Dataset Viewer
tactic
stringlengths 1
5.59k
| name
stringlengths 1
937
| haveDraft
stringlengths 1
44.5k
| goal
stringlengths 7
61k
|
---|---|---|---|
rintro @⟨⟨one₁⟩, ⟨mul₁⟩, one_mul₁, mul_one₁⟩ @⟨⟨one₂⟩, ⟨mul₂⟩, one_mul₂, mul_one₂⟩ ⟨rfl⟩
|
mk.mk.mk.mk.mk.mk.refl
|
(∀ (a : M), a * 1 = a) →
(∀ (a : M), 1 * a = a) →
∀ (one₂_1 : M),
(∀ (a : M), a * 1 = a) →
(∀ (a : M), 1 * a = a) →
∀ (mul₁_1 : M → M → M) (one₁_1 : M),
{ one := one₁, mul := mul₁, one_mul := sorry, mul_one := sorry } =
{ one := one₂, mul := mul₁, one_mul := sorry, mul_one := sorry }
|
M : Type u
⊢ ∀ ⦃m₁ m₂ : MulOneClass M⦄, Mul.mul = Mul.mul → m₁ = m₂
|
suffices one₁ = one₂ by cases this; rfl
|
mk.mk.mk.mk.mk.mk.refl
|
one₁ = one₂
|
M : Type u
one₁ : M
mul₁ : M → M → M
one_mul₁ : ∀ (a : M), 1 * a = a
mul_one₁ : ∀ (a : M), a * 1 = a
one₂ : M
one_mul₂ : ∀ (a : M), 1 * a = a
mul_one₂ : ∀ (a : M), a * 1 = a
⊢ { one := one₁, mul := mul₁, one_mul := sorry, mul_one := sorry } =
{ one := one₂, mul := mul₁, one_mul := sorry, mul_one := sorry }
|
cases this
|
refl
|
{ one := one₁, mul := mul₁, one_mul := sorry, mul_one := sorry } =
{ one := one₁, mul := mul₁, one_mul := sorry, mul_one := sorry }
|
M : Type u
one₁ : M
mul₁ : M → M → M
one_mul₁ : ∀ (a : M), 1 * a = a
mul_one₁ : ∀ (a : M), a * 1 = a
one₂ : M
one_mul₂ : ∀ (a : M), 1 * a = a
mul_one₂ : ∀ (a : M), a * 1 = a
this : one₁ = one₂
⊢ { one := one₁, mul := mul₁, one_mul := sorry, mul_one := sorry } =
{ one := one₂, mul := mul₁, one_mul := sorry, mul_one := sorry }
|
obtain _ | n := n
|
zero
|
0 ≠ 0 → npowRec (m + 0) a = npowRec m a * npowRec 0 a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m n : ℕ
hn : n ≠ 0
a : M
ha : 1 * a = a
⊢ npowRec (m + n) a = npowRec m a * npowRec n a
|
obtain _ | n := n
|
succ
|
n + 1 ≠ 0 → npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m n : ℕ
hn : n ≠ 0
a : M
ha : 1 * a = a
zero : 0 ≠ 0 → npowRec (m + 0) a = npowRec m a * npowRec 0 a
⊢ npowRec (m + n) a = npowRec m a * npowRec n a
|
induction n with
| zero => simp only [Nat.zero_add, npowRec, ha]
| succ n ih => rw [← Nat.add_assoc, npowRec, ih n.succ_ne_zero]; simp only [npowRec, mul_assoc]
|
succ.zero
|
0 + 1 ≠ 0 → npowRec (m + (0 + 1)) a = npowRec m a * npowRec (0 + 1) a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m : ℕ
a : M
ha : 1 * a = a
n : ℕ
hn : n + 1 ≠ 0
⊢ npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a
|
induction n with
| zero => simp only [Nat.zero_add, npowRec, ha]
| succ n ih => rw [← Nat.add_assoc, npowRec, ih n.succ_ne_zero]; simp only [npowRec, mul_assoc]
|
succ.succ
|
n + 1 + 1 ≠ 0 →
(n + 1 ≠ 0 → npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a) →
npowRec (m + (n + 1 + 1)) a = npowRec m a * npowRec (n + 1 + 1) a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m : ℕ
