Dataset Viewer (First 5GB)
Auto-converted to Parquet
id
stringlengths
13
21
split
stringclasses
2 values
category
stringclasses
5 values
main_label
stringclasses
96 values
ref_image
imagewidth (px)
368
3.84k
ref_mask
imagewidth (px)
368
3.84k
tar_image
imagewidth (px)
368
3.84k
tar_mask
imagewidth (px)
368
3.84k
train/object/3458
train
object
Book
train/object/9857
train
object
Tomato
train/accessory/14906
train
accessory
Trousers
train/accessory/21236
train
accessory
top
train/accessory/10311
train
accessory
Bag
train/object/5778
train
object
pillow
train/object/18269
train
object
table
train/object/2418
train
object
Banana
train/object/677
train
object
Pizza
train/person/6563
train
person
person
train/accessory/23111
train
accessory
top
train/accessory/12592
train
accessory
Trousers
train/object/9925
train
object
Tomato
train/object/8039
train
object
Pumpkin
train/accessory/3748
train
accessory
Dress
train/accessory/8724
train
accessory
Hat
train/object/529
train
object
Pizza
train/accessory/9624
train
accessory
Necklace
train/accessory/23726
train
accessory
top
train/object/18892
train
object
lamp
train/person/5930
train
person
person
train/object/5741
train
object
pillow
train/accessory/4033
train
accessory
Dress
train/accessory/13807
train
accessory
Trousers
train/object/4938
train
object
Percussion
train/object/18360
train
object
Momordica charantia
train/object/2804
train
object
Book
train/object/6201
train
object
Apple
train/object/11075
train
object
mug
train/accessory/17298
train
accessory
top
train/object/21207
train
object
rifle
train/object/22011
train
object
chair
train/object/1507
train
object
Hair dryer
train/object/2458
train
object
Banana
train/object/14969
train
object
Bagged snacks
train/object/19427
train
object
lamp
train/accessory/22095
train
accessory
top
train/accessory/15737
train
accessory
top
train/accessory/5412
train
accessory
Trousers
train/accessory/14547
train
accessory
Necklace
train/object/18583
train
object
Momordica charantia
train/person/3705
train
person
person
train/accessory/8720
train
accessory
Scarf
train/object/6628
train
object
Pear
train/accessory/18299
train
accessory
top
train/accessory/5889
train
accessory
Dress
train/accessory/12545
train
accessory
Trousers
train/object/23620
train
object
Potato
train/accessory/6552
train
accessory
Dress
train/object/24266
train
object
bottle
train/accessory/8395
train
accessory
Trousers
train/object/5428
train
object
pillow
train/accessory/24141
train
accessory
top
train/accessory/17667
train
accessory
top
train/object/18914
train
object
lamp
train/object/23642
train
object
Potato
train/accessory/14553
train
accessory
Trousers
train/accessory/2688
train
accessory
Dress
train/object/8512
train
object
Lipstick
train/object/5122
train
object
Projector
train/object/23557
train
object
Potato
train/accessory/13831
train
accessory
Trousers
train/object/896
train
object
Glasses
train/object/19176
train
object
lamp
train/object/14717
train
object
Bagged snacks
train/object/7175
train
object
Eggplant
train/accessory/3396
train
accessory
Dress
train/person/1232
train
person
person
train/accessory/18842
train
accessory
top
train/accessory/6609
train
accessory
Dress
train/accessory/26567
train
accessory
top
train/accessory/5061
train
accessory
Dress
train/person/3702
train
person
person
train/accessory/2018
train
accessory
Trousers
train/object/10493
train
object
Soccer
train/person/446
train
person
person
train/accessory/14318
train
accessory
Trousers
train/person/3769
train
person
person
train/person/1048
train
person
person
train/accessory/15503
train
accessory
Trousers
train/object/15419
train
object
toy figure
train/object/20305
train
object
ashcan
train/accessory/25516
train
accessory
top
train/object/13724
train
object
Sunflower
train/accessory/8710
train
accessory
Scarf
train/accessory/4591
train
accessory
Dress
train/person/586
train
person
person
train/object/3747
train
object
Book
train/accessory/20052
train
accessory
top
train/object/7492
train
object
Eggplant
train/object/21091
train
object
toy dog
train/person/3535
train
person
person
train/accessory/12086
train
accessory
Trousers
train/accessory/27166
train
accessory
top
train/accessory/20999
train
accessory
top
train/accessory/23042
train
accessory
top
train/accessory/9732
train
accessory
Bag
train/object/16603
train
object
hammer
train/accessory/11910
train
accessory
Trousers
train/accessory/8184
train
accessory
Dress
End of preview. Expand in Data Studio

