], prev[1005], prev_e[1005];
void BellmanFord()
{
int v;
bool update = true;
while(update){
update = false;
for(int i = 0; i < V; i++){
for(int j = 0; j < G[i].size(); j++){
v = G[i][j].to;
if(G[i][j].cap == 0) continue;
if(dist[v] > dist[i] + G[i][j].cost){
update = true;
dist[v] = dist[i] + G[i][j].cost;
prev[v] = i;
prev_e[v] = j;
}
}
}
}
}
int main(void)
{
cin >> V >> E >> F;
int u, v, c, d;
for(int i = 0; i < E; i++){
cin >> u >> v >> c >> d;
G[u].push_back(edge(v, c, d, G[v].size()));
G[v].push_back(edge(u, 0, -d, G[u].size()-1));
}
int p;
int ans = 0;
while(F > 0){
for(int i = 0; i < V; i++) dist[i] = inf;
prev[0] = -1, dist[0] = 0;
BellmanFord();
if(dist[V-1] >= inf) break;
p = V-1;
int minf = F;
while(prev[p] != -1){
minf = min(minf, G[prev[p]][prev_e[p]].cap);
p = prev[p];
}
p = V-1;
while(prev[p] != -1){
G[prev[p]][prev_e[p]].cap -= minf;
G[p][G[prev[p]][prev_e[p]].rev].cap += minf;
p = prev[p];
}
F -= minf;
ans += dist[V-1] * minf;
}
cout << ans << endl;
return 0;
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#define pb push_back
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=105;
const int maxq=1005;
struct edge{int to,cap,cost,rev;};
int n,m,k;
int d[maxn];
int a[maxn];
int p1[maxn];
int p2[maxn];
bool inq[maxn];
vector<edge>G[maxn];
void add_edge(int u,int v,int c,int w) {
G[u].pb(edge{v,c,w,int(G[v].size())});
G[v].pb(edge{u,0,-w,int(G[u].size()-1)});
}
int mcmf(int s,int t) {
int flow=0 , cost=0;
while (1) {
memset(d,0x3f,sizeof(d));
memset(p1,0,sizeof(p1));
memset(p2,0,sizeof(p2));
d[s]=0; a[s]=max(0,k-flow);
int qh=0,qt=0,q[maxq];
q[qt++]=s; inq[s]=1;
while (qh<qt) {
int u=q[qh++];
inq[u]=0;
for (int i=0;i<G[u].size();i++) {
edge e=G[u][i];
if (d[e.to]>d[u]+e.cost && e.cap) {
d[e.to]=d[u]+e.cost;
a[e.to]=min(a[u],e.cap);
p1[e.to]=u;
p2[e.to]=i;
if (!inq[e.to]) {
q[qt++]=e.to;
inq[e.to]=1;
}
}
}
}
if (d[t]==INF || !a[t]) break;
flow+=a[t];
cost+=a[t]*d[t];
for (int u=t;u!=s;) {
edge e=G[p1[u]][p2[u]];
G[p1[u]][p2[u]]-=d;
G[e.to][e.rev]+=d;
}
}
if (flow<k) return -1;
else return cost;
}
int main() {
cin>>n>>m>>k;
for (int i=0;i<m;i++) {
int u,v,c,w; cin>>u>>v>>c>>w;
add_edge(u,v,c,w);
}
cout<<mcmf(0,n-1)<<'\n';
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF =
sizeof(int) == sizeof(long long) ? 0x3f3f3f3f3f3f3f3fLL : 0x3f3f3f3f;
const int MOD = (int)(1e9) + 7;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return true;
}
return false;
}
struct MinimumCostMaximumFlow {
using Index = int;
using Flow = int;
using Cost = int;
static const Flow INF_CAPACITY = INF;
static const Cost INF_COST = INF;
struct Edge {
Index s, d;
Flow capacity;
Cost cost;
};
using Edges = vector<Edge>;
using Graph = vector<Edges>;
Graph g;
void init(Index n) { g.assign(n, Edges()); }
void add_arc(Index i, Index j, Flow capacity = INF_CAPACITY,
Cost cost = Cost()) {
Edge e, f;
e.d = j, f.d = i;
e.capacity = capacity, f.capacity = 0;
e.cost = cost, f.cost = -cost;
g[i].push_back(e);
g[j].push_back(f);
g[i].back().s = (Index)g[j].size() - 1;
g[j].back().s = (Index)g[i].size() - 1;
}
void add_edge(Index i, Index j, Flow capacity = INF_CAPACITY,
Cost cost = Cost()) {
add_arc(i, j, capacity, cost);
add_arc(j, i, capacity, cost);
}
pair<Cost, Flow> minimum_cost_maximum_flow(Index s, Index t,
Flow f = INF_CAPACITY,
bool useSPFA = false) {
int n = g.size();
vector<Cost> dist(n);
vector<Index> prev(n);
vector<Index> prevEdge(n);
pair<Cost, Flow> total = make_pair(0, 0);
vector<Cost> potential(n);
while (f > 0) {
fill(dist.begin(), dist.end(), INF_COST);
if (useSPFA || total.second == 0) {
deque<Index> q;
q.push_back(s);
dist[s] = 0;
vector<bool> inqueue(n);
while (!q.empty()) {
Index i = q.front();
q.pop_front();
inqueue[i] = false;
for (Index ei = 0; ei < g[i].size(); ei++) {
const Edge &e = g[i][ei];
Index j = e.d;
Cost d = dist[i] + e.cost;
if (e.capacity > 0 && d < dist[j]) {
if (!inqueue[j]) {
inqueue[j] = true;
q.push_back(j);
}
dist[j] = d;
prev[j] = i;
prevEdge[j] = ei;
}
}
}
} else {
vector<bool> vis(n);
priority_queue<pair<Cost, Index> > q;
q.push(make_pair(-0, s));
dist[s] = 0;
while (!q.empty()) {
Index i = q.top().second;
q.pop();
if (vis[i]) continue;
vis[i] = true;
