content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import Dict def dataset_is_open_data(dataset: Dict) -> bool: """Check if dataset is tagged as open data.""" is_open_data = dataset.get("isOpenData") if is_open_data: return is_open_data["value"] == "true" return False
fc1591d4a045ba904658bb93577a364145492465
3,659,600
def _remove_suffix_apple(path): """ Strip off .so or .dylib. >>> _remove_suffix_apple("libpython.so") 'libpython' >>> _remove_suffix_apple("libpython.dylib") 'libpython' >>> _remove_suffix_apple("libpython3.7") 'libpython3.7' """ if path.endswith(".dylib"): return path[:-len(".dylib")] if path.endswith(".so"): return path[:-len(".so")] return path
c5526b0f3420625c2efeba225187f72c7a51fb4b
3,659,601
def sparsenet201(**kwargs): """ SparseNet-201 model from 'Sparsely Aggregated Convolutional Networks,' https://arxiv.org/abs/1801.05895. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sparsenet(num_layers=201, model_name="sparsenet201", **kwargs)
83de415e043876ae90dd3f79c3ca26dd82d8c5df
3,659,602
def alt_text_to_curly_bracket(text): """ Converts the text that appears in the alt attribute of image tags from gatherer to a curly-bracket mana notation. ex: 'Green'->{G}, 'Blue or Red'->{U/R} 'Variable Colorless' -> {XC} 'Colorless' -> {C} 'N colorless' -> {N}, where N is some number """ def convert_color_to_letter(color): if color.lower() not in ('red', 'white', 'blue', 'green', 'black', 'colorless', 'tap', 'energy'): # some cards have weird split mana costs where you can pay N colorless # or one of a specific color. # Since we're ending up here, and what we're given isn't a color, lets assume its N return color else: if color.lower() == 'blue': return 'U' else: return color[0].upper() try: val = int(text, 10) except Exception: pass else: # This is just a number. Easy enough. return f"{{{text}}}" if ' or ' in text: # this is a compound color, not as easy to deal with. text = text.replace('or', '') text = '/'.join([convert_color_to_letter(x) for x in text.split()]) else: if 'Variable' in text: text = 'X' else: # hopefully all that's left is just simple color symbols. text = convert_color_to_letter(text) # at this point we've hopefully return f"{{{text}}}"
c604b236a8d0baeff244e0e246176a406674c9e2
3,659,603
def massage_primary(repo_primary, src_cache, cdt): """ Massages the result of dictify() into a less cumbersome form. In particular: 1. There are many lists that can only be of length one that don't need to be lists at all. 2. The '_text' entries need to go away. 3. The real information starts at ['metadata']['package'] 4. We want the top-level key to be the package name and under that, an entry for each arch for which the package exists. """ new_dict = dict({}) for package in repo_primary['metadata']['package']: name = package['name'][0]['_text'] arch = package['arch'][0]['_text'] if arch == 'src': continue checksum = package['checksum'][0]['_text'] source = package['format'][0]['{rpm}sourcerpm'][0]['_text'] # If you need to check if the sources exist (perhaps you've got the source URL wrong # or the distro has forgotten to copy them?): # import requests # sbase_url = cdt['sbase_url'] # surl = sbase_url + source # print("{} {}".format(requests.head(surl).status_code, surl)) location = package['location'][0]['href'] version = package['version'][0] summary = package['summary'][0]['_text'] try: description = package['description'][0]['_text'] except: description = "NA" if '_text' in package['url'][0]: url = package['url'][0]['_text'] else: url = '' license = package['format'][0]['{rpm}license'][0]['_text'] try: provides = package['format'][0]['{rpm}provides'][0]['{rpm}entry'] provides = massage_primary_requires(provides, cdt) except: provides = [] try: requires = package['format'][0]['{rpm}requires'][0]['{rpm}entry'] requires = massage_primary_requires(requires, cdt) except: requires = [] new_package = dict({'checksum': checksum, 'location': location, 'home': url, 'source': source, 'version': version, 'summary': yaml_quote_string(summary), 'description': description, 'license': license, 'provides': provides, 'requires': requires}) if name in new_dict: if arch in new_dict[name]: print("WARNING: Duplicate packages exist for {} for arch {}".format(name, arch)) new_dict[name][arch] = new_package else: new_dict[name] = dict({arch: new_package}) return new_dict
fd57ff925b46eb5adddee2c180fbc01b3c60ec7c
3,659,604
def ansi_color_name_to_escape_code(name, style="default", cmap=None): """Converts a color name to the inner part of an ANSI escape code""" cmap = _ensure_color_map(style=style, cmap=cmap) if name in cmap: return cmap[name] m = RE_XONSH_COLOR.match(name) if m is None: raise ValueError("{!r} is not a color!".format(name)) parts = m.groupdict() # convert regex match into actual ANSI colors if parts["reset"] is not None: if parts["reset"] == "NO_COLOR": warn_deprecated_no_color() res = "0" elif parts["bghex"] is not None: res = "48;5;" + rgb_to_256(parts["bghex"][3:])[0] elif parts["background"] is not None: color = parts["color"] if "#" in color: res = "48;5;" + rgb_to_256(color[1:])[0] else: fgcolor = cmap[color] if fgcolor.isdecimal(): res = str(int(fgcolor) + 10) elif fgcolor.startswith("38;"): res = "4" + fgcolor[1:] elif fgcolor == "DEFAULT": res = "39" else: msg = ( "when converting {!r}, did not recognize {!r} within " "the following color map as a valid color:\n\n{!r}" ) raise ValueError(msg.format(name, fgcolor, cmap)) else: # have regular, non-background color mods = parts["modifiers"] if mods is None: mods = [] else: mods = mods.strip("_").split("_") mods = [ANSI_ESCAPE_MODIFIERS[mod] for mod in mods] color = parts["color"] if "#" in color: mods.append("38;5;" + rgb_to_256(color[1:])[0]) elif color == "DEFAULT": res = "39" else: mods.append(cmap[color]) res = ";".join(mods) cmap[name] = res return res
70b8fe19fc34d14c678c9e54890a4da7e0e37c24
3,659,605
import shlex import getopt from datetime import datetime def twitter(bot, message): """#twitter [-p 天数] -p : 几天以前 """ try: cmd, *args = shlex.split(message.text) except ValueError: return False if not cmd[0] in config['trigger']: return False if not cmd[1:] == 'twitter': return False try: options, args = getopt.gnu_getopt(args, 'hp:') except getopt.GetoptError: # 格式不对 reply(bot, message, twitter.__doc__) return True days = 0 for o, a in options: if o == '-p': # 几天以前 try: days = int(a) if days < 0: raise ValueError except ValueError: reply(bot, message, twitter.__doc__) return True elif o == '-h': # 帮助 reply(bot, message, twitter.__doc__) return True tweets = Twitter.objects(Q(date__gte=datetime.now().date()+timedelta(days=-days)) & Q(date__lte=datetime.now().date()+timedelta(days=-days+1))) if tweets: reply(bot, message, '\n---------\n'.join([str(tweet) for tweet in tweets])) return True else: reply(bot, message, '安娜啥都没说...') return True
ba02cebb5a680f26f2eb17c32b62ead9ac3995a3
3,659,606
from typing import List import os def checkdir(*args: List[str]) -> bool: """ Guard for checking directories Returns: bool -- True if all arguments directories """ for a in args: if a and not os.path.isdir(a): return False if a and a[0] != '/': return False return True
f1fc1c99e9bb6d4fd12129f1287923fc2f3325eb
3,659,607
