Datasets:
Upload 3 files
Browse files- .gitattributes +1 -0
- Linker_Eng.py +229 -0
- Linker_Fr.py +138 -0
- french_time_series_MERGED.csv +3 -0
.gitattributes
CHANGED
@@ -58,3 +58,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
Multi_modal_dataset/Multi_Modal_FR/Crisis_TS_FR.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
Multi_modal_dataset/Multi_Modal_FR/Crisis_TS_FR.csv filter=lfs diff=lfs merge=lfs -text
|
61 |
+
french_time_series_MERGED.csv filter=lfs diff=lfs merge=lfs -text
|
Linker_Eng.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from sklearn.preprocessing import StandardScaler
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
# this function put on the good format the date from the nlp dataset
|
10 |
+
def to_date(my_date):
|
11 |
+
set_month= {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
|
12 |
+
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
|
13 |
+
month = set_month[my_date[4:7]]
|
14 |
+
day = my_date[8:10]
|
15 |
+
year = my_date[26:30]
|
16 |
+
final_date = year+'-'+month+'-'+day
|
17 |
+
return final_date
|
18 |
+
|
19 |
+
|
20 |
+
# open the knowledge base of the corresponding state with the corresponding category
|
21 |
+
def open_state_file(dataset_path: str, STATE: str, CATEGORY: str) -> list[str]:
|
22 |
+
tags = set()
|
23 |
+
with open('./utils/Keywords/'+STATE+'_keywords_'+CATEGORY+'_no_dupe.txt', 'r') as fp:
|
24 |
+
for line in fp:
|
25 |
+
# remove linebreak from a current name
|
26 |
+
# linebreak is the last character of each line
|
27 |
+
x = line[:-1]
|
28 |
+
# add current item to the list
|
29 |
+
tags.add(x.lower())
|
30 |
+
return tags
|
31 |
+
|
32 |
+
|
33 |
+
# the function take a time series dataframe (df) and return another dataset with all the data put in one parameter
|
34 |
+
# (Window) except the date and the label which are in different columns
|
35 |
+
# window size is equal to the size of the window
|
36 |
+
|
37 |
+
def window_creation(df: object, window_size: int, timestamp_colum: str) -> object:
|
38 |
+
"""
|
39 |
+
Create a TS window for each date. Distance of sliding window is 1.
|
40 |
+
|
41 |
+
df: Dataframe of a whole TS record in one state. Each row represents the record on one date.
|
42 |
+
window_size: Size of TS window.
|
43 |
+
label_column: Name of the column of label
|
44 |
+
timestamp_colum: Name of the column of time stamp
|
45 |
+
"""
|
46 |
+
df = df.reset_index()
|
47 |
+
df = df.drop(columns=['index'])
|
48 |
+
good_columns = list(df.columns)
|
49 |
+
good_columns.remove(timestamp_colum)
|
50 |
+
window_df = df[good_columns]
|
51 |
+
scaler = StandardScaler()
|
52 |
+
window_df = pd.DataFrame(scaler.fit_transform(window_df), columns=window_df.columns)
|
53 |
+
date_df = df[timestamp_colum]
|
54 |
+
window_data = []
|
55 |
+
label_data = []
|
56 |
+
date_data = []
|
57 |
+
for i in range(len(df)-window_size):
|
58 |
+
my_window = window_df.loc[i:i+window_size-1]
|
59 |
+
window_data.append(my_window.to_numpy())
|
60 |
+
date_data.append((date_df.loc[i+window_size-1]))
|
61 |
+
return_value = pd.DataFrame({'Date': date_data, 'Window': window_data})
|
62 |
+
return return_value
|
63 |
+
|
64 |
+
|
65 |
+
# the function that link the NLP data and the time series data for English dataset
|
66 |
+
# crisis_to_link is one row from crisis knowledge
|
67 |
+