for (Index ei = 0; ei < (Index)g[i].size(); ei++) {
const Edge &e = g[i][ei];
if (e.capacity <= 0) continue;
Index j = e.d;
Cost d = dist[i] + e.cost + potential[i] - potential[j];
if (dist[j] > d) {
dist[j] = d;
prev[j] = i;
prevEdge[j] = ei;
q.push(make_pair(-d, j));
}
}
}
}
if (dist[t] == INF_COST) break;
if (!useSPFA)
for (Index i = 0; i < n; i++) potential[i] += dist[i];
Flow d = f;
Cost distt = 0;
for (Index v = t; v != s;) {
Index u = prev[v];
const Edge &e = g[u][prevEdge[v]];
d = min(d, e.capacity);
distt += e.cost;
v = u;
}
f -= d;
total.first += d * distt;
total.second += d;
for (Index v = t; v != s; v = prev[v]) {
Edge &e = g[prev[v]][prevEdge[v]];
e.capacity -= d;
g[e.d][e.s].capacity += d;
}
}
return total;
}
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
int V, E, F;
cin >> V >> E >> F;
MinimumCostMaximumFlow mcmf;
mcmf.init(V);
for (int i = (0); i < (E); i++) {
int u, v, c, d;
cin >> u >> v >> c >> d;
mcmf.add_arc(u, v, c, d);
}
auto res = mcmf.minimum_cost_maximum_flow(0, V - 1, F);
cout << res.first << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
#define MAX 101
#define inf 1<<29
using namespace std;
typedef pair<int,int> P;
struct edge{ int to,cap,cost,rev; };
int v;
vector<edge> e[MAX];
int h[MAX];
int dist[MAX];
int prevv[MAX],preve[MAX];
void add_edge(int from,int to,int cap,int cost){
e[from].push_back((edge){to,cap,cost,e[to].size()});
e[to].push_back((edge){from,cap,cost,e[from].size()-1});
}
int min_cost_flow(int s,int t,int f){
int res=0;
fill(h,h+v,0);
while(f>0){
priority_queue<P,vector<P>,greater<P> > pq;
fill(dist,dist+v,inf);
dist[s]=0;
pq.push(P(0,s));
while(pq.size()){
P p=pq.top();
pq.pop();
int u=p.second;
if(dist[u]<p.first)continue;
for(int i=0;i<e[u].size();i++){
edge &E=e[u][i];
if(E.cap>0 && dist[E.to]>dist[u]+E.cost+h[u]-h[E.to]){
dist[E.to]=dist[u]+E.cost+h[u]-h[E.to];
prevv[E.to]=u;
preve[E.to]=i;
pq.push(P(dist[E.to],E.to));
}
}
}
if(dist[t]==inf)return -1;
for(int i=0;i<v;i++)h[i]+=dist[i];
int d=f;
for(int u=t;u!=s;u=prevv[u]){
d=min(d,e[prevv[u]][preve[u]].cap);
}
f-=d;
res+=d*h[t];
for(int u=t;u!=s;u=prevv[u]){
edge &E=e[prevv[u]][preve[u]];
E.cap-=d;
e[u][E.rev].cap+=d;
}
}
return res;
}
int main()
{
int m,f,a,b,c,d;
cin>>v>>m>>f;
for(int i=0;i<m;i++){
cin>>a>>b>>c>>d;
add_edge(a,b,c,d);
}
cout<<min_cost_flow(0,v-1,f)<<endl;
return 0;
} |
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using LL = long long;
constexpr LL LINF = 334ll << 53;
constexpr int INF = 15 << 26;
constexpr LL MOD = 1E9 + 7;
struct Edge {
int from, to;
LL cost, capacity;
int rev_id;
};
struct Prev {
LL cost;
int from, id;
};
class MinimumCostFlow {
struct Edge {
int to;
long long cost, capacity;
int rev_id;
Edge(int to, long long cost, long long cap, int id)
: to(to), cost(cost), capacity(cap), rev_id(id){};
Edge() { Edge(0, 0, 0, 0); }
};
struct Prev {
LL cost;
int from, id;
};
using vector<vector<Edge>> = vector<vector<Edge>>;
using vector<vector<LL>> = vector<vector<long long>>;
int n;
vector<vector<Edge>> graph;
vector<vector<LL>> flow;
vector<Prev> prev;
vector<long long> potential;
public:
MinimumCostFlow(int n)
: n(n), graph(n), prev(n, {LINF, -1, -1}), potential(n) {}
void addEdge(int a, int b, long long cap, long long cost) {
graph[a].emplace_back(b, cost, cap, (int)graph[b].size());
graph[b].emplace_back(a, -cost, 0, (int)graph[a].size() - 1);
}
long long minimumCostFlow(int s, int t, LL f) {
LL ret = 0;
for (bellman_ford(s); f > 0; dijkstra(s)) {
if (prev[t].cost == LINF) return -1;
for (int i = 0; i < n; ++i)
potential[i] = min(potential[i] + prev[i].cost, LINF);
LL d = f;
for (int v = t; v != s; v = prev[v].from) {
d = min(d, graph[prev[v].from][prev[v].id].capacity -
flow[prev[v].from][v]);
}
f -= d;
ret += d * potential[t];
for (int v = t; v != s; v = prev[v].from) {
flow[prev[v].from][v] += d;
flow[v][prev[v].from] -= d;
}
}
return ret;
}
private:
bool dijkstra(const int start) {
int visited = 0, N = graph.size();
fill(prev.begin(), prev.end(), (Prev){LINF, -1, -1});
priority_queue<tuple<LL, int, int, int>, vector<tuple<LL, int, int, int>>,
greater<tuple<LL, int, int, int>>>
pque;
pque.emplace(0, start, 0, -1);
LL cost;
int place, from, id;