import logging def get_zones(request): """Returns preprocessed thermal data for a given request or None.""" logging.info("received zone request:", request.building) zones, err = _get_zones(request.building) if err is not None: return None, err grpc_zones = [] for zones in zones: grpc_zones.append( building_zone_names_pb2.NamePoint(name=zones)) return building_zone_names_pb2.Reply(names=grpc_zones), None
b04dca4da5b68faea64744c9c7093a977eb120c1
3,659,608
def proper_classification(sp): """ Uses splat.classifyByStandard to classify spectra using spex standards """ #sp.slitpixelwidth=1 #sp.slitwidth=1 #sp.toInstrument('WFC3-G141') wsp= wisps.Spectrum(wave=sp.wave.value, flux=sp.flux.value, noise=sp.noise.value, contam= np.ones_like(sp.noise.value)) val=wisps.classify(wsp, stripunits=True) return val
31529d96fbc4fec69a5996fb33829be4caf51529
3,659,609
from typing import Tuple import torch def sum_last_4_layers(sequence_outputs: Tuple[torch.Tensor]) -> torch.Tensor: """Sums the last 4 hidden representations of a sequence output of BERT. Args: ----- sequence_output: Tuple of tensors of shape (batch, seq_length, hidden_size). For BERT base, the Tuple has length 13. Returns: -------- summed_layers: Tensor of shape (batch, seq_length, hidden_size) """ last_layers = sequence_outputs[-4:] return torch.stack(last_layers, dim=0).sum(dim=0)
14bba441a116712d1431b1ee6dda33dc5ec4142c
3,659,610
def TotalCust(): """(read-only) Total Number of customers served from this line section.""" return lib.Lines_Get_TotalCust()
58984b853cdd9587c7db5ff6c30b7af20a64985a
3,659,611
import re def extra_normalize(text_orig: str): """ This function allows a simple normalization to the original text to make possible the aligning process. The replacement_patterns were obtained during experimentation with real text it is possible to add more or to get some errors without new rules. :Note: very important, every rule in replacement_patterns do not change the length of the original text, only replace patterns with same length string. This process is different to preProcessFlow. """ replacement_patterns = [(r'[:](?=\s*?\n)','##1'), (r'\xc2|\xa0',' '), (r'(\w\s*?):(?=\s+?[A-Z]+?)|(\w\s*?):(?=\s*?"+?[A-Z]+?)','\g<1>##2'), (r'[?!]','##3'), (r'(\w+?)(\n)(?=["$%()*+&,-/;:¿¡<=>@[\\]^`{|}~\t\s]*(?=.*[A-Z0-9]))','\g<1>##4'), # any alphanumeric char # follow by \n follow by any number of point sign follow by a capital letter, replace by alphanumerig+. (r'(\w+?)(\n)(?=["$%()*+&,-/;:¿¡<=>@[\\]^`{|}~\t\s\n]*(?=[a-zA-Z0-9]))','\g<1>##5'),# any alphanumeric char # follow by \n follow by any number of point sign follow by a letter, replace by alphanumerig+. (r'[:](?=\s*?)(?=["$%()*+&,-/;:¿¡<=>@[\\]^`{|}~\t\s]*[A-Z]+?)','##6'), (r'(\w+?\s*?)\|','\g<1>##7'), (r'\n(?=\s*?[A-Z]+?)','##8'), (r'##\d','apdbx'), ] for (pattern, repl) in replacement_patterns: (text_orig, count) = re.subn(pattern, repl, text_orig) text_orig = replace_dot_sequence(text_orig) text_orig = multipart_words(text_orig) text_orig = abbreviations(text_orig) text_orig = re.sub(r'apdbx+','.', text_orig) text_orig = add_doc_ending_point(text_orig)#append . final si el último caracter no tiene punto, evita un ciclo infinito al final. return text_orig
d06ee939c8035cd7b83ed7f1577b383bfcaf203d
3,659,612
def list2str(lst: list) -> str: """ 将 list 内的元素转化为字符串,使得打印时能够按行输出并在前面加上序号(从1开始) e.g. In: lst = [a,b,c] str = list2str(lst) print(str) Out: 1. a 2. b 3. c """ i = 1 res_list = [] for x in lst: res_list.append(str(i)+'. '+str(x)) i += 1 res_str = '\n'.join(res_list) return res_str
3da11748d650e234c082255b8d7dff5e56e65732
3,659,613