a : M
ha : 1 * a = a
n : ℕ
hn : n + 1 ≠ 0
succ.zero : 0 + 1 ≠ 0 → npowRec (m + (0 + 1)) a = npowRec m a * npowRec (0 + 1) a
⊢ npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a
|
| zero =>
|
succ.succ
|
n + 1 + 1 ≠ 0 →
(n + 1 ≠ 0 → npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a) →
npowRec (m + (n + 1 + 1)) a = npowRec m a * npowRec (n + 1 + 1) a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m : ℕ
a : M
ha : 1 * a = a
hn : 0 + 1 ≠ 0
⊢ npowRec (m + (0 + 1)) a = npowRec m a * npowRec (0 + 1) a
|
| succ n ih =>
|
succ.zero
|
0 + 1 ≠ 0 → npowRec (m + (0 + 1)) a = npowRec m a * npowRec (0 + 1) a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m : ℕ
a : M
ha : 1 * a = a
n : ℕ
ih : n + 1 ≠ 0 → npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a
hn : n + 1 + 1 ≠ 0
⊢ npowRec (m + (n + 1 + 1)) a = npowRec m a * npowRec (n + 1 + 1) a
|
rw [← Nat.add_assoc, npowRec, ih n.succ_ne_zero]
|
succ.succ
|
npowRec m a * npowRec (n + 1) a * a = npowRec m a * npowRec (n + 1 + 1) a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m : ℕ
a : M
ha : 1 * a = a
n : ℕ
ih : n + 1 ≠ 0 → npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a
hn : n + 1 + 1 ≠ 0
⊢ npowRec (m + (n + 1 + 1)) a = npowRec m a * npowRec (n + 1 + 1) a
|
← Nat.add_assoc,
|
succ.succ
|
npowRec (m + (n + 1) + 1) a = npowRec m a * npowRec (n + 1 + 1) a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m : ℕ
a : M
ha : 1 * a = a
n : ℕ
ih : n + 1 ≠ 0 → npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a
hn : n + 1 + 1 ≠ 0
⊢ npowRec (m + (n + 1 + 1)) a = npowRec m a * npowRec (n + 1 + 1) a
|
npowRec,
|
succ.succ
|
npowRec (m + (n + 1)) a * a = npowRec m a * npowRec (n + 1 + 1) a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m : ℕ
a : M
ha : 1 * a = a
n : ℕ
ih : n + 1 ≠ 0 → npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a
hn : n + 1 + 1 ≠ 0
⊢ npowRec (m + (n + 1) + 1) a = npowRec m a * npowRec (n + 1 + 1) a
|
ih n.succ_ne_zero
|
succ.succ
|
npowRec m a * npowRec (n + 1) a * a = npowRec m a * npowRec (n + 1 + 1) a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
m : ℕ
a : M
ha : 1 * a = a
n : ℕ
ih : n + 1 ≠ 0 → npowRec (m + (n + 1)) a = npowRec m a * npowRec (n + 1) a
hn : n + 1 + 1 ≠ 0
⊢ npowRec (m + (n + 1)) a * a = npowRec m a * npowRec (n + 1 + 1) a
|
Nat.add_comm,
|
[anonymous]
|
npowRec (1 + n) a = a * npowRec n a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
n : ℕ
hn : n ≠ 0
a : M
ha : 1 * a = a
⊢ npowRec (n + 1) a = a * npowRec n a
|
npowRec_add 1 n hn a ha,
|
[anonymous]
|
npowRec 1 a * npowRec n a = a * npowRec n a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
n : ℕ
hn : n ≠ 0
a : M
ha : 1 * a = a
⊢ npowRec (1 + n) a = a * npowRec n a
