FMUKF_dataset / README.md
TobinH's picture
Update README.md
7dd6d22 verified
---
pretty_name: FMUKF Containership Dataset
license: cc-by-4.0
tags:
- simulation
- time-series
- maritime
- control
- state-estimation
- ukf
- foundation-models
- hdf5
- fmukf
task_categories:
- time-series-forecasting
size_categories:
- 100K<n<1M
---
# FMUKF Containership Dataset
## Dataset Summary
**Containerships-Large** is the dataset used in our paper:
> *Sailing Towards Zero-Shot State Estimation using Foundation Models Combined with a UKF* (CDC 2025, preprint available on [Arxiv](https://arxiv.org/abs/2509.04213) ).
Please refer to the papers's [GitHub](https://github.com/Data-Science-in-Mechanical-Engineering/fm-ukf) repository and [Arxiv](https://arxiv.org/abs/2509.04213) for full code and details.
It contains **1,000** unique parameterizations of a 6-DOF containership model and **400** simulated trajectories per parameterization (each 384 seconds long), useful for training and testing foundation models.
The base ship model follows [Son & Nomoto (1981](https://www.jstage.jst.go.jp/article/jjasnaoe1968/1981/150/1981_150_232/_article) and the implementation are adapted from on parameters/dynamics from Thor I. Fossen’s [Marine System Simulator (MSS)](https://github.com/cybergalactic/MSS/blob/master/VESSELS/models/shipModels/dataContainer.m).
- **File format:** single HDF5 file `Containerships_Large.h5`
- **State vector X shape:** `(384, 10)`
- **Control vector U shape:** `(384, 2)`
## Supported Tasks & Benchmarks
- **State estimation / filtering**
- **System identification & dynamics modeling**
- **Time-series forecasting / foundation models**
## Dataset Structure
- **Total environments (ships):** 1,000
- **Trajectories per environment:** 400
- **Timesteps per trajectory:** 384 (1 s per step)
```
Containerships_Large.h5
β”œβ”€β”€ env_0/ # First Ship Parametrization
β”‚ β”œβ”€β”€ .attrs["parameters"] # YAML string encoding parameters
β”‚ β”œβ”€β”€ traj_0/
β”‚ β”‚ β”œβ”€β”€ x # (384, 10) state trajectory
β”‚ β”‚ └── u # (384, 2) control inputs
β”‚ β”œβ”€β”€ traj_1/
β”‚ β”‚ β”œβ”€β”€ x
β”‚ β”‚ └── u
β”‚ └── ...
β”œβ”€β”€ env_1/
β”‚ β”œβ”€β”€ .attrs["parameters"]
β”‚ β”œβ”€β”€ traj_0/ ...
└── ...
```
### Data Fields
**State `x` (10-dim):**
- `u` β€” surge velocity [m/s]
- `v` β€” sway velocity [m/s]
- `r` β€” yaw rate [deg/s]
- `x` β€” North position [km]
- `y` β€” East position [km]
- `psi` β€” yaw angle [deg]
- `p` β€” roll rate [deg/s]
- `phi` β€” roll angle [deg]
- `delta` β€” rudder angle [deg]
- `n` β€” propeller shaft velocity [rpm]
**Control `u` (2-dim,):**
- `delta` β€” commanded rudder angle [deg]
- `n` β€” commanded propeller shaft velocity [rpm]
### Parameter Variations
We sample **1,000** ship parameterizations by perturbing key physical parameters by β‰ˆΒ±30% around the original base model. We filter unstable or near-duplicate systems using a similarity metric to ensure diversity and stability. Each trajectory starts from a randomized initial state; control inputs are pink noise.
## How to Use
### Quick start (download via `huggingface_hub`)
```python
from huggingface_hub import hf_hub_download
import h5py, yaml, numpy as np
# replace with your dataset repo id
repo_id = "your-username/containerships-large"
path = hf_hub_download(repo_id=repo_id, filename="Containerships_Large.h5", repo_type="dataset")
with h5py.File(path, "r") as f:
env_keys = list(f.keys())
# Select env (ship parametrization) and trajectory number
env_key = env_keys[0] #<-- "env_0", "env_1", ..., "env_999"
traj_key = "traj_0" #<-- "traj_0", "traj_1", ..., "traj_399"
# Get State Vector and Control Inputs
X = np.array(f[env_key][traj_key]["x"]) # (384, 10)
U = np.array(f[env_key][traj_key]["u"]) # (384, 2)
# Load parameters
params = yaml.safe_load(f[env_key].attrs["parameters"])
```
## Data Generation & Provenance
## Licensing
**Dataset license:** **CC-BY-4.0** β€” you may use, share, and adapt the data with attribution to the authors.
## Intended Uses & Limitations
- **Intended uses:** research on filtering, state estimation, dynamics learning, forecasting, and control.
- **Not for safety-critical use:** do **not** use to design or validate real-world maritime operations without expert verification and domain-specific validation.
## Maintenance
- **Authors:** Tobin Holtmann, Data Science in Mechenical Engineering, RWTH Aachen University
- **Version:** v1.0 (2025-09-03)
## Citation
Please cite our paper and acknowledge the dataset:
@article{holtmann2025fmukf,
title = {Sailing Towards Zero-Shot State Estimation using Foundation Models Combined with a UKF},
author = {Holtmann, Tobin and Stenger, David and Posada-Moreno, Andres and Solowjow, Friedrich and Trimpe, Sebastian},
journal = {arXiv preprint arXiv:2509.04213},
year = {2025},
doi = {10.48550/arXiv.2509.04213},
note = {Accepted for the 64th IEEE Conference on Decision and Control (CDC 2025)},
}