CrisisTS / Linker_Fr.py
Unknees's picture
Upload 3 files
cd61af8 verified
import pandas as pd
import datetime
import numpy as np
import datetime
import pytz
import warnings
warnings.filterwarnings('ignore')
import argparse
#this function put on the good format the date from the time series dataset
def to_datetime(my_date,set_hour = False):
my_date = str(my_date)
set_month= {'Jan': '01', 'Feb' : '02', 'Mar' : '03', 'Apr' : '04','May' : '05', 'Jun' : '06', 'Jul' : '07', 'Aug' : '08', 'Sep' : '09', 'Oct' : '10', 'Nov' : '11', 'Dec' : '12'}
month = int(my_date[4:6])
day = int(my_date[6:8])
year = int(my_date[0:4])
if set_hour :
hour = 0
else :
hour = int(my_date[8:10])
unaware = datetime.datetime(year, month, day, hour)
final_date = pytz.utc.localize(unaware)
return final_date
def to_datetimeNLP(my_date,set_hour = False):
my_date = str(my_date)
set_month= {'Jan': '01', 'Feb' : '02', 'Mar' : '03', 'Apr' : '04','May' : '05', 'Jun' : '06', 'Jul' : '07', 'Aug' : '08', 'Sep' : '09', 'Oct' : '10', 'Nov' : '11', 'Dec' : '12'}
month = int(my_date[5:7])
day = int(my_date[8:10])
year = int(my_date[0:4])
if set_hour :
hour = 0
else :
hour = int(my_date[11:13])
hour = hour - (hour%3)
unaware = datetime.datetime(year, month, day,hour)
final_date = pytz.utc.localize(unaware)
return final_date
#the function take a time series dataframe (df) and return an other dataset with all the data put in one parameter (Window) except the date and the label wich are in different columns
#window size is equal to the size of the window
def window_creation(df,size_window,timestamp_colum):
good_row = list(df.columns)
good_row.remove(timestamp_colum)
window_df = df[good_row]
window_df = window_df.reset_index()
window_df = window_df.drop(columns=['index'])
window_df = window_df.tail(size_window)
window_data = window_df.to_numpy()
return window_data
#the function that link the NLP data and the time series data for French dataset
#text_data is the french NLP dataset on dataframe format
#crisis_knowledge is a dataframe from the crisis_knowledge CSV
#time_data is the path to the repertory with time series data
#window size is equal to the size of the window
#fillNA is the value to fill the missing value
def linker(text_data : object,crisis_knowledge : object,my_features : str,window_size : int,label_column_1 : str,label_column_2 : str, date_column : str, fillNA : int) -> object :
#we join crisis knowledge and NLP data on the name of the crisis
text_data = text_data.join(crisis_knowledge.set_index('Crisis Name'), on='event', validate='m:1')
text_data['date'] = list(map(to_datetimeNLP,list(text_data['created_at'])))
#features to keep for Time series
features =['numer_sta','date','pmer','tend','ff','t','u','n']
features_clean =['pmer','tend','ff','t','u','n']
df_return = pd.DataFrame({'Date' : [],'Text' : [], 'Window' : [], 'label' : []})
list_of_date = []
list_of_text = []
list_of_window = []
list_of_crisis_type = []
list_of_label_uti = []
list_of_label_urg = []
list_of_label_int = []
list_of_label = []
#replace missing values and replace label by number
my_features = my_features[features].fillna(fillNA).replace({'mq': fillNA, 'No_Crisis': 0, 'Crisis': 1, 'Ecological': 1, 'Sudden': 2})
for clean_f in features_clean :
my_features[clean_f] = pd.to_numeric(my_features[clean_f])
my_features[clean_f] = (my_features[clean_f] - my_features[clean_f].min()) / (my_features[clean_f].max() - my_features[clean_f].min())
#this take from time series data the list of the id for each station
set_of_station = set(list(my_features['numer_sta']))
my_features['date'] = list(map(to_datetime,list(my_features['date'])))
set_of_date = set(list(my_features['date']))
dict_by_station = {}
i = 0
for index,text_line in text_data.iterrows():
#if the NLP date can be found in the time series date
if text_line['date'] in set_of_date :
list_of_station = eval(text_line['Related station'])
for i in range(len(list_of_station)):
list_of_station[i] = int(list_of_station[i])
#station related to the crisis
current_station = my_features[my_features['numer_sta'] == list_of_station[0]]
current_station = current_station.sort_values(by=['date'])
good_date = current_station[current_station['date'] < text_line['date']]
list_of_date.append(text_line['date'])
list_of_text.append(text_line['text'])
list_of_crisis_type.append(text_line['type_crisis'])
window = window_creation(good_date,window_size,'date')
list_of_window.append(window)
list_of_label_uti.append(text_line['utility'])
list_of_label_int.append(text_line['humanitarian'])
list_of_label_urg.append(text_line['urgency'])
if text_line['utility'] == 'Message-NonUtilisable' :
list_of_label.append('Not_Crisis_period')
else:
if text_line['type_crisis'] == 'Flood' or text_line['type_crisis'] == 'Hurricane' or text_line['type_crisis'] == 'Storms':
list_of_label.append('Ecological_crisis')
else:
list_of_label.append('Sudden_Crisis')
df_return = pd.DataFrame({'Date' : list_of_date,'Text' : list_of_text,'Crisis_Type' : list_of_crisis_type , 'Window' : list_of_window, 'intention' : list_of_label_int, 'urgency' : list_of_label_urg, 'utility' : list_of_label_uti , 'label' : list_of_label})
return df_return
parser = argparse.ArgumentParser()
parser.add_argument("-w", "--window_size",type = int, default = 16, help="size (in number of days) of our daily time series data")
parser.add_argument("-o", "--output_file",type = str, default = './Multi_modal_dataset/CrisisTS_FR_Personnalized.csv', help="name of your output file")
args = parser.parse_args()
Knowledge = pd.read_csv('./utils/crisis_knowledge_fr.csv',sep="\t")
nlp_csv = pd.read_csv('./Textual_Data/French_Corpus/Kozlwoski.csv',sep ='\t')
time_series = pd.read_csv('./Time_Series/FrenchTS/french_time_series_MERGED.csv',sep = '\t')
nlp_csv = nlp_csv.dropna(subset=['date'])
nlp_csv = nlp_csv.dropna(subset=['humanitarian'])
multi_modal_dataset = linker(nlp_csv ,Knowledge ,time_series , args.window_size,, 'Crisis_Predictability', 'label', 'date', 0)
print('Done !')
multi_modal_test_data.to_csv(args.output_file,sep = '\t')