|
npowRec,
|
[anonymous]
|
npowRec 0 a * a * npowRec n a = a * npowRec n a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
n : ℕ
hn : n ≠ 0
a : M
ha : 1 * a = a
⊢ npowRec 1 a * npowRec n a = a * npowRec n a
|
npowRec,
|
[anonymous]
|
1 * a * npowRec n a = a * npowRec n a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
n : ℕ
hn : n ≠ 0
a : M
ha : 1 * a = a
⊢ npowRec 0 a * a * npowRec n a = a * npowRec n a
|
ha
|
[anonymous]
|
a * npowRec n a = a * npowRec n a
|
M : Type u
inst✝¹ : One M
inst✝ : Semigroup M
n : ℕ
hn : n ≠ 0
a : M
ha : 1 * a = a
⊢ 1 * a * npowRec n a = a * npowRec n a
|
induction k using Nat.strongRecOn with
| ind k' ih =>
match k' with
| 0 => rfl
| 1 => simp [npowRec']
| k + 2 => simp [npowRec', ← mul_assoc, Nat.mul_add, ← ih]
|
ind
|
(∀ (m_1 : ℕ), m_1 < k' → npowRec' (2 * m_1) m = npowRec' m_1 (m * m)) → npowRec' (2 * k') m = npowRec' k' (m * m)
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
m : M
⊢ npowRec' (2 * k) m = npowRec' k (m * m)
|
induction k using Nat.strongRecOn with
| ind k' ih =>
match k' with
| 1 => simp [npowRec', mul_assoc]
| k + 2 => simp [npowRec', ← mul_assoc, ih]
|
ind
|
k' ≠ 0 →
(∀ (m_1 : ℕ), m_1 < k' → m_1 ≠ 0 → m * npowRec' m_1 m = npowRec' m_1 m * m) → m * npowRec' k' m = npowRec' k' m * m
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
k0 : k ≠ 0
m : M
⊢ m * npowRec' k m = npowRec' k m * m
|
induction k using Nat.strongRecOn with
| ind k' ih =>
match k' with
| 0 => rfl
| k + 1 =>
rw [npowRec, npowRec'_succ k.succ_ne_zero, ← mul_assoc]
congr
simp [ih]
|
ind
|
(∀ (m_1 : ℕ), m_1 < k' → npowRec (m_1 + 1) m = 1 * npowRec' (m_1 + 1) m) → npowRec (k' + 1) m = 1 * npowRec' (k' + 1) m
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
m : M
⊢ npowRec (k + 1) m = 1 * npowRec' (k + 1) m
|
rw [npowRec, npowRec'_succ k.succ_ne_zero, ← mul_assoc]
|
[anonymous]
|
npowRec (k + 1) m * m = 1 * npowRec' k.succ m * m
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
m : M
k' k : ℕ
ih : ∀ (m_1 : ℕ), m_1 < k + 1 → npowRec (m_1 + 1) m = 1 * npowRec' (m_1 + 1) m
⊢ npowRec (k + 1 + 1) m = 1 * npowRec' (k + 1 + 1) m
|
npowRec,
|
[anonymous]
|
npowRec (k + 1) m * m = 1 * npowRec' (k + 1 + 1) m
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
m : M
k' k : ℕ
ih : ∀ (m_1 : ℕ), m_1 < k + 1 → npowRec (m_1 + 1) m = 1 * npowRec' (m_1 + 1) m
⊢ npowRec (k + 1 + 1) m = 1 * npowRec' (k + 1 + 1) m
|
npowRec'_succ k.succ_ne_zero,
|
[anonymous]
|
npowRec (k + 1) m * m = 1 * (npowRec' k.succ m * m)
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
m : M
k' k : ℕ
ih : ∀ (m_1 : ℕ), m_1 < k + 1 → npowRec (m_1 + 1) m = 1 * npowRec' (m_1 + 1) m
⊢ npowRec (k + 1) m * m = 1 * npowRec' (k + 1 + 1) m
|
← mul_assoc
|
[anonymous]
|
