Datasets:
Name
stringlengths 9
9
| Level
int64 0
5
| generated_images
imagewidth (px) 512
512
| real_images
imagewidth (px) 150
8.1k
|
---|---|---|---|
CAP000008
| 2 | ||
CAP000013
| 4 | ||
CAP000018
| 0 | ||
CAP000025
| 1 | ||
CAP000030
| 1 | ||
CAP000031
| 2 | ||
CAP000035
| 3 | ||
CAP000051
| 2 | ||
CAP000065
| 1 | ||
CAP000066
| 1 | ||
CAP000074
| 0 | ||
CAP000076
| 3 | ||
CAP000089
| 2 | ||
CAP000095
| 0 | ||
CAP000113
| 3 | ||
CAP000115
| 2 | ||
CAP000136
| 2 | ||
CAP000156
| 2 | ||
CAP000162
| 0 | ||
CAP000164
| 3 | ||
CAP000179
| 0 | ||
CAP000225
| 5 | ||
CAP000258
| 4 | ||
CAP000264
| 0 | ||
CAP000282
| 0 | ||
CAP000294
| 3 | ||
CAP000303
| 1 | ||
CAP000305
| 2 | ||
CAP000307
| 4 | ||
CAP000329
| 5 | ||
CAP000331
| 2 | ||
CAP000337
| 1 | ||
CAP000340
| 5 | ||
CAP000341
| 1 | ||
CAP000347
| 4 | ||
CAP000353
| 5 | ||
CAP000357
| 3 | ||
CAP000364
| 4 | ||
CAP000390
| 0 | ||
CAP000396
| 4 | ||
CAP000397
| 3 | ||
CAP000401
| 3 | ||
CAP000424
| 3 | ||
CAP000436
| 5 | ||
CAP000440
| 5 | ||
CAP000455
| 5 | ||
CAP000477
| 3 | ||
CAP000481
| 1 | ||
CAP000493
| 4 | ||
CAP000513
| 2 | ||
CAP000522
| 1 | ||
CAP000544
| 2 | ||
CAP000550
| 2 | ||
CAP000557
| 1 | ||
CAP000564
| 5 | ||
CAP000568
| 2 | ||
CAP000569
| 2 | ||
CAP000595
| 0 | ||
CAP000598
| 0 | ||
CAP000628
| 3 | ||
CAP000635
| 0 | ||
CAP000642
| 0 | ||
CAP000645
| 1 | ||
CAP000652
| 4 | ||
CAP000653
| 4 | ||
CAP000669
| 2 | ||
CAP000682
| 3 | ||
CAP000684
| 3 | ||
CAP000686
| 1 | ||
CAP000689
| 4 | ||
CAP000699
| 1 | ||
CAP000707
| 3 | ||
CAP000713
| 5 | ||
CAP000714
| 5 | ||
CAP000722
| 0 | ||
CAP000727
| 4 | ||
CAP000734
| 2 | ||
CAP000744
| 1 | ||
CAP000789
| 3 | ||
CAP000803
| 1 | ||
CAP000810
| 2 | ||
CAP000812
| 3 | ||
CAP000819
| 4 | ||
CAP000824
| 0 | ||
CAP000831
| 0 | ||
CAP000842
| 0 | ||
CAP000853
| 3 | ||
CAP000865
| 0 | ||
CAP000885
| 0 | ||
CAP000890
| 3 | ||
CAP000891
| 4 | ||
CAP000892
| 5 | ||
CAP000899
| 2 | ||
CAP000905
| 0 | ||
CAP000927
| 0 | ||
CAP000932
| 5 | ||
CAP000934
| 1 | ||
CAP000935
| 1 | ||
CAP000939
| 3 | ||
CAP000949
| 4 |
Summary
This is the dataset proposed in our paper Image Copy Detection for Diffusion Models (NeurIPS 2024).
D-Rep consists of 40, 000 image-replica pairs, in which each replica is generated by a diffusion model. The 40, 000 image-replica pairs are manually labeled with 6 replication levels ranging from 0 (no replication) to 5 (total replication). We divide D-Rep into a training set with 90% (36, 000) pairs and a test set with the remaining 10% (4, 000) pairs.
Download
Automatical
Install the datasets library first, by:
pip install datasets
Then it can be downloaded automatically with
from datasets import load_dataset
dataset = load_dataset('WenhaoWang/D-Rep')
Manual
You can also download each file by wget
:
wget https://huggingface.co/datasets/WenhaoWang/D-Rep/resolve/main/training_pairs.tar
wget https://huggingface.co/datasets/WenhaoWang/D-Rep/resolve/main/test_pairs.tar
wget https://huggingface.co/datasets/WenhaoWang/D-Rep/resolve/main/labels.csv
Curators
D-Rep is created by Wenhao Wang, Dr. Yifan Sun, Zhentao Tan and Professor Yi Yang.
License
We release our D-Rep under the CC-BY-NC-4.0 license.
Helpful Links
The project homepage: https://icdiff.github.io/
The code of image copy detection for diffusion models: https://github.com/WangWenhao0716/PDF-Embedding
The official reviews of our paper: https://openreview.net/forum?id=gvlOQC6oP1
The Arxiv: https://arxiv.org/abs/2409.19952
Citation
@article{wang2024icdiff,
title={Image Copy Detection for Diffusion Models},
author={Wang, Wenhao and Sun, Yifan and Tan, Zhentao and Yang, Yi},
booktitle={Thirty-eighth Conference on Neural Information Processing Systems},
year={2024},
url={https://openreview.net/forum?id=gvlOQC6oP1}
}
Contact
If you have any questions, feel free to contact Wenhao Wang ([email protected]).
- Downloads last month
- 195