while (!pque.empty()) {
tie(cost, place, from, id) = pque.top();
pque.pop();
if (prev[place].from != -1) continue;
prev[place] = {cost, from, id};
visited++;
if (visited == N) return true;
for (int i = 0; i < (int)graph[place].size(); ++i) {
auto e = &graph[place][i];
if (e->capacity > flow[place][e->to] && prev[e->to].from == -1) {
pque.emplace(e->cost + cost - potential[e->to] + potential[place],
e->to, place, i);
}
}
}
return false;
}
bool bellman_ford(const int start) {
int s = graph.size();
bool update = false;
prev[start] = (Prev){0ll, start, -1};
for (int i = 0; i < s; ++i, update = false) {
for (int j = 0; j < s; ++j) {
for (auto &e : graph[j]) {
if (e.capacity == 0) continue;
if (prev[j].cost != LINF && prev[e.to].cost > prev[j].cost + e.cost) {
prev[e.to].cost = prev[j].cost + e.cost;
prev[e.to].from = j;
prev[e.to].id = e.rev_id;
update = true;
if (i == s - 1) return false;
}
}
}
if (!update) break;
}
return true;
}
};
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n, m;
LL flow;
cin >> n >> m >> flow;
MinimumCostFlow mcf(n);
for (int i = 0; i < m; i++) {
int a, b;
LL cost, cap;
cin >> a >> b >> cap >> cost;
mcf.addEdge(a, b, cap, cost);
}
cout << mcf.minimumCostFlow(0, n - 1, flow) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
struct node {
int id;
int cap;
int cost;
struct node *next;
};
struct node **list;
int **flow, *delta, *dist, *prev;
int *heap, *heap_index, heapsize;
void Insert(int, int, int, int);
void downheap(int);
void upheap(int);
void PQ_init(int);
int PQ_remove(void);
void PQ_update(int);
int Maxflow(int, int, int);
int main(void) {
int i, v, e, f, s, t, c, d, mincost = 0;
scanf("%d %d %d", &v, &e, &f);
list = (struct node **)malloc(sizeof(struct node *) * v);
flow = (int **)malloc(sizeof(int *) * v);
delta = (int *)malloc(sizeof(int) * v);
dist = (int *)malloc(sizeof(int) * v);
prev = (int *)malloc(sizeof(int) * v);
for (i = 0; i < v; i++) {
list[i] = NULL;
flow[i] = (int *)calloc(v, sizeof(int));
}
for (i = 0; i < e; i++) {
scanf("%d %d %d %d", &s, &t, &c, &d);
Insert(s, t, c, d);
}
while (Maxflow(0, v - 1, v) && f) {
int n = v - 1;
do {
flow[prev[n]][n] += delta[v - 1];
flow[n][prev[n]] -= delta[v - 1];
n = prev[n];
} while (n);
f -= delta[v - 1];
}
if (!f) {
for (i = 0; i < v; i++) {
struct node *n;
for (n = list[i]; n != NULL; n = n->next) {
mincost += flow[i][n->id] * n->cost;
}
}
printf("%d\n", mincost);
} else
printf("-1\n");
for (i = 0; i < v; i++) {
free(list[i]);
free(flow[i]);
}
free(list);
free(flow);
free(delta);
free(dist);
free(prev);
}
void Insert(int a, int b, int cap, int cost) {
struct node *p = (struct node *)malloc(sizeof(struct node));
p->id = b;
p->cap = cap;
p->cost = cost;
p->next = list[a];
list[a] = p;
p = (struct node *)malloc(sizeof(struct node));
p->id = a;
p->cap = 0;
p->cost = 0;
p->next = list[b];
list[b] = p;
}
void downheap(int k) {
int j, v = heap[k];
while (k < heapsize / 2) {
j = 2 * k + 1;
if (j < heapsize - 1 && dist[heap[j]] > dist[heap[j + 1]]) j++;
if (dist[v] <= dist[heap[j]]) break;
heap[k] = heap[j];
heap_index[heap[j]] = k;
k = j;
}
heap[k] = v;
heap_index[v] = k;
}
void upheap(int j) {
int k, v = heap[j];
while (j > 0) {
k = (j + 1) / 2 - 1;
if (dist[v] >= dist[heap[k]]) break;
heap[j] = heap[k];
heap_index[heap[k]] = j;
j = k;
}
heap[j] = v;
heap_index[v] = j;
}
void PQ_init(int size) {
int i;
heapsize = size;
heap = (int *)malloc(sizeof(int) * size);
heap_index = (int *)malloc(sizeof(int) * size);
for (i = 0; i < size; i++) {
heap[i] = i;
heap_index[i] = i;
}
for (i = heapsize / 2 - 1; i >= 0; i--) downheap(i);
}
int PQ_remove(void) {
int v = heap[0];
heap[0] = heap[heapsize - 1];
heap_index[heap[heapsize - 1]] = 0;
heapsize--;
downheap(0);
return v;
}
void PQ_update(int v) { upheap(heap_index[v]); }
int Maxflow(int s, int t, int size) {
struct node *n;
int i;
for (i = 0; i < size; i++) {
delta[i] = INT_MAX;
dist[i] = INT_MAX;
prev[i] = -1;
}
dist[s] = 0;
PQ_init(size);
while (heapsize) {
i = PQ_remove();
if (i == t) break;
for (n = list[i]; n != NULL; n = n->next) {
int v = n->id;
if (flow[i][v] < n->cap) {
int newlen = dist[i] + n->cost;
if (newlen < dist[v]) {
dist[v] = newlen;
prev[v] = i;