npowRec (k + 1) m * m = 1 * npowRec' k.succ m * m
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
m : M
k' k : ℕ
ih : ∀ (m_1 : ℕ), m_1 < k + 1 → npowRec (m_1 + 1) m = 1 * npowRec' (m_1 + 1) m
⊢ npowRec (k + 1) m * m = 1 * (npowRec' k.succ m * m)
|
congr
|
[email protected]._hyg.2101
|
npowRec (k + 1) m = 1 * npowRec' k.succ m
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
m : M
k' k : ℕ
ih : ∀ (m_1 : ℕ), m_1 < k + 1 → npowRec (m_1 + 1) m = 1 * npowRec' (m_1 + 1) m
⊢ npowRec (k + 1) m * m = 1 * npowRec' k.succ m * m
|
unfold go
|
[anonymous]
|
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x))
(k + 1) m n =
m * npowRec' (k + 1) n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
m n : M
⊢ go (k + 1) m n = m * npowRec' (k + 1) n
|
generalize hk : k + 1 = k'
|
[anonymous]
|
k + 1 = k' →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x))
k' m n =
m * npowRec' k' n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
m n : M
⊢ Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x))
(k + 1) m n =
m * npowRec' (k + 1) n
|
replace hk : k' ≠ 0 := by omega
|
[anonymous]
|
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x))
k' m n =
m * npowRec' k' n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
m n : M
k' : ℕ
hk : k + 1 = k'
⊢ Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x))
k' m n =
m * npowRec' k' n
|
rw [Nat.binaryRec_eq _ _ (Or.inl rfl), ih _ _ k'0]
|
f
|
(bif b then m * n else m) * npowRec' k' (n * n) = m * npowRec' (Nat.bit b k') n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
b : Bool
k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit b k' ≠ 0
⊢ Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x))
(Nat.bit b k') m n =
m * npowRec' (Nat.bit b k') n
|
Nat.binaryRec_eq _ _ (Or.inl rfl),
|
f
|
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k'
(bif b then m * n else m) (n * n) =
m * npowRec' (Nat.bit b k') n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
b : Bool
k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit b k' ≠ 0
⊢ Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x))
(Nat.bit b k') m n =
m * npowRec' (Nat.bit b k') n
|
ih _ _ k'0
|
f
|
(bif b then m * n else m) * npowRec' k' (n * n) = m * npowRec' (Nat.bit b k') n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
b : Bool
k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit b k' ≠ 0
⊢ Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x))
k' (bif b then m * n else m) (n * n) =
m * npowRec' (Nat.bit b k') n
|
cases b <;> simp only [Nat.bit, cond_false, cond_true, ← Nat.two_mul, npowRec'_two_mul]
|
f.true
|
Nat.bit true k' ≠ 0 → m * n * npowRec' k' (n * n) = m * npowRec' (2 * k' + 1) n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
b : Bool
