File size: 18,690 Bytes
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c621e
 
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c621e
 
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c621e
 
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c621e
 
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c621e
 
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c621e
 
 
 
 
 
 
9b65a04
28c621e
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfcbdd5
 
 
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c621e
 
 
 
 
 
 
 
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c621e
 
 
 
9b65a04
 
 
28c621e
 
 
 
 
 
 
 
9b65a04
 
28c621e
 
 
 
 
 
 
 
 
 
 
 
9b65a04
28c621e
9b65a04
 
28c621e
9b65a04
 
 
28c621e
9b65a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c621e
9b65a04
 
 
 
 
 
 
 
 
 
 
28c621e
9b65a04
 
 
28c621e
 
 
 
 
 
 
 
9b65a04
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# für kompletten text tokens mit labels liefern

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import json
from pathlib import Path

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {a fancy dataset},
author={Hugo Meinhof, Elisa Luebbers},
year={2024}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset contains 402 argumentative essays from non-native """

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URLS = {
#     "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
#     "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
# }


class Fancy(datasets.GeneratorBasedBuilder):
    """
    TODO: Short description of my dataset.
    """

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="full_labels",
            version=VERSION,
            description="get all the data conveyed by the labels, O, B-Claim, I-Claim, etc.",
        ),
        datasets.BuilderConfig(
            name="spans",
            version=VERSION,
            description="get the spans, O, B-Span, I-Span.",
        ),
        datasets.BuilderConfig(
            name="simple",
            version=VERSION,
            description="get the labels without B/I, O, MajorClaim, Claim, Premise",
        ),
        datasets.BuilderConfig(
            name="sep_tok",
            version=VERSION,
            description="get the labels without B/I, meaning O, Claim, Premise"
            + ", etc.\n insert seperator tokens <s> ... </s>",
        ),
        datasets.BuilderConfig(
            name="sep_tok_full_labels",
            version=VERSION,
            description="get the labels with B/I, meaning O, I-Claim, I-Premise"
            + ", etc.\n insert seperator tokens <s> ... </s>",
        ),
    ]

    DEFAULT_CONFIG_NAME = "full_labels"

    def _info(self):
        # This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        if (
            self.config.name == "full_labels"
        ):  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "B-MajorClaim",
                                "I-MajorClaim",
                                "B-Claim",
                                "I-Claim",
                                "B-Premise",
                                "I-Premise",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )
        elif (
            self.config.name == "spans"
        ):  # This is an example to show how to have different features for "first_domain" and "second_domain"
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "B",
                                "I",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )
        elif (
            self.config.name == "simple"
        ):  # This is an example to show how to have different features for "first_domain" and "second_domain"
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "X_placeholder_X",
                                "MajorClaim",
                                "Claim",
                                "Premise",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )
        elif self.config.name == "sep_tok":
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "X_placeholder_X",
                                "MajorClaim",
                                "Claim",
                                "Premise",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )
        elif self.config.name == "sep_tok_full_labels":
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "B-MajorClaim",
                                "I-MajorClaim",
                                "B-Claim",
                                "I-Claim",
                                "B-Premise",
                                "I-Premise",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _range_generator(self, train=0.8, test=0.2):
        """
        returns three range objects to access the list of essays
        these are the train, test, and validate range, where the size of the
        validation range is dictated by the other two ranges
        """
        return (
            range(0, int(402 * train)),  # train
            range(int(402 * train), int(402 * (train + test))),  # test
            range(int(402 * (train + test)), 402),  # validate
        )

    @staticmethod
    def _find_data():
        """
        try to find the data folder and return the path to it if found,
        otherwise return none

        returns:
            path to data folder or None
        """

        # get path to the current working directory
        cwd = Path.cwd()
        # check for whether the data folder is in cwd.
        # if it isnt, change cwd to its parent directory
        # do this three times only (dont want infinite recursion)
        for _ in range(5):
            if Path.is_dir(cwd / "essays_SuG"):
                print(f"found 'essays_SuG' folder at {cwd}")
                # input(f"returning {cwd / 'essays_SuG'}")
                return cwd / "essays_SuG"
            if Path.is_dir(cwd / "data"):
                print(f"found 'data' folder at {cwd}")
                # input(f"returning {cwd / 'data'}")
                return cwd / "data"
            cwd = cwd.parent
        raise FileNotFoundError("data directory has not been found")

    def _get_essay_list(self):
        """
        read the essay.json and return a list of dicts, where each dict is an essay
        """

        path = self._find_data() / "essay.json"
        with open(path, "r") as r:
            lines = r.readlines()

        essays = []
        for line in lines:
            essays.append(json.loads(line))

        return essays

    def _split_generators(self, dl_manager):
        # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive

        # this dataset will return a "train" split only, allowing for
        # 5-fold cross-validation
        train, test, validate = self._range_generator(1, 0)
        essays = self._get_essay_list()

        if len(validate) > 0:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data": essays,
                        "id_range": train,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data": essays,
                        "id_range": validate,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data": essays,
                        "id_range": test,
                    },
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data": essays,
                        "id_range": train,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data": essays,
                        "id_range": test,
                    },
                ),
            ]

    def _get_id(self, essay):
        return int(essay["docID"].split("_")[-1])

    def _get_tokens(self, essay):
        tokens = []
        for sentence in essay["sentences"]:
            for token in sentence["tokens"]:
                tokens.append(
                    (
                        token["surface"],
                        token["gid"],
                        token["characterOffsetBegin"],
                        token["characterOffsetEnd"],
                    )
                )
        return tokens

    def _get_label_dict(self, essay):
        label_dict = {}
        for unit in essay["argumentation"]["units"]:
            if self.config.name == "spans":
                label = "Span"
            else:
                label = unit["attributes"]["role"]
            for i, gid in enumerate(unit["tokens"]):
                if i == 0:
                    location = "B-"
                else:
                    location = "I-"
                label_dict[gid] = location + label
        return label_dict

    def _match_tokens(self, tokens, label_dict):
        text = []
        labels = []
        begins = []
        ends = []
        last_end = 0
        for surface, gid, begin, end in tokens:
            # for each token, unpack it into its surface and gid
            # then match the gid to the label and pack them back together

            if label_dict.get(gid, "O")[0] == "B":
                # if we are at the beginning of a span
                # insert begin of sequence token (BOS) and "O" label
                if (
                    self.config.name == "sep_tok"
                    or self.config.name == "sep_tok_full_labels"
                ):
                    # if the config requires separator tokens
                    text.append("<s>")
                    labels.append("O")
                begins.append(begin)
            elif (
                label_dict.get(gid, "O") == "O"
                and len(labels) != 0
                and labels[-1][0] != "O"
            ):
                # if we are not in a span, and the previous label was
                # of a span
                # intert end of sequence token (EOS) and "O" label
                if (
                    self.config.name == "sep_tok"
                    or self.config.name == "sep_tok_full_labels"
                ):
                    # if the config requires separator tokens
                    text.append("</s>")
                    labels.append("O")
                ends.append(last_end)

            # always append the surface form
            text.append(surface)
            last_end = end

            # append the correct type of label, depending on the config
            if self.config.name == "full_labels":
                labels.append(label_dict.get(gid, "O"))

            elif self.config.name == "spans":
                labels.append(label_dict.get(gid, "O")[0])

            elif self.config.name == "simple":
                labels.append(label_dict.get(gid, "__O")[2:])

            elif self.config.name == "sep_tok":
                labels.append(label_dict.get(gid, "__O")[2:])

            elif self.config.name == "sep_tok_full_labels":
                labels.append(label_dict.get(gid, "O"))

            else:
                raise KeyError()
        return text, labels, begins, ends

    def _get_text(self, essay):
        return essay["text"]

    def _process_essay(self, essay):
        id = self._get_id(essay)
        # input(id)
        tokens = self._get_tokens(essay)
        # input(tokens)
        label_dict = self._get_label_dict(essay)
        # input(label_dict)
        tokens, labels, begins, ends = self._match_tokens(tokens, label_dict)
        # input(tokens)
        # input(labels)
        text = self._get_text(essay)
        return {
            "id": id,
            "tokens": tokens,
            "ner_tags": labels,
            "text": text,
            "span_begins": begins,
            "span_ends": ends,
        }

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, data, id_range):
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.

        for id in id_range:
            # input(data[id])
            yield id, self._process_essay(data[id])