delta[v] =
((delta[i]) < (n->cap - flow[i][v]) ? (delta[i])
: (n->cap - flow[i][v]));
PQ_update(v);
}
}
}
}
free(heap);
free(heap_index);
return dist[t] != INT_MAX;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i64 = long long;
struct edge {
i64 from;
i64 to;
i64 cap;
i64 cost;
i64 rev;
};
i64 INF = 1e8;
i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g,
std::vector<i64> b) {
i64 ans = 0;
i64 U = *std::max_element(begin(b), end(b));
i64 delta = (1 << ((int)(std::log2(U)) + 1));
int n = g.size();
std::vector<i64> e = b;
std::vector<i64> p(n, 0);
int zero = 0;
for (auto x : e) {
if (x == 0) zero++;
}
for (; delta > 0; delta >>= 1) {
if (zero == n) break;
while (true) {
std::vector<std::size_t> pv(n, -1);
std::vector<std::size_t> pe(n, -1);
std::vector<std::size_t> start(n, -1);
std::vector<i64> dist(n, INF);
using P = std::pair<i64, i64>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
for (int s = 0; s < n; s++) {
if (e[s] >= delta) {
dist[s] = 0;
start[s] = s;
que.push({dist[s], s});
}
}
if (que.empty()) break;
while (!que.empty()) {
int v = que.top().second;
i64 d = que.top().first;
que.pop();
if (dist[v] < d) continue;
for (std::size_t i = 0; i < g[v].size(); i++) {
const auto& e = g[v][i];
std::size_t u = e.to;
if (e.cap == 0) continue;
assert(e.cost + p[v] - p[u] >= 0);
if (dist[u] > dist[v] + e.cost + p[v] - p[u]) {
dist[u] = dist[v] + e.cost + p[v] - p[u];
pv[u] = v;
pe[u] = i;
start[u] = start[v];
que.push({dist[u], u});
}
}
}
for (int i = 0; i < n; i++) {
p[i] += dist[i];
}
for (int t = 0; t < n; t++) {
if (e[t] <= -delta && pv[t] != -1 && e[start[t]] >= delta) {
std::size_t u = t;
for (; pv[u] != -1; u = pv[u]) {
ans += delta * g[pv[u]][pe[u]].cost;
g[pv[u]][pe[u]].cap -= delta;
g[u][g[pv[u]][pe[u]].rev].cap += delta;
}
e[u] -= delta;
e[t] += delta;
if (e[u] == 0) zero++;
if (e[t] == 0) zero++;
}
}
}
}
if (zero == n)
return ans;
else
return -1e18;
}
int main() {
i64 N, M, F;
cin >> N >> M >> F;
vector<vector<edge>> g(N + M);
vector<i64> e(N + M, 0);
int s = 0;
int t = N - 1;
e[s + M] = F;
e[t + M] = -F;
for (int i = 0; i < M; i++) {
i64 a, b, c, d;
cin >> a >> b >> c >> d;
e[i] = c;
e[a + M] -= c;
g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()});
g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1});
g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()});
g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1});
}
i64 ans = capacity_scaling_bflow(g, e);
if (ans == -1e18) {
cout << -1 << endl;
} else {
cout << ans << endl;
}
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1 << 29;
void print_adjacency_list(
const vector<vector<tuple<int, int, int, int> > > &adj) {
cout << "st_nd: (ed_nd, capa, cost, st_ind), ..." << endl;
for (int st_nd = 0; st_nd < adj.size(); ++st_nd) {
cout << st_nd << ":";
for (auto itr = adj[st_nd].begin(); itr != adj[st_nd].end(); ++itr) {
int ed_nd, capa, cost, st_ind;
tie(ed_nd, capa, cost, st_ind) = *itr;
cout << " (" << ed_nd << ", " << capa << ", " << cost << ", " << st_ind
<< ")";
}
cout << endl;
}
}
int min_cost_flow(const int src_nd, const int sink_nd, const int flow_vol,
vector<vector<tuple<int, int, int, int> > > adj) {
int flow_res = flow_vol;
int min_cost = 0;
int n_nodes = adj.size();
while (flow_res > 0) {
vector<int> dist(n_nodes, INF);
vector<pair<int, int> > pred(n_nodes, make_pair(-1, -1));
dist[src_nd] = 0;
bool relax = true;
while (relax) {
relax = false;
for (int st_nd = 0; st_nd < n_nodes; ++st_nd) {
if (dist[st_nd] == INF) {
continue;
}
for (int ed_ind = 0; ed_ind < adj[st_nd].size(); ++ed_ind) {
int ed_nd, capa, cost;
tie(ed_nd, capa, cost, ignore) = adj[st_nd][ed_ind];
if (capa > 0 && dist[st_nd] + cost < dist[ed_nd]) {
dist[ed_nd] = dist[st_nd] + cost;
pred[ed_nd] = make_pair(st_nd, ed_ind);
relax = true;
}
}
}
}
if (dist[sink_nd] == INF) {
cout << "@SS" << endl;
return -1;
}
int flow = flow_vol;
for (int nd = sink_nd; nd != src_nd; nd = get<0>(pred[nd])) {
int pre_nd, nd_ind;
tie(pre_nd, nd_ind) = pred[nd];
flow = min(flow, get<1>(adj[pre_nd][nd_ind]));
}
flow_res -= flow;
min_cost += dist[sink_nd] * flow;
for (int nd = sink_nd; nd != src_nd; nd = get<0>(pred[nd])) {
int pre_nd, nd_ind;
