dataset_info:
features:
- name: label
dtype: string
- name: identifier
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 71882488
num_examples: 82603
- name: test
num_bytes: 405966
num_examples: 1219
download_size: 31200331
dataset_size: 72288454
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: mit
task_categories:
- text-classification
- zero-shot-classification
language:
- en
tags:
- climate
pretty_name: Climate Guard Toxic Agent
size_categories:
- 10K<n<100K
Consolidated Climate Disinformation Dataset
Dataset Description
This dataset is a comprehensive consolidation of multiple climate-related datasets, focusing on climate disinformation and factual climate information. It combines and standardizes data from various high-quality sources to create a robust resource for climate-related text classification tasks.
Dataset Sources
The dataset incorporates data from the following sources:
- Tonic Climate Guard Series:
- climate-guard-thinking_data_nocomment_qwen_toxic_agent
- climate-guard-synthetic_data_qwen_toxic_agent
- climate-guard-thinking_data_nocomment_intern_toxic_agent
- climate-guard-thinking_data_nocomment_phi4_toxic_agent
- climate-guard-thinking_data_nocomment_yi_toxic_agent
- climate-guard-synthetic_data_yi_toxic_agent
- QuotaClimat/frugalaichallenge-text-train
- Climate FEVER dataset
- Quota Climat dataset (12% random sample)
Data Processing
The dataset underwent several processing steps to ensure quality and consistency:
Text Cleaning:
- Removed responses starting with apology phrases ("I'm sorry", "I am sorry", "I apologize", "Given the directive")
- Cleaned text between "---" markers
- Standardized text formatting
Label Standardization:
- Maintained consistent label format across all sources
- Special handling for '0_not_relevant' labels from specific sources
Source Tracking:
- Added source identifiers to track data origin
- Preserved dataset provenance information
Dataset Structure
The dataset is split into training and testing sets with the following features:
DatasetDict({
'train': Dataset({
features: ['identifier', 'text', 'label'],
num_examples: <num_examples>
}),
'test': Dataset({
features: ['identifier', 'text', 'label'],
num_examples: <num_examples>
})
})
Features:
- identifier: String identifying the source dataset
- text: The main text content
- label: Classification label
Labels:
0_not_relevant
1_not_happening
2_not_human
3_not_bad
4_solutions_harmful_unnecessary
5_science_is_unreliable
6_proponents_biased
7_fossil_fuels_needed
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("your-username/consolidated-climate-dataset")
# Access training data
train_data = dataset['train']
# Access test data
test_data = dataset['test']
Dataset Statistics
{
"basic_stats": {
"total_samples": {
"train": 82603,
"test": 1219
},
"label_distribution": {
"train": {
"3_not_bad": 11011,
"4_solutions_harmful_unnecessary": 11597,
"5_science_is_unreliable": 14609,
"6_proponents_biased": 8494,
"7_fossil_fuels_needed": 10585,
"1_not_happening": 11380,
"2_not_human": 11772,
"0_not_relevant": 3155
},
"test": {
"6_proponents_biased": 139,
"2_not_human": 137,
"3_not_bad": 97,
"1_not_happening": 154,
"5_science_unreliable": 160,
"4_solutions_harmful_unnecessary": 160,
"7_fossil_fuels_needed": 65,
"0_not_relevant": 307
}
},
"source_distribution": {
"train": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1546,
"climate-guard-synthetic_data_qwen_toxic_agent": 32209,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 3297,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 28510,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 1687,
"climate-guard-synthetic_data_yi_toxic_agent": 3789,
"frugal_challenge_train": 1311,
"climate_fever": 654,
"quota_climat": 9600
},
"test": {
"frugal_challenge_test": 1219
}
},
"label_source_incidence": {
"train": {
"counts": {
"3_not_bad": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 207,
"climate-guard-synthetic_data_qwen_toxic_agent": 4116,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 478,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4332,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 218,
"climate-guard-synthetic_data_yi_toxic_agent": 496,
"quota_climat": 1164
},
"4_solutions_harmful_unnecessary": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 223,
"climate-guard-synthetic_data_qwen_toxic_agent": 4760,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 473,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4112,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 236,
"climate-guard-synthetic_data_yi_toxic_agent": 557,
"quota_climat": 1236
},
"5_science_is_unreliable": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 300,
"climate-guard-synthetic_data_qwen_toxic_agent": 5454,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 604,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 6091,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 318,
"climate-guard-synthetic_data_yi_toxic_agent": 656,
"quota_climat": 1186
},
"6_proponents_biased": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 167,
"climate-guard-synthetic_data_qwen_toxic_agent": 4535,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 389,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 1389,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 234,
"climate-guard-synthetic_data_yi_toxic_agent": 544,
"quota_climat": 1236
},
"7_fossil_fuels_needed": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 205,
