Tonic's picture
Update README.md
09212e6 verified
|
raw
history blame
21.7 kB
metadata
dataset_info:
  features:
    - name: label
      dtype: string
    - name: identifier
      dtype: string
    - name: text
      dtype: string
  splits:
    - name: train
      num_bytes: 71882488
      num_examples: 82603
    - name: test
      num_bytes: 405966
      num_examples: 1219
  download_size: 31200331
  dataset_size: 72288454
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
license: mit
task_categories:
  - text-classification
  - zero-shot-classification
language:
  - en
tags:
  - climate
pretty_name: Climate Guard Toxic Agent
size_categories:
  - 10K<n<100K

Consolidated Climate Disinformation Dataset

Dataset Description

This dataset is a comprehensive consolidation of multiple climate-related datasets, focusing on climate disinformation and factual climate information. It combines and standardizes data from various high-quality sources to create a robust resource for climate-related text classification tasks.

Dataset Sources

The dataset incorporates data from the following sources:

  • Tonic Climate Guard Series:
    • climate-guard-thinking_data_nocomment_qwen_toxic_agent
    • climate-guard-synthetic_data_qwen_toxic_agent
    • climate-guard-thinking_data_nocomment_intern_toxic_agent
    • climate-guard-thinking_data_nocomment_phi4_toxic_agent
    • climate-guard-thinking_data_nocomment_yi_toxic_agent
    • climate-guard-synthetic_data_yi_toxic_agent
  • QuotaClimat/frugalaichallenge-text-train
  • Climate FEVER dataset
  • Quota Climat dataset (12% random sample)

Data Processing

The dataset underwent several processing steps to ensure quality and consistency:

  1. Text Cleaning:

    • Removed responses starting with apology phrases ("I'm sorry", "I am sorry", "I apologize", "Given the directive")
    • Cleaned text between "---" markers
    • Standardized text formatting
  2. Label Standardization:

    • Maintained consistent label format across all sources
    • Special handling for '0_not_relevant' labels from specific sources
  3. Source Tracking:

    • Added source identifiers to track data origin
    • Preserved dataset provenance information

Dataset Structure

The dataset is split into training and testing sets with the following features:

DatasetDict({
    'train': Dataset({
        features: ['identifier', 'text', 'label'],
        num_examples: <num_examples>
    }),
    'test': Dataset({
        features: ['identifier', 'text', 'label'],
        num_examples: <num_examples>
    })
})

Features:

  • identifier: String identifying the source dataset
  • text: The main text content
  • label: Classification label

Labels:

  • 0_not_relevant
  • 1_not_happening
  • 2_not_human
  • 3_not_bad
  • 4_solutions_harmful_unnecessary
  • 5_science_is_unreliable
  • 6_proponents_biased
  • 7_fossil_fuels_needed

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("your-username/consolidated-climate-dataset")

