Delete selfies_and_id.py

#1
by rikco - opened
Files changed (1) hide show
  1. selfies_and_id.py +0 -118
selfies_and_id.py DELETED
@@ -1,118 +0,0 @@
1
- import io
2
-
3
- import datasets
4
- import pandas as pd
5
-
6
- _CITATION = """\
7
- @InProceedings{huggingface:dataset,
8
- title = {selfies_and_id},
9
- author = {TrainingDataPro},
10
- year = {2023}
11
- }
12
- """
13
-
14
- _DESCRIPTION = """\
15
- 4083 sets, which includes 2 photos of a person from his documents and
16
- 13 selfies. 571 sets of Hispanics and 3512 sets of Caucasians.
17
- Photo documents contains only a photo of a person.
18
- All personal information from the document is hidden.
19
- """
20
- _NAME = 'selfies_and_id'
21
-
22
- _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
23
-
24
- _LICENSE = ""
25
-
26
- _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
27
-
28
-
29
- class SelfiesAndId(datasets.GeneratorBasedBuilder):
30
- """Small sample of image-text pairs"""
31
-
32
- def _info(self):
33
- return datasets.DatasetInfo(
34
- description=_DESCRIPTION,
35
- features=datasets.Features({
36
- 'id_1': datasets.Image(),
37
- 'id_2': datasets.Image(),
38
- 'selfie_1': datasets.Image(),
39
- 'selfie_2': datasets.Image(),
40
- 'selfie_3': datasets.Image(),
41
- 'selfie_4': datasets.Image(),
42
- 'selfie_5': datasets.Image(),
43
- 'selfie_6': datasets.Image(),
44
- 'selfie_7': datasets.Image(),
45
- 'selfie_8': datasets.Image(),
46
- 'selfie_9': datasets.Image(),
47
- 'selfie_10': datasets.Image(),
48
- 'selfie_11': datasets.Image(),
49
- 'selfie_12': datasets.Image(),
50
- 'selfie_13': datasets.Image(),
51
- 'user_id': datasets.Value('string'),
52
- 'set_id': datasets.Value('string'),
53
- 'user_race': datasets.Value('string'),
54
- 'name': datasets.Value('string'),
55
- 'age': datasets.Value('int8'),
56
- 'country': datasets.Value('string'),
57
- 'gender': datasets.Value('string')
58
- }),
59
- supervised_keys=None,
60
- homepage=_HOMEPAGE,
61
- citation=_CITATION,
62
- )
63
-
64
- def _split_generators(self, dl_manager):
65
- images = dl_manager.download(f"{_DATA}images.tar.gz")
66
- annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
67
- images = dl_manager.iter_archive(images)
68
- return [
69
- datasets.SplitGenerator(name=datasets.Split.TRAIN,
70
- gen_kwargs={
71
- "images": images,
72
- 'annotations': annotations
73
- }),
74
- ]
75
-
76
- def _generate_examples(self, images, annotations):
77
- annotations_df = pd.read_csv(annotations, sep=';')
78
- images_data = pd.DataFrame(columns=['URL', 'Bytes'])
79
- for idx, (image_path, image) in enumerate(images):
80
- images_data.loc[idx] = {'URL': image_path, 'Bytes': image.read()}
81
-
82
- annotations_df = pd.merge(annotations_df,
83
- images_data,
84
- how='left',
85
- on=['URL'])
86
- for idx, worker_id in enumerate(pd.unique(annotations_df['UserId'])):
87
- annotation = annotations_df.loc[annotations_df['UserId'] ==
88
- worker_id]
89
- annotation = annotation.sort_values(['FName'])
90
- data = {
91
- row[5].lower(): {
92
- 'path': row[6],
93
- 'bytes': row[10]
94
- } for row in annotation.itertuples()
95
- }
96
-
97
- age = annotation.loc[annotation['FName'] ==
98
- 'ID_1']['Age'].values[0]
99
- country = annotation.loc[annotation['FName'] ==
100
- 'ID_1']['Country'].values[0]
101
- gender = annotation.loc[annotation['FName'] ==
102
- 'ID_1']['Gender'].values[0]
103
- set_id = annotation.loc[annotation['FName'] ==
104
- 'ID_1']['SetId'].values[0]
105
- user_race = annotation.loc[annotation['FName'] ==
106
- 'ID_1']['UserRace'].values[0]
107
- name = annotation.loc[annotation['FName'] ==
108
- 'ID_1']['Name'].values[0]
109
-
110
- data['user_id'] = worker_id
111
- data['age'] = age
112
- data['country'] = country
113
- data['gender'] = gender
114
- data['set_id'] = set_id
115
- data['user_race'] = user_race
116
- data['name'] = name
117
-
118
- yield idx, data