"climate-guard-synthetic_data_qwen_toxic_agent": 3979,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 424,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4143,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 217,
"climate-guard-synthetic_data_yi_toxic_agent": 476,
"quota_climat": 1141
},
"1_not_happening": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 227,
"climate-guard-synthetic_data_qwen_toxic_agent": 4700,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 466,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 3976,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 236,
"climate-guard-synthetic_data_yi_toxic_agent": 548,
"quota_climat": 1227
},
"2_not_human": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 217,
"climate-guard-synthetic_data_qwen_toxic_agent": 4665,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 463,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4467,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 228,
"climate-guard-synthetic_data_yi_toxic_agent": 512,
"quota_climat": 1220
},
"0_not_relevant": {
"frugal_challenge_train": 1311,
"climate_fever": 654,
"quota_climat": 1190
}
},
"percentages": {
"3_not_bad": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.879938243574607,
"climate-guard-synthetic_data_qwen_toxic_agent": 37.38080101716466,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.3411134320225235,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 39.34247570611207,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 1.979838343474707,
"climate-guard-synthetic_data_yi_toxic_agent": 4.504586322768141,
"quota_climat": 10.571246934883298
},
"4_solutions_harmful_unnecessary": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9229110976976806,
"climate-guard-synthetic_data_qwen_toxic_agent": 41.04509787013883,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.07864102785203,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 35.45744589117875,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.0350090540657066,
"climate-guard-synthetic_data_yi_toxic_agent": 4.802966284383892,
"quota_climat": 10.657928774683107
},
"5_science_is_unreliable": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 2.053528646724622,
"climate-guard-synthetic_data_qwen_toxic_agent": 37.33315079745363,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.134437675405572,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 41.693476623998905,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.176740365528099,
"climate-guard-synthetic_data_yi_toxic_agent": 4.490382640837839,
"quota_climat": 8.118283250051338
},
"6_proponents_biased": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9660937132093244,
"climate-guard-synthetic_data_qwen_toxic_agent": 53.390628679067575,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.579703319990582,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 16.352719566753002,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.7548858017424065,
"climate-guard-synthetic_data_yi_toxic_agent": 6.404520838238757,
"quota_climat": 14.551448080998352
},
"7_fossil_fuels_needed": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9367028814359941,
"climate-guard-synthetic_data_qwen_toxic_agent": 37.590930562116206,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.005668398677374,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 39.140292867264996,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.050070854983467,
"climate-guard-synthetic_data_yi_toxic_agent": 4.496929617383089,
"quota_climat": 10.779404818138875
},
"1_not_happening": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9947275922671353,
"climate-guard-synthetic_data_qwen_toxic_agent": 41.30052724077329,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.094903339191564,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 34.93848857644991,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.0738137082601056,
"climate-guard-synthetic_data_yi_toxic_agent": 4.815465729349736,
"quota_climat": 10.782073813708259
},
"2_not_human": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.8433571185864763,
"climate-guard-synthetic_data_qwen_toxic_agent": 39.627930682976555,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 3.933061501868841,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 37.94597349643221,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 1.9367991845056065,
"climate-guard-synthetic_data_yi_toxic_agent": 4.349303431872239,
"quota_climat": 10.36357458375807
},
"0_not_relevant": {
"frugal_challenge_train": 41.55309033280507,
"climate_fever": 20.72900158478605,
"quota_climat": 37.717908082408876
}
}
},
"test": {
"counts": {
"6_proponents_biased": {
"frugal_challenge_test": 139
},
"2_not_human": {
"frugal_challenge_test": 137
},
"3_not_bad": {
"frugal_challenge_test": 97
},
"1_not_happening": {
"frugal_challenge_test": 154
},
"5_science_unreliable": {
"frugal_challenge_test": 160
},
"4_solutions_harmful_unnecessary": {
"frugal_challenge_test": 160
},
"7_fossil_fuels_needed": {
"frugal_challenge_test": 65
},
"0_not_relevant": {
"frugal_challenge_test": 307
}
},
"percentages": {
"6_proponents_biased": {
"frugal_challenge_test": 100.0
},
"2_not_human": {
"frugal_challenge_test": 100.0
},
"3_not_bad": {
"frugal_challenge_test": 100.0
},
"1_not_happening": {
"frugal_challenge_test": 100.0
},
"5_science_unreliable": {
"frugal_challenge_test": 100.0
},
"4_solutions_harmful_unnecessary": {
"frugal_challenge_test": 100.0
},
"7_fossil_fuels_needed": {
"frugal_challenge_test": 100.0
},
"0_not_relevant": {
"frugal_challenge_test": 100.0
}
}
}
}
},
"text_stats": {