# directory is the path of NLP data
|
68 |
+
# dataset_path is the path of time series data
|
69 |
+
# window_size is the size of the window for time series data
|
70 |
+
# fillNA is the value to fill the missing value
|
71 |
+
def linker(
|
72 |
+
crisis_to_link: object,
|
73 |
+
corpus_path: str, # path of corpus directory
|
74 |
+
ts_dataset_path: str, # path of ts data directory
|
75 |
+
window_size: int,
|
76 |
+
date_column: str,
|
77 |
+
fillNA : int) -> object:
|
78 |
+
|
79 |
+
# list of states associated with the crisis
|
80 |
+
type_of_crisis = crisis_to_link['Crisis']
|
81 |
+
|
82 |
+
|
83 |
+
states = crisis_to_link['Places'].replace('[', '').replace(']', '').split(',')
|
84 |
+
|
85 |
+
# features to keep
|
86 |
+
features = ['date', 'mean_speed_wind', 'precipitation', 'snow_fall', 'snow_depth', 'temp_max', 'temp_min', 'temp_mean',
|
87 |
+
|
88 |
+
'wind_dir_angle_2min', 'wind_dir_angle_5sec', 'wind_max_speed_2min', 'wind_max_speed_5sec']
|
89 |
+
|
90 |
+
df_return = pd.DataFrame({'Date': [], 'Text': [],'Crisis_Type' :[], 'Window': [], 'label_humanitarian': [], 'label_useful' : [], 'label_urgent' : [], 'label_sudden' : []})
|
91 |
+
|
92 |
+
for state in states:
|
93 |
+
# Open the time series file corresponding to the state
|
94 |
+
ts_df = pd.read_csv(ts_dataset_path + '/' + state + '_Time_Series_Data.csv')
|
95 |
+
ts_df = ts_df[features].sort_values(by='date') # Frequency of TS is per day.
|
96 |
+
ts_df = ts_df.fillna(fillNA)
|
97 |
+
# Window Creation
|
98 |
+
window_df = window_creation(ts_df, window_size, date_column)
|
99 |
+
#since New Zealand has no keyword, we skip this part
|
100 |
+
if state != 'New_Zealand' :
|
101 |
+
# we get the keywords to link the location mention to the state
|
102 |
+
tags_city = open_state_file(ts_dataset_path, state, 'city')
|
103 |
+
tags_county = open_state_file(ts_dataset_path, state, 'county')
|
104 |
+
tags_state = open_state_file(ts_dataset_path, state, 'state')
|
105 |
+
date = []
|
106 |
+
text = []
|
107 |
+
label_humanitarian = []
|
108 |
+
label_useful = []
|
109 |
+
label_urgent = []
|
110 |
+
label_sudden = []
|
111 |
+
window_data = []
|
112 |
+
crisis_label = []
|
113 |
+
|
114 |
+
# Process NLP data and link to time series data
|
115 |
+
for root, dirs, files in os.walk(corpus_path + '/' + crisis_to_link['Path_name']):
|
116 |
+
for fil in files:
|
117 |
+
if fil.endswith('.jsonl'):
|
118 |
+
with open(os.path.join(root,fil), 'r') as json_file:
|
119 |
+
json_list = list(json_file) # a list of '{}', each {} is a tweet and its features.
|
120 |
+
for json_str in json_list: # for each tweet loaded
|
121 |
+
result = json.loads(json_str)
|
122 |
+
place = result['location_mentions']
|
123 |
+
|
124 |
+
# if the location mention is empty (the tweet does not refer to particular place),
|
125 |
+
# thanks to the crisis_to_link, we know which crisis this tweet make reference
|
126 |
+
# (the tweet speak about this crisis) so we assume that if location mention is empty
|
127 |
+
# we assume that the tweet make a reference to the current state since this state is the localisation of the crisis
|
128 |
+
#we still have the New Zealand special case
|
129 |
+
if place == [] or state == 'New_Zealand':
|
130 |
+
# Put NLP date on the same format as time series date
|
131 |
+
date_NLP = to_date(result['created_at'])