def _prompt_save(): # pragma: no cover """Show a prompt asking the user whether he wants to save or not. Output is 'save', 'cancel', or 'close' """ b = prompt( "Do you want to save your changes before quitting?", buttons=['save', 'cancel', 'close'], title='Save') return show_box(b)
859cbbe94ef35bf434b1c4f6cac9ec61a6311fb8
3,659,614
def plot_dataset_samples_1d( dataset, n_samples=10, title="Dataset", figsize=DFLT_FIGSIZE, ax=None, plot_config_kwargs={}, seed=123, ): """Plot `n_samples` samples of the a datset.""" np.random.seed(seed) with plot_config(plot_config_kwargs): if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) alpha = 0.5 + 1 / (n_samples ** 0.5 + 1) for i in range(n_samples): x, y = dataset[np.random.randint(len(dataset))] x = rescale_range(x, (-1, 1), dataset.min_max) ax.plot(x.numpy(), y.numpy(), alpha=alpha) ax.set_xlim(*dataset.min_max) if title is not None: ax.set_title(title, fontsize=14) return ax
41b34e276a0236d46e13d7b0f24797e739384661
3,659,615
def list_versions(namespace, name, provider): """List version for mnodule. Args: namespace (str): namespace for the version name (str): Name of the module provider (str): Provider for the module Returns: response: JSON formatted respnse """ try: return make_response(backend.get_versions(namespace, name, provider), 200) except ModuleNotFoundException as module_not_found: return make_response(module_not_found.message, 404)
dca0c24f391cce69a10fe7e61165647c9ce1cf66
3,659,616
import requests def script_cbor(self, script_hash: str, **kwargs): """ CBOR representation of a plutus script https://docs.blockfrost.io/#tag/Cardano-Scripts/paths/~1scripts~1{script_hash}~1cbor/get :param script_hash: Hash of the script. :type script_hash: str :param return_type: Optional. "object", "json" or "pandas". Default: "object". :type return_type: str :returns A list of ScriptCborResponse objects. :rtype [ScriptCborResponse] :raises ApiError: If API fails :raises Exception: If the API response is somehow malformed. """ return requests.get( url=f"{self.url}/scripts/{script_hash}/cbor", headers=self.default_headers )
fdb71d1e95d67da4a18552f4e42a28e27c7ab95a
3,659,617
def ithOfNPointsOnCircleY(i,n,r): """ return x coordinate of ith value of n points on circle of radius r points are numbered from 0 through n-1, spread counterclockwise around circle point 0 is at angle 0, as of on a unit circle, i.e. at point (0,r) """ # Hints: similar to ithOfNPointsOnCircleX, but use r sin (theta) return "stub"
d4e697145423146b085f8423315c795745498afd
3,659,618
def get_tags(ec2id, ec2type, region): """ get tags return tags (json) """ mytags = [] ec2 = connect('ec2', region) if ec2type == 'volume': response = ec2.describe_volumes(VolumeIds=[ec2id]) if 'Tags' in response['Volumes'][0]: mytags = response['Volumes'][0]['Tags'] elif ec2type == 'snapshot': response = ec2.describe_snapshots(SnapshotIds=[ec2id]) if 'Tags' in response['Snapshots'][0]: mytags = response['Snapshots'][0]['Tags'] return mytags
c150d83b6563f79140febb65a4ea7e50bc733286
3,659,619
def parse(data, raw=False, quiet=False): """ Main text parsing function Parameters: data: (string) text data to parse raw: (boolean) unprocessed output if True quiet: (boolean) suppress warning messages if True Returns: Dictionary. Raw or processed structured data. """ jc.utils.compatibility(__name__, info.compatible, quiet) jc.utils.input_type_check(data) raw_output = {} if jc.utils.has_data(data): for line in filter(None, data.splitlines()): linedata = line.split(':', maxsplit=1) key = linedata[0].strip().lower().replace(' ', '_').replace('.', '_') value = linedata[1].strip() raw_output[key] = value if raw: return raw_output else: return _process(raw_output)
dd7da8a23a0691dc2df75391c77fa1448362330a
3,659,620