k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit b k' ≠ 0
⊢ (bif b then m * n else m) * npowRec' k' (n * n) = m * npowRec' (Nat.bit b k') n
|
cases b
|
f.false
|
Nat.bit false k' ≠ 0 → (bif false then m * n else m) * npowRec' k' (n * n) = m * npowRec' (Nat.bit false k') n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
b : Bool
k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit b k' ≠ 0
⊢ (bif b then m * n else m) * npowRec' k' (n * n) = m * npowRec' (Nat.bit b k') n
|
cases b
|
f.true
|
Nat.bit true k' ≠ 0 → (bif true then m * n else m) * npowRec' k' (n * n) = m * npowRec' (Nat.bit true k') n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k : ℕ
b : Bool
k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit b k' ≠ 0
f.false : Nat.bit false k' ≠ 0 → (bif false then m * n else m) * npowRec' k' (n * n) = m * npowRec' (Nat.bit false k') n
⊢ (bif b then m * n else m) * npowRec' k' (n * n) = m * npowRec' (Nat.bit b k') n
|
simp only [Nat.bit, cond_false, cond_true, ← Nat.two_mul, npowRec'_two_mul]
|
f.true
|
m * n * npowRec' k' (n * n) = m * npowRec' (2 * k' + 1) n
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit true k' ≠ 0
⊢ (bif true then m * n else m) * npowRec' k' (n * n) = m * npowRec' (Nat.bit true k') n
|
npowRec'_succ (by omega),
|
f.true
|
m * n * npowRec' k' (n * n) = m * (npowRec' (2 * k') n * n)
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit true k' ≠ 0
⊢ m * n * npowRec' k' (n * n) = m * npowRec' (2 * k' + 1) n
|
npowRec'_two_mul,
|
f.true
|
m * n * npowRec' k' (n * n) = m * (npowRec' k' (n * n) * n)
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit true k' ≠ 0
⊢ m * n * npowRec' k' (n * n) = m * (npowRec' (2 * k') n * n)
|
← npowRec'_two_mul,
|
f.true
|
m * n * npowRec' (2 * k') n = m * (npowRec' (2 * k') n * n)
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit true k' ≠ 0
⊢ m * n * npowRec' k' (n * n) = m * (npowRec' k' (n * n) * n)
|
← npowRec'_mul_comm (by omega),
|
f.true
|
m * n * npowRec' (2 * k') n = m * (n * npowRec' (2 * k') n)
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit true k' ≠ 0
⊢ m * n * npowRec' (2 * k') n = m * (npowRec' (2 * k') n * n)
|
mul_assoc
|
f.true
|
m * (n * npowRec' (2 * k') n) = m * (n * npowRec' (2 * k') n)
|
M : Type u_2
inst✝¹ : Semigroup M
inst✝ : One M
k k' : ℕ
k'0 : k' ≠ 0
ih :
∀ (m n : M),
k' ≠ 0 →
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y)
(fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) k' m n =
m * npowRec' k' n
m n : M
hk : Nat.bit true k' ≠ 0
⊢ m * n * npowRec' (2 * k') n = m * (n * npowRec' (2 * k') n)
|
funext M _ _ k m
|
h.h.h.h.h
|
∀ (m_1 : M) (k_1 : ℕ) (x : One M) (x : Semigroup M) (M_1 : Type u_2), npowRecAuto k m = npowBinRecAuto k m
|