|
132 |
+
# Check if there is matching date between time series and tweets.
|
133 |
+
if list(window_df['Window'][ window_df['Date'] == date_NLP]) != [] :
|
134 |
+
date.append(date_NLP)
|
135 |
+
text.append(result['text'])
|
136 |
+
linked_data = window_df[window_df['Date'] == date[-1]]
|
137 |
+
my_window = list(linked_data['Window'])[0]
|
138 |
+
window_data.append(my_window)
|
139 |
+
# for the label, we take reference from the time series label
|
140 |
+
label_humanitarian.append(result['humAID_class'])
|
141 |
+
crisis_label.append(type_of_crisis)
|
142 |
+
if result['humAID_class'] == 'not_humanitarian' :
|
143 |
+
label_useful.append('not_humanitarian')
|
144 |
+
label_urgent.append('not_humanitarian')
|
145 |
+
else :
|
146 |
+
label_useful.append('useful')
|
147 |
+
if result['humAID_class'] == 'rescue_volunteering_or_donation_effort' :
|
148 |
+
label_urgent.append('not_urgent')
|
149 |
+
else :
|
150 |
+
label_urgent.append('urgent')
|
151 |
+
|
152 |
+
if result['humAID_class'] == 'not_humanitarian' :
|
153 |
+
label_sudden.append('Not_Crisis_period')
|
154 |
+
else :
|
155 |
+
if type_of_crisis == 'Earthquake' or type_of_crisis == 'WildFire' :
|
156 |
+
label_sudden.append('Sudden_Crisis')
|
157 |
+
else :
|
158 |
+
label_sudden.append('Non_Sudden_Crisis')
|
159 |
+
|
160 |
+
else:
|
161 |
+
for zone in place:
|
162 |
+
# if the location mention refer to a state and this reference is in our knowledge database
|
163 |
+
bool1 = zone['type'] == 'State' and zone['text'].lower() in tags_state
|
164 |
+
# if the location mention refer to a county and this reference is in our knowledge database
|
165 |
+
bool2 = zone['type'] == 'County' and zone['text'].lower() in tags_county
|
166 |
+
# if the location mention refer to a city and this reference is in our knowledge database
|
167 |
+
bool3 = zone['type'] == 'City/town' and zone['text'].lower() in tags_city
|
168 |
+
if bool1 or bool2 or bool3:
|
169 |
+
date.append(to_date(result['created_at']))
|
170 |
+
text.append(result['text'])
|
171 |
+
linked_data = window_df[window_df['Date'] == date[-1]]
|
172 |
+
my_window = list(linked_data['Window'])[0]
|
173 |
+
window_data.append(my_window)
|
174 |
+
label_humanitarian.append(result['humAID_class'])
|
175 |
+
crisis_label.append(type_of_crisis)
|
176 |
+
if result['humAID_class'] == 'not_humanitarian' :
|
177 |
+
label_useful.append('not_humanitarian')
|
178 |
+
label_urgent.append('not_humanitarian')
|
179 |
+
else :
|
180 |
+
label_useful.append('useful')
|
181 |
+
if result['humAID_class'] == 'rescue_volunteering_or_donation_effort' :
|
182 |
+
label_urgent.append('not_urgent')
|
183 |
+
else :
|
184 |
+
label_urgent.append('urgent')
|
185 |
+
|
186 |
+
if result['humAID_class'] == 'not_humanitarian' :
|
187 |
+
label_sudden.append('Not_Crisis_period')
|
188 |
+
else :
|
189 |
+
if type_of_crisis == 'Earthquake' or type_of_crisis == 'WildFire' :
|
190 |
+
label_sudden.append('Sudden_Crisis')
|
191 |
+
else :
|
192 |
+
label_sudden.append('Non_Sudden_Crisis')
|
193 |
+
|
194 |
+