AnyInsertion

Wensong Song · Hong Jiang · Zongxing Yang · Ruijie Quan · Yi Yang

Paper PDF Project Page
Zhejiang University   |   Harvard University   |   Nanyang Technological University

News

  • [2025.5.9] Release new AnyInsertion v1 text- and mask-prompt dataset on HuggingFace.
  • [2025.5.7] Release AnyInsertion v1 text prompt dataset on HuggingFace.
  • [2025.4.24] Release AnyInsertion v1 mask prompt dataset on HuggingFace.

Summary

This is the dataset proposed in our paper Insert Anything: Image Insertion via In-Context Editing in DiT

AnyInsertion dataset consists of training and testing subsets. The training set includes 136,385 samples across two prompt types: 58,188 mask-prompt image pairs and 78,197 text-prompt image pairs;the test set includes 158 data pairs: 120 mask-prompt pairs and 38 text-prompt pairs.

AnyInsertion dataset covers diverse categories including human subjects, daily necessities, garments, furniture, and various objects.

alt text

Directory




data/
├── text_prompt/
│   ├── train/
│   │   ├── accessory/
│   │   │   ├── ref_image/      # Reference image containing the element to be inserted
│   │   │   ├── ref_mask/       # The mask corresponding to the inserted element
│   │   │   ├── tar_image/      # Ground truth
│   │   │   └── src_image/      # Source images
│   │   │       ├── add/        # Source image with the inserted element from Ground Truth removed
│   │   │       └── replace/    # Source image where the inserted element in Ground Truth is replaced
│   │   ├── object/
│   │   │   ├── ref_image/      
│   │   │   ├── ref_mask/      
│   │   │   ├── tar_image/      
│   │   │   └── src_image/      
│   │   │       ├── add/       
│   │   │       └── replace/    
│   │   └── person/
│   │       ├── ref_image/     
│   │       ├── ref_mask/       
│   │       ├── tar_image/     
│   │       └── src_image/    
│   │           ├── add/       
│   │           └── replace/  
│   └── test/
│       ├── garment/
│       │   ├── ref_image/      
│       │   ├── ref_mask/      
│       │   ├── tar_image/      
│       │   └── src_image/      
│       └── object/
│           ├── ref_image/     
│           ├── ref_mask/       
│           ├── tar_image/     
│           └── src_image/      
│
├── mask_prompt/
│   ├── train/
│   │   ├── accessory/
│   │   │   ├── ref_image/     
│   │   │   ├── ref_mask/      
│   │   │   ├── tar_image/     
│   │   │   ├── tar_mask/      # The mask corresponding to the edited area of target image
│   │   ├── object/
│   │   │   ├── ref_image/    
│   │   │   ├── ref_mask/      
│   │   │   ├── tar_image/     
│   │   │   ├── tar_mask/      
│   │   └── person/
│   │       ├── ref_image/     
│   │       ├── ref_mask/     
│   │       ├── tar_image/    
│   │       ├── tar_mask/   
│   └── test/
│       ├── garment/
│       │   ├── ref_image/   
│       │   ├── ref_mask/    
│       │   ├── tar_image/    
│       │   ├── tar_mask/    
│       ├── object/
│       │   ├── ref_image/    
│       │   ├── ref_mask/    
│       │   ├── tar_image/     
│       │   ├── tar_mask/    
│       └── person/
│           ├── ref_image/   
│           ├── ref_mask/   
│           ├── tar_image/  
│           ├── tar_mask/    

    



Example

 
    Ref_image    
Ref_image
 
 
    Ref_mask    
Ref_mask
 
 
    Tar_image    
Tar_image
 
 
    Tar_mask    
Tar_mask
 
 
    Add    
Add
 
 
    Replace    
Replace
 

Text Prompt

Add Prompt: Add [label from tar_image (in label.json) ]

Replace Prompt: Replace [label from src_image (in src_image/replace/replace_label.json) ] with [label from tar_image (in label.json) ]

Citation

@article{song2025insert,
  title={Insert Anything: Image Insertion via In-Context Editing in DiT},
  author={Song, Wensong and Jiang, Hong and Yang, Zongxing and Quan, Ruijie and Yang, Yi},
  journal={arXiv preprint arXiv:2504.15009},
  year={2025}
}
Downloads last month
1,689

Models trained or fine-tuned on WensongSong/AnyInsertion