tie(pre_nd, nd_ind) = pred[nd];
int &capa = get<1>(adj[pre_nd][nd_ind]);
int pre_ind;
tie(ignore, ignore, ignore, pre_ind) = adj[pre_nd][nd_ind];
int &rev_capa = get<1>(adj[nd][pre_ind]);
capa -= flow;
rev_capa += flow;
}
}
return min_cost;
}
int main(int argc, char *argv[]) {
int n_nodes, n_links, flow_vol;
cin >> n_nodes >> n_links >> flow_vol;
vector<vector<tuple<int, int, int, int> > > adj(n_nodes);
for (int lk = 0; lk < n_links; ++lk) {
int st_nd, ed_nd, capa, cost;
cin >> st_nd >> ed_nd >> capa >> cost;
adj[st_nd].push_back(make_tuple(ed_nd, capa, cost, adj[ed_nd].size()));
adj[ed_nd].push_back(make_tuple(st_nd, 0, -cost, adj[st_nd].size() - 1));
}
int src_nd = 0;
int sink_nd = n_nodes - 1;
cout << min_cost_flow(src_nd, sink_nd, flow_vol, adj) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using Int = long long;
template <typename T1, typename T2>
inline void chmin(T1 &a, T2 b) {
if (a > b) a = b;
}
template <typename T1, typename T2>
inline void chmax(T1 &a, T2 b) {
if (a < b) a = b;
}
template <typename T>
struct PrimalDual {
struct edge {
int to;
T cap, cost;
int rev;
edge() {}
edge(int to, T cap, T cost, int rev)
: to(to), cap(cap), cost(cost), rev(rev) {}
};
T INF;
vector<vector<edge> > G;
vector<T> h, dist;
vector<int> prevv, preve;
PrimalDual() {}
PrimalDual(int n, T INF)
: INF(INF), G(n), h(n), dist(n), prevv(n), preve(n) {}
void add_edge(int from, int to, T cap, T cost) {
G[from].emplace_back(to, cap, cost, G[to].size());
G[to].emplace_back(from, 0, -cost, G[from].size() - 1);
}
T flow(int s, int t, T f, int &ok) {
T res = 0;
fill(h.begin(), h.end(), 0);
while (f > 0) {
struct P {
T first;
int second;
P(T first, int second) : first(first), second(second) {}
bool operator<(const P &a) const { return first > a.first; }
};
priority_queue<P> que;
fill(dist.begin(), dist.end(), INF);
dist[s] = 0;
que.emplace(dist[s], s);
while (!que.empty()) {
P p = que.top();
que.pop();
int v = p.second;
if (dist[v] < p.first) continue;
for (int i = 0; i < (int)G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap == 0) continue;
if (dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.emplace(dist[e.to], e.to);
}
}
}
if (dist[t] == INF) return ok = 0;
for (int v = 0; v < (int)h.size(); v++) h[v] += dist[v];
T d = f;
for (int v = t; v != s; v = prevv[v])
d = min(d, G[prevv[v]][preve[v]].cap);
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
ok = 1;
return res;
}
};
int GRL_6_B() {
int v, e, f;
cin >> v >> e >> f;
const int INF = 1 << 28;
PrimalDual<int> pd(v, INF);
for (int i = 0; i < e; i++) {
int u, v, c, d;
cin >> u >> v >> c >> d;
pd.add_edge(u, v, c, d);
}
int ok = 0;
int res = pd.flow(0, v - 1, f, ok);
cout << (ok ? res : -1) << endl;
return 0;
}
signed SPOJ_GREED_solve() {
int n;
cin >> n;
vector<int> cnt(n, 0);
for (int i = 0; i < n; i++) {
int x;
cin >> x;
cnt[x - 1]++;
}
using ll = long long;
const ll INF = 1 << 28;
int S = n, T = n + 1;
PrimalDual<ll> G(n + 2, INF);
int m;
cin >> m;
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
x--;
y--;
G.add_edge(x, y, INF, 1);
G.add_edge(y, x, INF, 1);
}
for (int i = 0; i < n; i++) {
G.add_edge(S, i, cnt[i], 0);
G.add_edge(i, T, 1, 0);
}
int ok = 0;
ll res = G.flow(S, T, n, ok);
assert(ok);
cout << res << endl;
return 0;
}
signed SPOJ_GREED() {
cin.tie(0);
ios::sync_with_stdio(0);
int t;
cin >> t;
while (t--) SPOJ_GREED_solve();
return 0;
}
signed CFR190_B() {
int n, m;
cin >> n >> m;
vector<string> vp(n);
vector<int> vs(n);
for (int i = 0; i < n; i++) cin >> vp[i] >> vs[i];
vector<int> ss(m);
for (int i = 0; i < m; i++) cin >> ss[i];
const int INF = 1 << 28;
using ll = long long;
PrimalDual<ll> G(n + m + 3, INF);
int S = n + m, T = n + m + 1, V = n + m + 2;
for (int i = 0; i < m; i++) {
G.add_edge(S, i, 1, 0);
G.add_edge(i, V, 1, -ss[i]);
for (int j = 0; j < n; j++) {
if (vp[j] == "ATK") {
if (ss[i] >= vs[j]) G.add_edge(i, m + j, 1, vs[j] - ss[i]);
}
if (vp[j] == "DEF") {
if (ss[i] > vs[j]) G.add_edge(i, m + j, 1, 0);
}
}
}
for (int i = 0; i < n; i++) G.add_edge(m + i, T, 1, -INF);
G.add_edge(V, T, m, 0);
ll ans = 0, res = 0;
for (int i = 1; i <= m; i++) {
int ok = 0;
res += G.flow(S, T, 1, ok);
if (i <= n) res += INF;
if (ok)