⊢ @npowRecAuto = @npowBinRecAuto
|
rw [npowBinRecAuto, npowRecAuto, npowBinRec]
|
h.h.h.h.h
|
npowRec k m = npowBinRec.go k 1 m
|
M : Type u_2
x✝¹ : Semigroup M
x✝ : One M
k : ℕ
m : M
⊢ npowRecAuto k m = npowBinRecAuto k m
|
npowBinRecAuto,
|
h.h.h.h.h
|
npowRecAuto k m = npowBinRec k m
|
M : Type u_2
x✝¹ : Semigroup M
x✝ : One M
k : ℕ
m : M
⊢ npowRecAuto k m = npowBinRecAuto k m
|
npowRecAuto,
|
h.h.h.h.h
|
npowRec k m = npowBinRec k m
|
M : Type u_2
x✝¹ : Semigroup M
x✝ : One M
k : ℕ
m : M
⊢ npowRecAuto k m = npowBinRec k m
|
npowBinRec
|
h.h.h.h.h
|
npowRec k m = npowBinRec.go k 1 m
|
M : Type u_2
x✝¹ : Semigroup M
x✝ : One M
k : ℕ
m : M
⊢ npowRec k m = npowBinRec k m
|
npowRec,
|
[anonymous]
|
1 = npowBinRec.go 0 1 m
|
M : Type u_2
x✝¹ : Semigroup M
x✝ : One M
k : ℕ
m : M
⊢ npowRec 0 m = npowBinRec.go 0 1 m
|
npowBinRec.go,
|
[anonymous]
|
1 =
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x)) 0
1 m
|
M : Type u_2
x✝¹ : Semigroup M
x✝ : One M
k : ℕ
m : M
⊢ 1 = npowBinRec.go 0 1 m
|
Nat.binaryRec_zero
|
[anonymous]
|
1 = 1
|
M : Type u_2
x✝¹ : Semigroup M
x✝ : One M
k : ℕ
m : M
⊢ 1 =
Nat.binaryRec (motive := fun x ↦ M → M → M) (fun y x ↦ y) (fun bn _n fn y x ↦ fn (bif bn then y * x else y) (x * x))
0 1 m
|
npowBinRec.go_spec,
|
[anonymous]
|
npowRec (k + 1) m = 1 * npowRec' (k + 1) m
|
M : Type u_2
x✝¹ : Semigroup M
x✝ : One M
k✝ : ℕ
m : M
k : ℕ
⊢ npowRec (k + 1) m = npowBinRec.go (k + 1) 1 m
|
npowRec_eq
|
[anonymous]
|
1 * npowRec' (k + 1) m = 1 * npowRec' (k + 1) m
|
M : Type u_2
x✝¹ : Semigroup M
x✝ : One M
k✝ : ℕ
m : M
k : ℕ
⊢ npowRec (k + 1) m = 1 * npowRec' (k + 1) m
|
← one_mul c,
|
[anonymous]
|
b = 1 * c
|
M : Type u_2
inst✝ : Monoid M
a b c : M
hba : b * a = 1
hac : a * c = 1
⊢ b = c
|
← hba,
|
[anonymous]
|
b = b * a * c
|
M : Type u_2
inst✝ : Monoid M
a b c : M
hba : b * a = 1
hac : a * c = 1
⊢ b = 1 * c
|
mul_assoc,
|
[anonymous]
|
b = b * (a * c)
|
M : Type u_2
inst✝ : Monoid M
a b c : M
hba : b * a = 1
hac : a * c = 1
⊢ b = b * a * c
|
hac,
|
[anonymous]
|
b = b * 1
|
M : Type u_2
inst✝ : Monoid M
a b c : M
hba : b * a = 1
hac : a * c = 1
⊢ b = b * (a * c)
|
mul_one b
|
[anonymous]
|
b = b
|
M : Type u_2
inst✝ : Monoid M
a b c : M
hba : b * a = 1
hac : a * c = 1
⊢ b = b * 1
|
pow_succ,
|
[anonymous]
|
a ^ 0 * a = a
|
M : Type u_2
inst✝ : Monoid M
a : M
⊢ a ^ 1 = a
|
pow_zero,
|
[anonymous]
|
1 * a = a
|
M : Type u_2
inst✝ : Monoid M
a : M
⊢ a ^ 0 * a = a
|
one_mul
|
[anonymous]
|
a = a
|
M : Type u_2
inst✝ : Monoid M
a : M
⊢ 1 * a = a
|
pow_succ _ n,
|
[anonymous]
|
a ^ (n + 1 + 1) = a * (a ^ n * a)
|
M : Type u_2
inst✝ : Monoid M
a : M
n : ℕ
⊢ a ^ (n + 1 + 1) = a * a ^ (n + 1)
|
pow_succ,
|
[anonymous]
|
a ^ (n + 1) * a = a * (a ^ n * a)
|
M : Type u_2
inst✝ : Monoid M