df = pd.DataFrame({'Date': date, 'Text': text,'Crisis_Type' :crisis_label, 'Window': window_data, 'label_humanitarian': label_humanitarian, 'label_useful' : label_useful, 'label_urgent' : label_urgent, 'label_sudden' : label_sudden})
|
195 |
+
df_return = pd.concat([df_return, df])
|
196 |
+
return df_return
|
197 |
+
|
198 |
+
# loading file
|
199 |
+
parser = argparse.ArgumentParser()
|
200 |
+
parser.add_argument("-w", "--window_size",type = int, default = 5, help="size (in number of days) of our daily time series data")
|
201 |
+
parser.add_argument("-o", "--output_file",type = str, default = './Multi_modal_dataset/CrisisTS_Eng_Personnalized.csv', help="name of your output file")
|
202 |
+
args = parser.parse_args()
|
203 |
+
|
204 |
+
directory_nlp = './Textual_Data/English_Corpus'
|
205 |
+
directory_time_series = './Time_Series/EnglishTS'
|
206 |
+
path_knowledge = './utils/crisis_knowledge_eng.csv'
|
207 |
+
knowledge = pd.read_csv(path_knowledge, sep='\t') # (9, 3), 3 columns represent Crisis, Places, Path_name (tweets)
|
208 |
+
|
209 |
+
# for all test crisis in english
|
210 |
+
All_possible_crisis = ['Hurricane', 'WildFire', 'Flood','Earthquake']
|
211 |
+
Test_crisis = 'Hurricane'
|
212 |
+
|
213 |
+
Train_knowledge = knowledge[knowledge['Crisis'] != Test_crisis]
|
214 |
+
Test_knowledge = knowledge[knowledge['Crisis'] == Test_crisis]
|
215 |
+
|
216 |
+
# link
|
217 |
+
multi_modal_test_data = pd.DataFrame({'Date': [], 'Text': [],'Crisis_Type' :[], 'Window': [], 'label_humanitarian': [], 'label_useful' : [], 'label_urgent' : [], 'label_sudden' : []})
|
218 |
+
for index, crisis in knowledge.iterrows():
|
219 |
+
print('Linking textual data and meteorological data of '+crisis['Path_name']+ ' ...')
|
220 |
+
multi_modal_test_data = pd.concat([multi_modal_test_data,
|
221 |
+
linker(crisis, directory_nlp,
|
222 |
+
directory_time_series,
|
223 |
+
args.window_size,
|
224 |
+
'date',
|
225 |
+
0)])
|
226 |
+
|
227 |
+
|
228 |
+
print('Done !')
|
229 |
+
multi_modal_test_data.to_csv(args.output_file,sep = '\t')
|
Linker_Fr.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import datetime
|
3 |
+
import numpy as np
|
4 |
+
import datetime
|
5 |
+
import pytz
|
6 |
+
import warnings
|
7 |
+
warnings.filterwarnings('ignore')
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
#this function put on the good format the date from the time series dataset
|
11 |
+
def to_datetime(my_date,set_hour = False):
|
12 |
+
my_date = str(my_date)
|
13 |
+
set_month= {'Jan': '01', 'Feb' : '02', 'Mar' : '03', 'Apr' : '04','May' : '05', 'Jun' : '06', 'Jul' : '07', 'Aug' : '08', 'Sep' : '09', 'Oct' : '10', 'Nov' : '11', 'Dec' : '12'}
|
14 |
+
month = int(my_date[4:6])
|
15 |
+
day = int(my_date[6:8])
|
16 |
+
year = int(my_date[0:4])
|
17 |
+
if set_hour :
|
18 |
+
hour = 0
|
19 |
+
else :
|
20 |
+
hour = int(my_date[8:10])
|
21 |
+
unaware = datetime.datetime(year, month, day, hour)
|
22 |
+
final_date = pytz.utc.localize(unaware)
|
23 |
+
return final_date
|
24 |
+
|
25 |
+
def to_datetimeNLP(my_date,set_hour = False):
|
26 |
+
my_date = str(my_date)
|
27 |
+
set_month= {'Jan': '01', 'Feb' : '02', 'Mar' : '03', 'Apr' : '04','May' : '05', 'Jun' : '06', 'Jul' : '07', 'Aug' : '08', 'Sep' : '09', 'Oct' : '10', 'Nov' : '11', 'Dec' : '12'}
