|
import pandas as pd |
|
import datetime |
|
import numpy as np |
|
import datetime |
|
import pytz |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
import argparse |
|
|
|
|
|
def to_datetime(my_date,set_hour = False): |
|
my_date = str(my_date) |
|
set_month= {'Jan': '01', 'Feb' : '02', 'Mar' : '03', 'Apr' : '04','May' : '05', 'Jun' : '06', 'Jul' : '07', 'Aug' : '08', 'Sep' : '09', 'Oct' : '10', 'Nov' : '11', 'Dec' : '12'} |
|
month = int(my_date[4:6]) |
|
day = int(my_date[6:8]) |
|
year = int(my_date[0:4]) |
|
if set_hour : |
|
hour = 0 |
|
else : |
|
hour = int(my_date[8:10]) |
|
unaware = datetime.datetime(year, month, day, hour) |
|
final_date = pytz.utc.localize(unaware) |
|
return final_date |
|
|
|
def to_datetimeNLP(my_date,set_hour = False): |
|
my_date = str(my_date) |
|
set_month= {'Jan': '01', 'Feb' : '02', 'Mar' : '03', 'Apr' : '04','May' : '05', 'Jun' : '06', 'Jul' : '07', 'Aug' : '08', 'Sep' : '09', 'Oct' : '10', 'Nov' : '11', 'Dec' : '12'} |
|
month = int(my_date[5:7]) |
|
day = int(my_date[8:10]) |
|
year = int(my_date[0:4]) |
|
if set_hour : |
|
hour = 0 |
|
else : |
|
hour = int(my_date[11:13]) |
|
hour = hour - (hour%3) |
|
unaware = datetime.datetime(year, month, day,hour) |
|
final_date = pytz.utc.localize(unaware) |
|
return final_date |
|
|
|
|
|
|
|
|
|
def window_creation(df,size_window,timestamp_colum): |
|
good_row = list(df.columns) |
|
good_row.remove(timestamp_colum) |
|
window_df = df[good_row] |
|
window_df = window_df.reset_index() |
|
window_df = window_df.drop(columns=['index']) |
|
window_df = window_df.tail(size_window) |
|
window_data = window_df.to_numpy() |
|
return window_data |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def linker(text_data : object,crisis_knowledge : object,my_features : str,window_size : int,label_column_1 : str,label_column_2 : str, date_column : str, fillNA : int) -> object : |
|
|
|
|
|
text_data = text_data.join(crisis_knowledge.set_index('Crisis Name'), on='event', validate='m:1') |
|
text_data['date'] = list(map(to_datetimeNLP,list(text_data['created_at']))) |
|
|
|
features =['numer_sta','date','pmer','tend','ff','t','u','n'] |
|
features_clean =['pmer','tend','ff','t','u','n'] |
|
df_return = pd.DataFrame({'Date' : [],'Text' : [], 'Window' : [], 'label' : []}) |
|
list_of_date = [] |
|
list_of_text = [] |
|
list_of_window = [] |
|
list_of_crisis_type = [] |
|
list_of_label_uti = [] |
|
list_of_label_urg = [] |
|
list_of_label_int = [] |
|
list_of_label = [] |
|
|
|
my_features = my_features[features].fillna(fillNA).replace({'mq': fillNA, 'No_Crisis': 0, 'Crisis': 1, 'Ecological': 1, 'Sudden': 2}) |
|
for clean_f in features_clean : |
|
my_features[clean_f] = pd.to_numeric(my_features[clean_f]) |
|
my_features[clean_f] = (my_features[clean_f] - my_features[clean_f].min()) / (my_features[clean_f].max() - my_features[clean_f].min()) |
|
|
|
set_of_station = set(list(my_features['numer_sta'])) |
|
my_features['date'] = list(map(to_datetime,list(my_features['date']))) |
|
set_of_date = set(list(my_features['date'])) |
|
dict_by_station = {} |
|
i = 0 |
|
for index,text_line in text_data.iterrows(): |
|
|
|
|
|
if text_line['date'] in set_of_date : |
|
|
|
list_of_station = eval(text_line['Related station']) |
|
for i in range(len(list_of_station)): |
|
list_of_station[i] = int(list_of_station[i]) |
|
|
|
|
|
current_station = my_features[my_features['numer_sta'] == list_of_station[0]] |
|
current_station = current_station.sort_values(by=['date']) |
|
good_date = current_station[current_station['date'] < text_line['date']] |
|
list_of_date.append(text_line['date']) |
|
list_of_text.append(text_line['text']) |
|
list_of_crisis_type.append(text_line['type_crisis']) |
|
window = window_creation(good_date,window_size,'date') |
|
list_of_window.append(window) |
|
list_of_label_uti.append(text_line['utility']) |
|
list_of_label_int.append(text_line['humanitarian']) |
|
list_of_label_urg.append(text_line['urgency']) |
|
if text_line['utility'] == 'Message-NonUtilisable' : |
|
list_of_label.append('Not_Crisis_period') |
|
else: |
|
if text_line['type_crisis'] == 'Flood' or text_line['type_crisis'] == 'Hurricane' or text_line['type_crisis'] == 'Storms': |
|
list_of_label.append('Ecological_crisis') |
|
else: |
|
list_of_label.append('Sudden_Crisis') |
|
|
|
df_return = pd.DataFrame({'Date' : list_of_date,'Text' : list_of_text,'Crisis_Type' : list_of_crisis_type , 'Window' : list_of_window, 'intention' : list_of_label_int, 'urgency' : list_of_label_urg, 'utility' : list_of_label_uti , 'label' : list_of_label}) |
|
return df_return |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-w", "--window_size",type = int, default = 16, help="size (in number of days) of our daily time series data") |
|
parser.add_argument("-o", "--output_file",type = str, default = './Multi_modal_dataset/CrisisTS_FR_Personnalized.csv', help="name of your output file") |
|
args = parser.parse_args() |
|
|
|
Knowledge = pd.read_csv('./utils/crisis_knowledge_fr.csv',sep="\t") |
|
|
|
nlp_csv = pd.read_csv('./Textual_Data/French_Corpus/Kozlwoski.csv',sep ='\t') |
|
|
|
time_series = pd.read_csv('./Time_Series/FrenchTS/french_time_series_MERGED.csv',sep = '\t') |
|
|
|
nlp_csv = nlp_csv.dropna(subset=['date']) |
|
|
|
nlp_csv = nlp_csv.dropna(subset=['humanitarian']) |
|
|
|
multi_modal_dataset = linker(nlp_csv ,Knowledge ,time_series , args.window_size,, 'Crisis_Predictability', 'label', 'date', 0) |
|
|
|
|
|
print('Done !') |
|
multi_modal_test_data.to_csv(args.output_file,sep = '\t') |
|
|