a : M
n : ℕ
⊢ a ^ (n + 1 + 1) = a * (a ^ n * a)
|
pow_succ',
|
[anonymous]
|
a * a ^ n * a = a * (a ^ n * a)
|
M : Type u_2
inst✝ : Monoid M
a : M
n : ℕ
⊢ a ^ (n + 1) * a = a * (a ^ n * a)
|
mul_assoc
|
[anonymous]
|
a * (a ^ n * a) = a * (a ^ n * a)
|
M : Type u_2
inst✝ : Monoid M
a : M
n : ℕ
⊢ a * a ^ n * a = a * (a ^ n * a)
|
induction n with
| zero => simp
| succ n ih => simp [pow_succ', ← ih, Nat.mul_add, mul_assoc]
|
zero
|
(a * b) ^ 0 * a = a * (b * a) ^ 0
|
M : Type u_2
inst✝ : Monoid M
a b : M
n : ℕ
⊢ (a * b) ^ n * a = a * (b * a) ^ n
|
induction n with
| zero => simp
| succ n ih => simp [pow_succ', ← ih, Nat.mul_add, mul_assoc]
|
succ
|
(a * b) ^ n * a = a * (b * a) ^ n → (a * b) ^ (n + 1) * a = a * (b * a) ^ (n + 1)
|
M : Type u_2
inst✝ : Monoid M
a b : M
n : ℕ
zero : (a * b) ^ 0 * a = a * (b * a) ^ 0
⊢ (a * b) ^ n * a = a * (b * a) ^ n
|
| zero =>
|
succ
|
(a * b) ^ n * a = a * (b * a) ^ n → ∀ (n_1 : ℕ), (a * b) ^ (n + 1) * a = a * (b * a) ^ (n + 1)
|
M : Type u_2
inst✝ : Monoid M
a b : M
⊢ (a * b) ^ 0 * a = a * (b * a) ^ 0
|
| succ n ih =>
|
zero
|
(a * b) ^ 0 * a = a * (b * a) ^ 0
|
M : Type u_2
inst✝ : Monoid M
a b : M
n : ℕ
ih : (a * b) ^ n * a = a * (b * a) ^ n
⊢ (a * b) ^ (n + 1) * a = a * (b * a) ^ (n + 1)
|
← pow_succ,
|
[anonymous]
|
a ^ (n + 1) = a * a ^ n
|
M : Type u_2
inst✝ : Monoid M
a : M
n : ℕ
⊢ a ^ n * a = a * a ^ n
|
pow_succ'
|
[anonymous]
|
a * a ^ n = a * a ^ n
|
M : Type u_2
inst✝ : Monoid M
a : M
n : ℕ
⊢ a ^ (n + 1) = a * a ^ n
|
pow_succ,
|
[anonymous]
|
a ^ 1 * a = a * a
|
M : Type u_2
inst✝ : Monoid M
a : M
⊢ a ^ 2 = a * a
|
pow_one
|
[anonymous]
|
a * a = a * a
|
M : Type u_2
inst✝ : Monoid M
a : M
⊢ a ^ 1 * a = a * a
|
pow_succ,
|
[anonymous]
|
a ^ 2 * a = a * a * a
|
M : Type u_2
inst✝ : Monoid M
a : M
⊢ a ^ 3 = a * a * a
|
pow_two
|
[anonymous]
|
a * a * a = a * a * a
|
M : Type u_2
inst✝ : Monoid M
a : M
⊢ a ^ 2 * a = a * a * a
|
pow_succ',
|
[anonymous]
|
a * a ^ 2 = a * (a * a)
|
M : Type u_2
inst✝ : Monoid M
a : M
⊢ a ^ 3 = a * (a * a)
|
pow_two
|
[anonymous]
|
a * (a * a) = a * (a * a)
|
M : Type u_2
inst✝ : Monoid M
a : M
⊢ a * a ^ 2 = a * (a * a)
|
pow_succ,
|
[anonymous]
|
1 ^ n * 1 = 1
|
M : Type u_2
inst✝ : Monoid M
n : ℕ
⊢ 1 ^ (n + 1) = 1
|
one_pow,
|
[anonymous]
|
1 * 1 = 1
|
M : Type u_2
inst✝ : Monoid M
n : ℕ
⊢ 1 ^ n * 1 = 1
|
one_mul
|
[anonymous]
|
1 = 1
|
M : Type u_2
inst✝ : Monoid M
n : ℕ
⊢ 1 * 1 = 1
|
Nat.add_zero,
|
[anonymous]
|
a ^ m = a ^ m * a ^ 0
|
M : Type u_2
inst✝ : Monoid M
a : M
m : ℕ
⊢ a ^ (m + 0) = a ^ m * a ^ 0
|
pow_zero,
|
[anonymous]
|
a ^ m = a ^ m * 1
|
M : Type u_2
inst✝ : Monoid M
a : M
m : ℕ
⊢ a ^ m = a ^ m * a ^ 0
|
mul_one
|
[anonymous]
|
a ^ m = a ^ m
|
M : Type u_2
inst✝ : Monoid M
a : M