import os def download_pretrained_model(model: str, target_path: str = None) -> str: """Downloads pretrained model to given target path, if target path is None, it will use model cache path. If model already exists in the given target path than it will do notting. Args: model (str): pretrained model name to download target_path (str, optional): target directory to download model. Defaults to None. Returns: str: file path of the model """ if target_path is None: target_path = get_model_cache_dir() registry = get_registry() assert model in registry, f"given model: {model} is not in the registry" assert os.path.exists(target_path), f"given target path: {target_path} does not exists" assert os.path.isdir(target_path), "given target path must be directory not a file" adapter = registry[model]["adapter"] file_name = registry[model]["adapter"]["kwargs"]["file_name"] model_path = os.path.join(target_path,file_name) if not os.path.isfile(model_path): # download if model not exists download_object(adapter['type'], dest_path=target_path, **adapter['kwargs']) return model_path
b9fcbec011136929e8240944f5f8c595f941d29e
3,659,621
def callNasaApi(date='empty'): """calls NASA APIS Args: date (str, optional): date for nasa APOD API. Defaults to 'empty'. Returns: Dict: custom API response """ print('calling nasa APOD API...') url = nasaInfo['nasa_apod_api_uri'] if date != 'empty': params = getApodEndpointParams('True', date) else: params = getApodEndpointParams('True') response = makeApiCall(url, params, HttpMethods.get.value) return response
5eaa7fe9434c608df47828c8ce19d4e5e5cfe799
3,659,622
def train_reduced_model(x_values: np.ndarray, y_values: np.ndarray, n_components: int, seed: int, max_iter: int = 10000) -> sklearn.base.BaseEstimator: """ Train a reduced-quality model by putting a Gaussian random projection in front of the multinomial logistic regression stage of the pipeline. :param x_values: input embeddings for training set :param y_values: integer labels corresponding to embeddings :param n_components: Number of dimensions to reduce the embeddings to :param seed: Random seed to drive Gaussian random projection :param max_iter: Maximum number of iterations of L-BGFS to run. The default value of 10000 will achieve a tight fit but takes a while. :returns A model (Python object with a `predict()` method) fit on the input training data with the specified level of dimension reduction by random projection. """ reduce_pipeline = sklearn.pipeline.Pipeline([ ("dimred", sklearn.random_projection.GaussianRandomProjection( n_components=n_components, random_state=seed )), ("mlogreg", sklearn.linear_model.LogisticRegression( multi_class="multinomial", max_iter=max_iter )) ]) print(f"Training model with n_components={n_components} and seed={seed}.") return reduce_pipeline.fit(x_values, y_values)
ab2871875c751b5d7abb56991a55607e79c17e6e
3,659,623
def pv(array): """Return the PV value of the valid elements of an array. Parameters ---------- array : `numpy.ndarray` array of values Returns ------- `float` PV of the array """ non_nan = np.isfinite(array) return array[non_nan].max() - array[non_nan].min()
987ae80fa68cd1dee3e179975b283bb7f48dd2aa
3,659,624
def format_bad_frames(bad_frames): """Create an array of bad frame indices from string loaded from yml file.""" if bad_frames == "": bads = [] else: try: bads = [x.split("-") for x in bad_frames.split(",")] bads = [[int(x) for x in y] for y in bads] bads = np.concatenate( [ np.array(x) if len(x) == 1 else np.arange(x[0], x[1] + 1) for x in bads ] ) except: bads = [] bads = list(bads) bads = [x.item() for x in bads] return bads
433bcba8cc8bf7985a8103d595759d04099dce6a
3,659,625