chmax(ans, -res);
else
break;
}
cout << ans << endl;
return 0;
}
signed main() { return 0; }
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
namespace MCF {
const int MAXN = 120;
const int MAXM = 2100;
int to[MAXM];
int next[MAXM];
int first[MAXN];
int c[MAXM];
long long w[MAXM];
long long pot[MAXN];
int rev[MAXM];
long long ijk[MAXN];
int v[MAXN];
long long toc;
int tof;
int n;
int m;
void init(int _n) {
n = _n;
for (int i = 0; i < n; i++) first[i] = -1;
}
void ae(int a, int b, int cap, int wei) {
next[m] = first[a];
to[m] = b;
first[a] = m;
c[m] = cap;
w[m] = wei;
m++;
next[m] = first[b];
to[m] = a;
first[b] = m;
c[m] = 0;
w[m] = -wei;
m++;
}
int solve(int s, int t, int flo) {
toc = tof = 0;
while (tof < flo) {
for (int i = 0; i < n; i++) ijk[i] = 9999999999999LL;
for (int i = 0; i < n; i++) v[i] = 0;
priority_queue<pair<long long, int> > Q;
ijk[s] = 0;
Q.push(make_pair(0, s));
while (Q.size()) {
long long cost = -Q.top().first;
int at = Q.top().second;
Q.pop();
if (v[at]) continue;
v[at] = 1;
for (int i = first[at]; ~i; i = next[i]) {
int x = to[i];
if (v[x] || ijk[x] <= ijk[at] + w[i] + pot[x] - pot[at]) continue;
if (c[i] == 0) continue;
ijk[x] = ijk[at] + w[i] + pot[x] - pot[at];
rev[x] = i;
Q.push(make_pair(-ijk[x], x));
}
}
int flow = flo - tof;
if (!v[t]) return 0;
int at = t;
while (at != s) {
flow = min(flow, c[rev[at]]);
at = to[rev[at] ^ 1];
}
at = t;
tof += flow;
toc += flow * (ijk[t] + pot[s] - pot[t]);
at = t;
while (at != s) {
c[rev[at]] -= flow;
c[rev[at] ^ 1] += flow;
at = to[rev[at] ^ 1];
}
for (int i = 0; i < n; i++) pot[i] += ijk[i];
}
return 1;
}
} // namespace MCF
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
MCF::init(a);
for (int i = 0; i < b; i++) {
int p, q, r, s;
scanf("%d%d%d%d", &p, &q, &r, &s);
MCF::ae(p, q, r, s);
}
int res = MCF::solve(0, a - 1, c);
if (!res)
printf("-1\n");
else
printf("%lld\n", MCF::toc);
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // warm heart, wagging tail,and a smile just for you!
// ███████████
// ███╬╬╬╬╬╬╬╬╬╬███
// ███╬╬╬╬╬╬╬██╬╬╬╬╬╬███
// ███████████ ██╬╬╬╬╬████╬╬████╬╬╬╬╬██
// █████████╬╬╬╬╬████████████╬╬╬╬╬██╬╬╬╬╬╬███╬╬╬╬╬██
// ████████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████████╬╬╬╬╬╬██╬╬╬╬╬╬╬██
// ████╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████████╬╬╬╬╬╬╬╬╬╬╬██
// ███╬╬╬█╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬███╬╬╬╬╬╬╬█████
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬████████╬╬╬╬╬██
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬╬╬╬╬╬╬╬███
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬██
// ████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████╬╬╬╬╬████
// █████████████╬╬╬╬╬╬╬╬██╬╬╬╬╬████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬╬╬██████
// ████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬██████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██████╬╬╬╬╬╬╬███████████╬╬╬╬╬╬╬╬██╬╬╬██╬╬╬██
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████╬╬╬╬╬╬╬╬╬╬╬█╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬██
// ██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬▓▓▓▓▓▓╬╬╬████╬╬████╬╬╬╬╬╬╬▓▓▓▓▓▓▓▓▓█╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬███
// ██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██████▓▓▓▓▓▓▓╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬▓▓▓▓▓▓▓▓█╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬█████
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████████
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██
// ██████████████ ████╬╬╬╬╬╬███████████████████████████╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████
// ███████ █████ ███████████████████
#include "bits/stdc++.h"
using namespace std;
#define MOD 1000000007
#define INF 1LL<<60
#define fs first
#define sc second
#define pb push_back
#define int long long
#define FOR(i,a,b) for(int i=(a);i<(b);i++)
#define RFOR(i,a,b) for(int i = (b-1);i>=a;i--)
#define REP(i,n) FOR(i,0,n)
#define RREP(i,n) RFOR(i,0,n)
#define ITR(itr,mp) for(auto itr = (mp).begin(); itr != (mp).end(); ++itr)
#define RITR(itr,mp) for(auto itr = (mp).rbegin(); itr != (mp).rend(); ++itr)
#define range(i,a,b) (a)<=(i) && (i)<(b)