m : ℕ
⊢ a ^ m = a ^ m * 1
|
pow_succ,
|
[anonymous]
|
a ^ (m + (n + 1)) = a ^ m * (a ^ n * a)
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m + (n + 1)) = a ^ m * a ^ (n + 1)
|
← mul_assoc,
|
[anonymous]
|
a ^ (m + (n + 1)) = a ^ m * a ^ n * a
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m + (n + 1)) = a ^ m * (a ^ n * a)
|
← pow_add,
|
[anonymous]
|
a ^ (m + (n + 1)) = a ^ (m + n) * a
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m + (n + 1)) = a ^ m * a ^ n * a
|
← pow_succ,
|
[anonymous]
|
a ^ (m + (n + 1)) = a ^ (m + n + 1)
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m + (n + 1)) = a ^ (m + n) * a
|
Nat.add_assoc
|
[anonymous]
|
a ^ (m + (n + 1)) = a ^ (m + (n + 1))
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m + (n + 1)) = a ^ (m + n + 1)
|
← pow_add,
|
[anonymous]
|
a ^ (m + n) = a ^ n * a ^ m
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ m * a ^ n = a ^ n * a ^ m
|
← pow_add,
|
[anonymous]
|
a ^ (m + n) = a ^ (n + m)
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m + n) = a ^ n * a ^ m
|
Nat.add_comm
|
[anonymous]
|
a ^ (n + m) = a ^ (n + m)
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m + n) = a ^ (n + m)
|
Nat.mul_zero,
|
[anonymous]
|
a ^ 0 = (a ^ m) ^ 0
|
M : Type u_2
inst✝ : Monoid M
a : M
m : ℕ
⊢ a ^ (m * 0) = (a ^ m) ^ 0
|
pow_zero,
|
[anonymous]
|
1 = (a ^ m) ^ 0
|
M : Type u_2
inst✝ : Monoid M
a : M
m : ℕ
⊢ a ^ 0 = (a ^ m) ^ 0
|
pow_zero
|
[anonymous]
|
1 = 1
|
M : Type u_2
inst✝ : Monoid M
a : M
m : ℕ
⊢ 1 = (a ^ m) ^ 0
|
Nat.mul_succ,
|
[anonymous]
|
a ^ (m * n + m) = (a ^ m) ^ (n + 1)
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m * (n + 1)) = (a ^ m) ^ (n + 1)
|
pow_add,
|
[anonymous]
|
a ^ (m * n) * a ^ m = (a ^ m) ^ (n + 1)
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m * n + m) = (a ^ m) ^ (n + 1)
|
pow_succ,
|
[anonymous]
|
a ^ (m * n) * a ^ m = (a ^ m) ^ n * a ^ m
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m * n) * a ^ m = (a ^ m) ^ (n + 1)
|
pow_mul
|
[anonymous]
|
(a ^ m) ^ n * a ^ m = (a ^ m) ^ n * a ^ m
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m * n) * a ^ m = (a ^ m) ^ n * a ^ m
|
Nat.mul_comm,
|
[anonymous]
|
a ^ (n * m) = (a ^ n) ^ m
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m * n) = (a ^ n) ^ m
|
pow_mul
|
[anonymous]
|
(a ^ n) ^ m = (a ^ n) ^ m
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (n * m) = (a ^ n) ^ m
|
← pow_mul,
|
[anonymous]
|
a ^ (m * n) = (a ^ n) ^ m
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ (a ^ m) ^ n = (a ^ n) ^ m
|
Nat.mul_comm,
|
[anonymous]
|
a ^ (n * m) = (a ^ n) ^ m
|
M : Type u_2
inst✝ : Monoid M
a : M
m n : ℕ
⊢ a ^ (m * n) = (a ^ n) ^ m
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 97