"train": {
"avg_length": 111.46446254978633,
"median_length": 77.0,
"std_length": 114.89517560291323,
"min_length": 0,
"max_length": 965,
"total_words": 9207299
},
"test": {
"avg_length": 46.73502871205906,
"median_length": 37.0,
"std_length": 37.74882897285664,
"min_length": 4,
"max_length": 454,
"total_words": 56970
}
},
"vocabulary_stats": {
"train": {
"vocabulary_size": 70216,
"total_tokens": 9207299,
"unique_tokens_ratio": 0.007626123578695554
},
"test": {
"vocabulary_size": 10676,
"total_tokens": 56970,
"unique_tokens_ratio": 0.18739687554853432
}
},
"label_patterns": {
"train": {
"dominant_sources_per_label": {
"3_not_bad": {
"main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
"percentage": 39.34247570611207
},
"4_solutions_harmful_unnecessary": {
"main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
"percentage": 41.04509787013883
},
"5_science_is_unreliable": {
"main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
"percentage": 41.693476623998905
},
"6_proponents_biased": {
"main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
"percentage": 53.390628679067575
},
"7_fossil_fuels_needed": {
"main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
"percentage": 39.140292867264996
},
"1_not_happening": {
"main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
"percentage": 41.30052724077329
},
"2_not_human": {
"main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
"percentage": 39.627930682976555
},
"0_not_relevant": {
"main_source": "frugal_challenge_train",
"percentage": 41.55309033280507
}
},
"label_diversity_per_source": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": {
"unique_labels": 7,
"entropy": 1.9322811905174009
},
"climate-guard-synthetic_data_qwen_toxic_agent": {
"unique_labels": 7,
"entropy": 1.9412569930894747
},
"climate-guard-thinking_data_nocomment_intern_toxic_agent": {
"unique_labels": 7,
"entropy": 1.9376010166020219
},
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": {
"unique_labels": 7,
"entropy": 1.8879859048798708
},
"climate-guard-thinking_data_nocomment_yi_toxic_agent": {
"unique_labels": 7,
"entropy": 1.9375508611483394
},
"climate-guard-synthetic_data_yi_toxic_agent": {
"unique_labels": 7,
"entropy": 1.941023858626436
},
"frugal_challenge_train": {
"unique_labels": 1,
"entropy": 0.0
},
"climate_fever": {
"unique_labels": 1,
"entropy": 0.0
},
"quota_climat": {
"unique_labels": 8,
"entropy": 2.0790581410796753
}
},
"source_bias_analysis": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": {
"kl_divergence": 0.0395716559443841
},
"climate-guard-synthetic_data_qwen_toxic_agent": {
"kl_divergence": 0.045281501914864145
},
"climate-guard-thinking_data_nocomment_intern_toxic_agent": {
"kl_divergence": 0.039965634146765544
},
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": {
"kl_divergence": 0.06259067672088119
},
"climate-guard-thinking_data_nocomment_yi_toxic_agent": {
"kl_divergence": 0.044481091436281824
},
"climate-guard-synthetic_data_yi_toxic_agent": {
"kl_divergence": 0.04597417615615136
},
"frugal_challenge_train": {
"kl_divergence": 3.265057483962074
},
"climate_fever": {
"kl_divergence": 3.265057483962074
},
"quota_climat": {
"kl_divergence": 0.07482175184545027
}
}
},
"test": {
"dominant_sources_per_label": {
"6_proponents_biased": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"2_not_human": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"3_not_bad": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"1_not_happening": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"5_science_unreliable": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"4_solutions_harmful_unnecessary": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"7_fossil_fuels_needed": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"0_not_relevant": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
}
},
"label_diversity_per_source": {
"frugal_challenge_test": {
"unique_labels": 8,
"entropy": 1.9926606322233085
}
},
"source_bias_analysis": {
"frugal_challenge_test": {
"kl_divergence": 0.0
}
}
}
}
}
Intended Uses
This dataset is designed for:
- Training climate disinformation detection models
- Developing fact-checking systems
- Analyzing climate-related discourse patterns
- Research in climate communication
Limitations
- The dataset may contain some inherent biases from source datasets
- Some sources are synthetic or AI-generated data
- Language is primarily English
- Coverage may vary across different types of climate disinformation
Citation
If you use this dataset, please cite both this consolidated version and the original source datasets:
@dataset{consolidated_climate_dataset,
author = {Your Name},
title = {Consolidated Climate Disinformation Dataset},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/your-username/consolidated-climate-dataset}
}
License
This dataset is released under the same licenses as its source datasets. Please refer to individual source datasets for specific license information.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset's GitHub repository or contact the maintainers through Hugging Face.
Acknowledgments
We thank the creators and maintainers of all source datasets used in this consolidation:
- The Tonic AI team
- QuotaClimat team
- Climate FEVER dataset creators
- All other contributors to the source datasets
Updates and Maintenance
This dataset will be periodically updated to:
- Fix any identified issues
- Include new relevant source datasets
- Improve data quality and consistency
Last updated: [Current Date] Version: 1.0.0