#define debug(x) cout << #x << " = " << (x) << endl;
typedef pair<int,int> P;
typedef vector<vector<P> > Graph;
struct edge{int to,cap,cost,rev;};
const int MAX_V = 3e5;
int V;
vector<edge> G[MAX_V];
vector<int> h,dist,prevv(MAX_V),preve(MAX_V);
void add_edge(int from, int to, int cap, int cost){
G[from].pb((edge){to,cap,cost,G[to].size()});
G[to].pb((edge){from,0,-cost,G[from].size()-1});
}
int min_cost_flow(int s, int t, int f){
int res = 0;
h.assign(V,0);
while(f > 0){
priority_queue<P,vector<P>,greater<P> > que;
dist.assign(V,INF);
dist[s] = 0;
que.push(P(0,s));
while(!que.empty()){
P p = que.top();
que.pop();
int v = p.sc;
if(dist[v] < p.fs) continue;
REP(i,G[v].size()){
edge &e = G[v][i];
if(e.cap > 0 && dist[e.to] > dist[v]+e.cost+h[v]-h[e.to]){
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(P(dist[e.to],e.to));
}
}
}
if(dist[t] == INF) return -1;
REP(v,V) h[v] += dist[v];
int d = f;
for(int v = t; v != s; v = prevv[v]) d = min(d,G[prevv[v]][preve[v]].cap);
f -= d;
res += d*h[t];
for(int v = t; v != s; v = prevv[v]){
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
// Vを頂点数で更新する!!
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
int v,e,f;
cin >> v >> e >> f;
V = v;
REP(_,e){
int s,t,cap,dist;
cin >> s >> t >> cap >> dist;
add_edge(s,t,cap,dist);
}
cout << min_cost_flow(0,v-1,f) << endl;
return 0;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using Vertex = int;
using Flow = long double;
using Cost = long double;
const Flow FLOW_INF = LDBL_MAX;
const Cost COST_INF = LDBL_MAX;
struct Edge {
Vertex from, to;
Flow capacity;
Cost cost;
int rev;
Edge(Vertex from, Vertex to, Flow capacity = 0, Cost cost = 0, int rev = -1)
: from(from), to(to), capacity(capacity), cost(cost), rev(rev) {}
};
class FlowNetwork {
public:
FlowNetwork(int n);
void insert(const Edge&);
Flow maximum_flow(Vertex source, Vertex sink) const;
Cost minimum_cost_flow(Vertex source, Vertex sink, Flow f) const;
private:
Vertex size_;
std::vector<std::vector<Edge>> edge_;
};
FlowNetwork::FlowNetwork(int n) : size_(n), edge_(n) {}
void FlowNetwork::insert(const Edge& e) {
edge_.at(e.from).emplace_back(e.from, e.to, e.capacity, e.cost,
edge_.at(e.to).size());
edge_.at(e.to).emplace_back(e.to, e.from, 0, -e.cost,
edge_.at(e.from).size() - 1);
}
Flow FlowNetwork::maximum_flow(Vertex source, Vertex sink) const {
std::vector<int> level;
std::vector<int> itr;
auto residue = edge_;
auto bfs = [&]() {
level.assign(size_, -1);
level.at(source) = 0;
std::queue<int> q;
q.push(source);
while (!q.empty()) {
auto v = q.front();
q.pop();
for (const auto& e : residue.at(v))
if (!~level.at(e.to))
if (0 < e.capacity) {
level.at(e.to) = level.at(e.from) + 1;
q.push(e.to);
}
}
return level.at(sink);
};
std::function<Flow(Vertex, Flow)> dfs = [&](Vertex v, Flow cur) {
if (v == sink) return cur;
for (auto& i = itr.at(v); i < residue.at(v).size(); ++i) {
auto& e = residue.at(v).at(i);
if (level.at(e.from) < level.at(e.to))
if (0 < e.capacity) {
auto f = dfs(e.to, std::min(cur, e.capacity));
if (f == 0) continue;
e.capacity -= f;
residue.at(e.to).at(e.rev).capacity += f;
return f;
}
}
return Flow(0);
};
Flow result = 0;
while (~bfs()) {
itr.assign(size_, 0);
while (auto f = dfs(source, FLOW_INF)) result += f;
}
return result;
}
Cost FlowNetwork::minimum_cost_flow(Vertex source, Vertex sink, Flow f) const {
std::vector<Cost> h(size_, 0);
auto residue = edge_;
Flow result = 0;
while (0 < f) {
using Node = std::tuple<Cost, Vertex>;
std::vector<Cost> dist(size_, COST_INF);
dist.at(source) = 0;
std::vector<Edge*> prev(size_, nullptr);
std::priority_queue<Node, std::vector<Node>, std::greater<Node>> q;
q.emplace(0, source);
while (!q.empty()) {
Cost c;
Vertex v;
std::tie(c, v) = q.top();
q.pop();
if (dist.at(v) < c) continue;
for (auto& e : residue.at(v)) {
if (e.capacity <= 0) continue;
if (dist.at(e.to) <=
dist.at(e.from) + e.cost + h.at(e.from) - h.at(e.to))
continue;
dist.at(e.to) = dist.at(e.from) + e.cost + h.at(e.from) - h.at(e.to);
prev.at(e.to) = &e;
q.emplace(dist.at(e.to), e.to);
}
}
if (dist.at(sink) == COST_INF) return -1;
for (int v = 0; v < size_; ++v)
if (dist.at(v) != COST_INF) h.at(v) += dist.at(v);