|
28 |
+
month = int(my_date[5:7])
|
29 |
+
day = int(my_date[8:10])
|
30 |
+
year = int(my_date[0:4])
|
31 |
+
if set_hour :
|
32 |
+
hour = 0
|
33 |
+
else :
|
34 |
+
hour = int(my_date[11:13])
|
35 |
+
hour = hour - (hour%3)
|
36 |
+
unaware = datetime.datetime(year, month, day,hour)
|
37 |
+
final_date = pytz.utc.localize(unaware)
|
38 |
+
return final_date
|
39 |
+
|
40 |
+
|
41 |
+
#the function take a time series dataframe (df) and return an other dataset with all the data put in one parameter (Window) except the date and the label wich are in different columns
|
42 |
+
#window size is equal to the size of the window
|
43 |
+
def window_creation(df,size_window,timestamp_colum):
|
44 |
+
good_row = list(df.columns)
|
45 |
+
good_row.remove(timestamp_colum)
|
46 |
+
window_df = df[good_row]
|
47 |
+
window_df = window_df.reset_index()
|
48 |
+
window_df = window_df.drop(columns=['index'])
|
49 |
+
window_df = window_df.tail(size_window)
|
50 |
+
window_data = window_df.to_numpy()
|
51 |
+
return window_data
|
52 |
+
|
53 |
+
#the function that link the NLP data and the time series data for French dataset
|
54 |
+
#text_data is the french NLP dataset on dataframe format
|
55 |
+
#crisis_knowledge is a dataframe from the crisis_knowledge CSV
|
56 |
+
#time_data is the path to the repertory with time series data
|
57 |
+
#window size is equal to the size of the window
|
58 |
+
#fillNA is the value to fill the missing value
|
59 |
+
def linker(text_data : object,crisis_knowledge : object,my_features : str,window_size : int,label_column_1 : str,label_column_2 : str, date_column : str, fillNA : int) -> object :
|
60 |
+
|
61 |
+
#we join crisis knowledge and NLP data on the name of the crisis
|
62 |
+
text_data = text_data.join(crisis_knowledge.set_index('Crisis Name'), on='event', validate='m:1')
|
63 |
+
text_data['date'] = list(map(to_datetimeNLP,list(text_data['created_at'])))
|
64 |
+
#features to keep for Time series
|
65 |
+
features =['numer_sta','date','pmer','tend','ff','t','u','n']
|
66 |
+
features_clean =['pmer','tend','ff','t','u','n']
|
67 |
+
df_return = pd.DataFrame({'Date' : [],'Text' : [], 'Window' : [], 'label' : []})
|
68 |
+
list_of_date = []
|
69 |
+
list_of_text = []
|
70 |
+
list_of_window = []
|
71 |
+
list_of_crisis_type = []
|
72 |
+
list_of_label_uti = []
|
73 |
+
list_of_label_urg = []
|
74 |
+
list_of_label_int = []
|
75 |
+
list_of_label = []
|
76 |
+
#replace missing values and replace label by number
|
77 |
+
my_features = my_features[features].fillna(fillNA).replace({'mq': fillNA, 'No_Crisis': 0, 'Crisis': 1, 'Ecological': 1, 'Sudden': 2})
|
78 |
+
for clean_f in features_clean :
|
79 |
+
my_features[clean_f] = pd.to_numeric(my_features[clean_f])
|
80 |
+
my_features[clean_f] = (my_features[clean_f] - my_features[clean_f].min()) / (my_features[clean_f].max() - my_features[clean_f].min())
|
81 |
+
#this take from time series data the list of the id for each station
|
82 |
+
set_of_station = set(list(my_features['numer_sta']))
|
83 |
+
my_features['date'] = list(map(to_datetime,list(my_features['date'])))