# Access training data
train_data = dataset['train']

# Access test data
test_data = dataset['test']

Dataset Statistics

{
  "basic_stats": {
    "total_samples": {
      "train": 82603,
      "test": 1219
    },
    "label_distribution": {
      "train": {
        "3_not_bad": 11011,
        "4_solutions_harmful_unnecessary": 11597,
        "5_science_is_unreliable": 14609,
        "6_proponents_biased": 8494,
        "7_fossil_fuels_needed": 10585,
        "1_not_happening": 11380,
        "2_not_human": 11772,
        "0_not_relevant": 3155
      },
      "test": {
        "6_proponents_biased": 139,
        "2_not_human": 137,
        "3_not_bad": 97,
        "1_not_happening": 154,
        "5_science_unreliable": 160,
        "4_solutions_harmful_unnecessary": 160,
        "7_fossil_fuels_needed": 65,
        "0_not_relevant": 307
      }
    },
    "source_distribution": {
      "train": {
        "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1546,
        "climate-guard-synthetic_data_qwen_toxic_agent": 32209,
        "climate-guard-thinking_data_nocomment_intern_toxic_agent": 3297,
        "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 28510,
        "climate-guard-thinking_data_nocomment_yi_toxic_agent": 1687,
        "climate-guard-synthetic_data_yi_toxic_agent": 3789,
        "frugal_challenge_train": 1311,
        "climate_fever": 654,
        "quota_climat": 9600
      },
      "test": {
        "frugal_challenge_test": 1219
      }
    },
    "label_source_incidence": {
      "train": {
        "counts": {
          "3_not_bad": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 207,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4116,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 478,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4332,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 218,
            "climate-guard-synthetic_data_yi_toxic_agent": 496,
            "quota_climat": 1164
          },
          "4_solutions_harmful_unnecessary": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 223,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4760,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 473,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4112,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 236,
            "climate-guard-synthetic_data_yi_toxic_agent": 557,
            "quota_climat": 1236
          },
          "5_science_is_unreliable": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 300,
            "climate-guard-synthetic_data_qwen_toxic_agent": 5454,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 604,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 6091,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 318,
            "climate-guard-synthetic_data_yi_toxic_agent": 656,
            "quota_climat": 1186
          },
          "6_proponents_biased": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 167,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4535,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 389,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 1389,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 234,
            "climate-guard-synthetic_data_yi_toxic_agent": 544,
            "quota_climat": 1236
          },
          "7_fossil_fuels_needed": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 205,
            "climate-guard-synthetic_data_qwen_toxic_agent": 3979,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 424,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4143,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 217,
            "climate-guard-synthetic_data_yi_toxic_agent": 476,
            "quota_climat": 1141
          },
          "1_not_happening": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 227,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4700,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 466,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 3976,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 236,
            "climate-guard-synthetic_data_yi_toxic_agent": 548,
            "quota_climat": 1227
          },
          "2_not_human": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 217,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4665,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 463,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4467,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 228,
            "climate-guard-synthetic_data_yi_toxic_agent": 512,
            "quota_climat": 1220
          },
          "0_not_relevant": {
            "frugal_challenge_train": 1311,
            "climate_fever": 654,
            "quota_climat": 1190
          }
        },
        "percentages": {
          "3_not_bad": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.879938243574607,
            "climate-guard-synthetic_data_qwen_toxic_agent": 37.38080101716466,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.3411134320225235,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 39.34247570611207,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 1.979838343474707,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.504586322768141,
            "quota_climat": 10.571246934883298
          },
          "4_solutions_harmful_unnecessary": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9229110976976806,
            "climate-guard-synthetic_data_qwen_toxic_agent": 41.04509787013883,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.07864102785203,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 35.45744589117875,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.0350090540657066,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.802966284383892,
            "quota_climat": 10.657928774683107
          },
          "5_science_is_unreliable": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 2.053528646724622,
            "climate-guard-synthetic_data_qwen_toxic_agent": 37.33315079745363,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.134437675405572,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 41.693476623998905,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.176740365528099,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.490382640837839,
            "quota_climat": 8.118283250051338
          },
          "6_proponents_biased": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9660937132093244,
            "climate-guard-synthetic_data_qwen_toxic_agent": 53.390628679067575,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.579703319990582,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 16.352719566753002,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.7548858017424065,
            "climate-guard-synthetic_data_yi_toxic_agent": 6.404520838238757,
            "quota_climat": 14.551448080998352
          },
          "7_fossil_fuels_needed": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9367028814359941,
            "climate-guard-synthetic_data_qwen_toxic_agent": 37.590930562116206,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.005668398677374,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 39.140292867264996,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.050070854983467,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.496929617383089,
            "quota_climat": 10.779404818138875
          },
          "1_not_happening": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9947275922671353,
            "climate-guard-synthetic_data_qwen_toxic_agent": 41.30052724077329,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.094903339191564,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 34.93848857644991,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.0738137082601056,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.815465729349736,
            "quota_climat": 10.782073813708259
          },
          "2_not_human": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.8433571185864763,
            "climate-guard-synthetic_data_qwen_toxic_agent": 39.627930682976555,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 3.933061501868841,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 37.94597349643221,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 1.9367991845056065,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.349303431872239,
            "quota_climat": 10.36357458375807
          },
          "0_not_relevant": {
            "frugal_challenge_train": 41.55309033280507,
            "climate_fever": 20.72900158478605,
            "quota_climat": 37.717908082408876
          }
        }
      },
      "test": {
        "counts": {
          "6_proponents_biased": {
            "frugal_challenge_test": 139
          },
          "2_not_human": {
            "frugal_challenge_test": 137
          },
          "3_not_bad": {
            "frugal_challenge_test": 97
          },
          "1_not_happening": {
            "frugal_challenge_test": 154
          },
          "5_science_unreliable": {
            "frugal_challenge_test": 160
          },
          "4_solutions_harmful_unnecessary": {
            "frugal_challenge_test": 160
          },
          "7_fossil_fuels_needed": {
            "frugal_challenge_test": 65
          },
          "0_not_relevant": {
            "frugal_challenge_test": 307
          }
        },
        "percentages": {
          "6_proponents_biased": {
            "frugal_challenge_test": 100.0
          },
          "2_not_human": {
            "frugal_challenge_test": 100.0
          },
          "3_not_bad": {
            "frugal_challenge_test": 100.0
          },
          "1_not_happening": {
            "frugal_challenge_test": 100.0
          },
          "5_science_unreliable": {
            "frugal_challenge_test": 100.0
          },
          "4_solutions_harmful_unnecessary": {
            "frugal_challenge_test": 100.0
          },
          "7_fossil_fuels_needed": {
            "frugal_challenge_test": 100.0
          },
          "0_not_relevant": {
            "frugal_challenge_test": 100.0
          }
        }
      }
    }
  },
  "text_stats": {
    "train": {
      "avg_length": 111.46446254978633,
      "median_length": 77.0,
      "std_length": 114.89517560291323,
      "min_length": 0,
      "max_length": 965,
      "total_words": 9207299
    },
    "test": {
      "avg_length": 46.73502871205906,
      "median_length": 37.0,
      "std_length": 37.74882897285664,
      "min_length": 4,
      "max_length": 454,
      "total_words": 56970
    }
  },
  "vocabulary_stats": {
    "train": {
      "vocabulary_size": 70216,
      "total_tokens": 9207299,
      "unique_tokens_ratio": 0.007626123578695554
    },
    "test": {
      "vocabulary_size": 10676,
      "total_tokens": 56970,
      "unique_tokens_ratio": 0.18739687554853432
    }
  },
  "label_patterns": {
    "train": {
      "dominant_sources_per_label": {
        "3_not_bad": {
          "main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
          "percentage": 39.34247570611207
        },
        "4_solutions_harmful_unnecessary": {
          "main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
          "percentage": 41.04509787013883
        },
        "5_science_is_unreliable": {
          "main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
          "percentage": 41.693476623998905
        },
        "6_proponents_biased": {
          "main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
          "percentage": 53.390628679067575
        },
        "7_fossil_fuels_needed": {
          "main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
          "percentage": 39.140292867264996
        },
        "1_not_happening": {
          "main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
          "percentage": 41.30052724077329
        },
        "2_not_human": {
          "main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
          "percentage": 39.627930682976555
        },
        "0_not_relevant": {
          "main_source": "frugal_challenge_train",
          "percentage": 41.55309033280507
        }
      },
      "label_diversity_per_source": {
        "climate-guard-thinking_data_nocomment_qwen_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.9322811905174009
        },
        "climate-guard-synthetic_data_qwen_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.9412569930894747
        },
        "climate-guard-thinking_data_nocomment_intern_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.9376010166020219
        },
        "climate-guard-thinking_data_nocomment_phi4_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.8879859048798708
        },
        "climate-guard-thinking_data_nocomment_yi_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.9375508611483394
        },
        "climate-guard-synthetic_data_yi_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.941023858626436
        },
        "frugal_challenge_train": {
          "unique_labels": 1,
          "entropy": 0.0
        },
        "climate_fever": {
          "unique_labels": 1,
          "entropy": 0.0
        },
        "quota_climat": {
          "unique_labels": 8,
          "entropy": 2.0790581410796753
        }
      },
      "source_bias_analysis": {
        "climate-guard-thinking_data_nocomment_qwen_toxic_agent": {
          "kl_divergence": 0.0395716559443841
        },
        "climate-guard-synthetic_data_qwen_toxic_agent": {
          "kl_divergence": 0.045281501914864145
        },
        "climate-guard-thinking_data_nocomment_intern_toxic_agent": {
          "kl_divergence": 0.039965634146765544
        },
        "climate-guard-thinking_data_nocomment_phi4_toxic_agent": {
          "kl_divergence": 0.06259067672088119
        },
        "climate-guard-thinking_data_nocomment_yi_toxic_agent": {
          "kl_divergence": 0.044481091436281824
        },
        "climate-guard-synthetic_data_yi_toxic_agent": {
          "kl_divergence": 0.04597417615615136
        },
        "frugal_challenge_train": {
          "kl_divergence": 3.265057483962074
        },
        "climate_fever": {
          "kl_divergence": 3.265057483962074
        },
        "quota_climat": {
          "kl_divergence": 0.07482175184545027
        }
      }
    },
    "test": {
      "dominant_sources_per_label": {
        "6_proponents_biased": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "2_not_human": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "3_not_bad": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "1_not_happening": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "5_science_unreliable": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "4_solutions_harmful_unnecessary": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "7_fossil_fuels_needed": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "0_not_relevant": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        }
      },
      "label_diversity_per_source": {
        "frugal_challenge_test": {
          "unique_labels": 8,
          "entropy": 1.9926606322233085
        }
      },
      "source_bias_analysis": {
        "frugal_challenge_test": {
          "kl_divergence": 0.0
        }
      }
    }
  }
}