Flow d = f;
for (auto& e : prev)
if (e != nullptr) d = std::min(d, e->capacity);
f -= d;
result += d * h.at(sink);
for (auto& e : prev)
if (e != nullptr) {
e->capacity -= d;
residue.at(e->to).at(e->rev).capacity += d;
}
}
return result;
}
using namespace std;
int main() {
int V, E, F;
cin >> V >> E >> F;
FlowNetwork G(V);
for (int i = 0; i < E; ++i) {
Vertex u, v;
Flow c;
Cost d;
cin >> u >> v >> c >> d;
G.insert({u, v, c, d});
}
cout << G.minimum_cost_flow(0, V - 1, F) << endl;
}
|
p02377 Minimum Cost Flow | Examples
Input
4 5 2
0 1 2 1
0 2 1 2
1 2 1 1
1 3 1 3
2 3 2 1
Output
6
Input
Output | {
"input": [
"4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1",
""
],
"output": [
"6",
""
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
class Networkflow {
private:
struct edgedata {
int from, to, capacity, weight;
edgedata* dual_p;
bool operator<(const edgedata& another) const {
return (weight != another.weight ? weight < another.weight
: capacity > another.capacity);
}
};
struct node {
int id, d;
bool done;
edgedata* fromedge_p;
list<edgedata> edges;
bool operator<(const node& another) const {
return !(d != another.d ? d < another.d : id < another.id);
}
};
vector<node> nodes;
int n;
int source, sink;
edgedata* dummy;
public:
int result;
Networkflow(int size, int s, int t) {
n = size;
source = s;
sink = t;
nodes.resize(n);
dummy = new edgedata;
init();
}
void init() {
for (int i = 0; i < (int)n; i++) {
nodes[i] = {i, 2147483647, false, dummy, {}};
}
}
void addedge(int s, int t, int c, int w) {
nodes[s].edges.push_back({s, t, c, w, dummy});
nodes[t].edges.push_back({t, s, 0, w * (-1), &(nodes[s].edges.back())});
nodes[s].edges.back().dual_p = &(nodes[t].edges.back());
}
void maxflow() {
for (int i = 0; i < (int)n; i++) nodes[i].edges.sort();
result = 0;
vector<pair<int, edgedata*>> stk;
int a;
int df;
while (1) {
a = source;
for (int i = 0; i < (int)n; i++) nodes[i].done = false;
nodes[source].done = true;
while (a != sink) {
int b = -1;
edgedata* p;
for (auto itr = nodes[a].edges.begin(); itr != nodes[a].edges.end();
++itr) {
if ((*itr).capacity > 0) {
b = (*itr).to;
if (nodes[b].done)
b = -1;
else {
p = &(*itr);
stk.push_back(make_pair(a, p));
nodes[b].done = true;
a = b;
break;
}
}
}
if (b == -1) {
if (stk.empty()) break;
a = stk.back().first;
stk.pop_back();
}
}
if (stk.empty()) break;
df = 2147483647;
for (int i = 0; i < (int)stk.size(); i++) {
df = min(df, (*(stk[i].second)).capacity);
}
while (stk.size()) {
(*(stk.back().second)).capacity -= df;
(*((*(stk.back().second)).dual_p)).capacity += df;
stk.pop_back();
}
result += df;
}
return;
}
bool mincostflow(int flow) {
for (int i = 0; i < (int)n; i++) nodes[i].edges.sort();
result = 0;
node a;
int df;
int sumf = 0;
while (1) {
for (int i = 0; i < (int)n; i++) {
nodes[i].d = 2147483647;
nodes[i].done = false;
nodes[i].fromedge_p = dummy;
}
priority_queue<node> pq;
nodes[source].d = 0;
pq.push(nodes[source]);
while (pq.size()) {
a = pq.top();
pq.pop();
if (nodes[a.id].done) continue;
nodes[a.id].done = true;
for (auto itr = nodes[a.id].edges.begin();
itr != nodes[a.id].edges.end(); ++itr) {
if ((*itr).capacity == 0) continue;
node* b = &nodes[(*itr).to];
if ((*b).done) continue;
long long int cand = nodes[a.id].d + ((*itr).weight);
if (cand < (*b).d) {
(*b).d = cand;
(*b).fromedge_p = &(*itr);
pq.push(*b);
}
}
}
if (!nodes[sink].done) break;
df = 2147483647;
int focus = sink;
while (focus != source) {
df = min(df, (*(nodes[focus].fromedge_p)).capacity);
focus = (*(nodes[focus].fromedge_p)).from;
}
df = min(df, flow - sumf);
focus = sink;
while (focus != source) {
(*(nodes[focus].fromedge_p)).capacity -= df;
(*((*(nodes[focus].fromedge_p)).dual_p)).capacity += df;
focus = (*(nodes[focus].fromedge_p)).from;
}
sumf += df;
result += nodes[sink].d * df;
if (sumf == flow) return true;
}
return false;
}
};
int main() {
int v, e, f;
cin >> v >> e >> f;
Networkflow networkflow(v, 0, v - 1);
for (int i = 0; i < (int)e; i++) {
int s, t, c, d;
cin >> s >> t >> c >> d;
networkflow.addedge(s, t, c, d);
}
bool judge = networkflow.mincostflow(f);
if (judge)
cout << networkflow.result << endl;
else
cout << -1 << endl;
return 0;
}
|
Subsets and Splits