|
84 |
+
set_of_date = set(list(my_features['date']))
|
85 |
+
dict_by_station = {}
|
86 |
+
i = 0
|
87 |
+
for index,text_line in text_data.iterrows():
|
88 |
+
|
89 |
+
#if the NLP date can be found in the time series date
|
90 |
+
if text_line['date'] in set_of_date :
|
91 |
+
|
92 |
+
list_of_station = eval(text_line['Related station'])
|
93 |
+
for i in range(len(list_of_station)):
|
94 |
+
list_of_station[i] = int(list_of_station[i])
|
95 |
+
#station related to the crisis
|
96 |
+
|
97 |
+
current_station = my_features[my_features['numer_sta'] == list_of_station[0]]
|
98 |
+
current_station = current_station.sort_values(by=['date'])
|
99 |
+
good_date = current_station[current_station['date'] < text_line['date']]
|
100 |
+
list_of_date.append(text_line['date'])
|
101 |
+
list_of_text.append(text_line['text'])
|
102 |
+
list_of_crisis_type.append(text_line['type_crisis'])
|
103 |
+
window = window_creation(good_date,window_size,'date')
|
104 |
+
list_of_window.append(window)
|
105 |
+
list_of_label_uti.append(text_line['utility'])
|
106 |
+
list_of_label_int.append(text_line['humanitarian'])
|
107 |
+
list_of_label_urg.append(text_line['urgency'])
|
108 |
+
if text_line['utility'] == 'Message-NonUtilisable' :
|
109 |
+
list_of_label.append('Not_Crisis_period')
|
110 |
+
else:
|
111 |
+
if text_line['type_crisis'] == 'Flood' or text_line['type_crisis'] == 'Hurricane' or text_line['type_crisis'] == 'Storms':
|
112 |
+
list_of_label.append('Ecological_crisis')
|
113 |
+
else:
|
114 |
+
list_of_label.append('Sudden_Crisis')
|
115 |
+
|
116 |
+
df_return = pd.DataFrame({'Date' : list_of_date,'Text' : list_of_text,'Crisis_Type' : list_of_crisis_type , 'Window' : list_of_window, 'intention' : list_of_label_int, 'urgency' : list_of_label_urg, 'utility' : list_of_label_uti , 'label' : list_of_label})
|
117 |
+
return df_return
|
118 |
+
|
119 |
+
parser = argparse.ArgumentParser()
|
120 |
+
parser.add_argument("-w", "--window_size",type = int, default = 16, help="size (in number of days) of our daily time series data")
|
121 |
+
parser.add_argument("-o", "--output_file",type = str, default = './Multi_modal_dataset/CrisisTS_FR_Personnalized.csv', help="name of your output file")
|
122 |
+
args = parser.parse_args()
|
123 |
+
|
124 |
+
Knowledge = pd.read_csv('./utils/crisis_knowledge_fr.csv',sep="\t")
|
125 |
+
|
126 |
+
nlp_csv = pd.read_csv('./Textual_Data/French_Corpus/Kozlwoski.csv',sep ='\t')
|
127 |
+
|
128 |
+
time_series = pd.read_csv('./Time_Series/FrenchTS/french_time_series_MERGED.csv',sep = '\t')
|
129 |
+
|
130 |
+
nlp_csv = nlp_csv.dropna(subset=['date'])
|
131 |
+
|
132 |
+
nlp_csv = nlp_csv.dropna(subset=['humanitarian'])
|
133 |
+
|
134 |
+
multi_modal_dataset = linker(nlp_csv ,Knowledge ,time_series , args.window_size,, 'Crisis_Predictability', 'label', 'date', 0)
|
135 |
+
|
136 |
+
|
137 |
+
print('Done !')
|
138 |
+
multi_modal_test_data.to_csv(args.output_file,sep = '\t')
|
french_time_series_MERGED.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb65719c8bb7f9bbf8bc9749b2b0ae278bab5d286a01ad93cc362e83c472befe
|
3 |
+
size 377691790
|