|
--- |
|
pretty_name: FMUKF Containership Dataset |
|
license: cc-by-4.0 |
|
tags: |
|
- simulation |
|
- time-series |
|
- maritime |
|
- control |
|
- state-estimation |
|
- ukf |
|
- foundation-models |
|
- hdf5 |
|
- fmukf |
|
task_categories: |
|
- time-series-forecasting |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# FMUKF Containership Dataset |
|
|
|
## Dataset Summary |
|
|
|
**Containerships-Large** is the dataset used in our paper: |
|
> *Sailing Towards Zero-Shot State Estimation using Foundation Models Combined with a UKF* (CDC 2025, preprint available on [Arxiv](https://arxiv.org/abs/2509.04213) ). |
|
|
|
Please refer to the papers's [GitHub](https://github.com/Data-Science-in-Mechanical-Engineering/fm-ukf) repository and [Arxiv](https://arxiv.org/abs/2509.04213) for full code and details. |
|
|
|
It contains **1,000** unique parameterizations of a 6-DOF containership model and **400** simulated trajectories per parameterization (each 384 seconds long), useful for training and testing foundation models. |
|
The base ship model follows [Son & Nomoto (1981](https://www.jstage.jst.go.jp/article/jjasnaoe1968/1981/150/1981_150_232/_article) and the implementation are adapted from on parameters/dynamics from Thor I. Fossenβs [Marine System Simulator (MSS)](https://github.com/cybergalactic/MSS/blob/master/VESSELS/models/shipModels/dataContainer.m). |
|
|
|
- **File format:** single HDF5 file `Containerships_Large.h5` |
|
- **State vector X shape:** `(384, 10)` |
|
- **Control vector U shape:** `(384, 2)` |
|
|
|
## Supported Tasks & Benchmarks |
|
|
|
- **State estimation / filtering** |
|
- **System identification & dynamics modeling** |
|
- **Time-series forecasting / foundation models** |
|
|
|
## Dataset Structure |
|
|
|
- **Total environments (ships):** 1,000 |
|
- **Trajectories per environment:** 400 |
|
- **Timesteps per trajectory:** 384 (1 s per step) |
|
|
|
``` |
|
Containerships_Large.h5 |
|
βββ env_0/ # First Ship Parametrization |
|
β βββ .attrs["parameters"] # YAML string encoding parameters |
|
β βββ traj_0/ |
|
β β βββ x # (384, 10) state trajectory |
|
β β βββ u # (384, 2) control inputs |
|
β βββ traj_1/ |
|
β β βββ x |
|
β β βββ u |
|
β βββ ... |
|
βββ env_1/ |
|
β βββ .attrs["parameters"] |
|
β βββ traj_0/ ... |
|
βββ ... |
|
``` |
|
|
|
### Data Fields |
|
|
|
**State `x` (10-dim):** |
|
- `u` β surge velocity [m/s] |
|
- `v` β sway velocity [m/s] |
|
- `r` β yaw rate [deg/s] |
|
- `x` β North position [km] |
|
- `y` β East position [km] |
|
- `psi` β yaw angle [deg] |
|
- `p` β roll rate [deg/s] |
|
- `phi` β roll angle [deg] |
|
- `delta` β rudder angle [deg] |
|
- `n` β propeller shaft velocity [rpm] |
|
|
|
**Control `u` (2-dim,):** |
|
- `delta` β commanded rudder angle [deg] |
|
- `n` β commanded propeller shaft velocity [rpm] |
|
|
|
### Parameter Variations |
|
|
|
We sample **1,000** ship parameterizations by perturbing key physical parameters by βΒ±30% around the original base model. We filter unstable or near-duplicate systems using a similarity metric to ensure diversity and stability. Each trajectory starts from a randomized initial state; control inputs are pink noise. |
|
|
|
## How to Use |
|
|
|
### Quick start (download via `huggingface_hub`) |
|
```python |
|
from huggingface_hub import hf_hub_download |
|
import h5py, yaml, numpy as np |
|
|
|
# replace with your dataset repo id |
|
repo_id = "your-username/containerships-large" |
|
path = hf_hub_download(repo_id=repo_id, filename="Containerships_Large.h5", repo_type="dataset") |
|
|
|
with h5py.File(path, "r") as f: |
|
env_keys = list(f.keys()) |
|
|
|
# Select env (ship parametrization) and trajectory number |
|
env_key = env_keys[0] #<-- "env_0", "env_1", ..., "env_999" |
|
traj_key = "traj_0" #<-- "traj_0", "traj_1", ..., "traj_399" |
|
|
|
# Get State Vector and Control Inputs |
|
X = np.array(f[env_key][traj_key]["x"]) # (384, 10) |
|
U = np.array(f[env_key][traj_key]["u"]) # (384, 2) |
|
|
|
# Load parameters |
|
params = yaml.safe_load(f[env_key].attrs["parameters"]) |
|
|
|
``` |
|
|
|
## Data Generation & Provenance |
|
|
|
## Licensing |
|
|
|
**Dataset license:** **CC-BY-4.0** β you may use, share, and adapt the data with attribution to the authors. |
|
|
|
## Intended Uses & Limitations |
|
|
|
- **Intended uses:** research on filtering, state estimation, dynamics learning, forecasting, and control. |
|
- **Not for safety-critical use:** do **not** use to design or validate real-world maritime operations without expert verification and domain-specific validation. |
|
|
|
## Maintenance |
|
|
|
- **Authors:** Tobin Holtmann, Data Science in Mechenical Engineering, RWTH Aachen University |
|
- **Version:** v1.0 (2025-09-03) |
|
|
|
## Citation |
|
|
|
Please cite our paper and acknowledge the dataset: |
|
|
|
@article{holtmann2025fmukf, |
|
title = {Sailing Towards Zero-Shot State Estimation using Foundation Models Combined with a UKF}, |
|
author = {Holtmann, Tobin and Stenger, David and Posada-Moreno, Andres and Solowjow, Friedrich and Trimpe, Sebastian}, |
|
journal = {arXiv preprint arXiv:2509.04213}, |
|
year = {2025}, |
|
doi = {10.48550/arXiv.2509.04213}, |
|
note = {Accepted for the 64th IEEE Conference on Decision and Control (CDC 2025)}, |
|
} |
|
|
|
|