Intended Uses

This dataset is designed for:

  • Training climate disinformation detection models
  • Developing fact-checking systems
  • Analyzing climate-related discourse patterns
  • Research in climate communication

Limitations

  • The dataset may contain some inherent biases from source datasets
  • Some sources are synthetic or AI-generated data
  • Language is primarily English
  • Coverage may vary across different types of climate disinformation

Citation

If you use this dataset, please cite both this consolidated version and the original source datasets:

@dataset{consolidated_climate_dataset,
    author = {Your Name},
    title = {Consolidated Climate Disinformation Dataset},
    year = {2024},
    publisher = {Hugging Face},
    url = {https://huggingface.co/datasets/your-username/consolidated-climate-dataset}
}

License

This dataset is released under the same licenses as its source datasets. Please refer to individual source datasets for specific license information.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset's GitHub repository or contact the maintainers through Hugging Face.

Acknowledgments

We thank the creators and maintainers of all source datasets used in this consolidation:

  • The Tonic AI team
  • QuotaClimat team
  • Climate FEVER dataset creators
  • All other contributors to the source datasets

Updates and Maintenance

This dataset will be periodically updated to:

  • Fix any identified issues
  • Include new relevant source datasets
  • Improve data quality and consistency

Last updated: [Current Date] Version: 1.0.0