Commit
·
9b65a04
1
Parent(s):
503bd8f
first commit
Browse files- essays_SuG_dataset.py +435 -0
essays_SuG_dataset.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# für kompletten text tokens mit labels liefern
|
2 |
+
|
3 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
17 |
+
"""TODO: Add a description here."""
|
18 |
+
|
19 |
+
|
20 |
+
import json
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
|
25 |
+
|
26 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
27 |
+
_CITATION = """\
|
28 |
+
@InProceedings{huggingface:dataset,
|
29 |
+
title = {a fancy dataset},
|
30 |
+
author={Hugo Meinhof, Elisa Luebbers},
|
31 |
+
year={2024}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
# TODO: Add description of the dataset here
|
36 |
+
# You can copy an official description
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
This dataset contains 402 argumentative essays from non-native """
|
39 |
+
|
40 |
+
# TODO: Add a link to an official homepage for the dataset here
|
41 |
+
_HOMEPAGE = ""
|
42 |
+
|
43 |
+
# TODO: Add the licence for the dataset here if you can find it
|
44 |
+
_LICENSE = ""
|
45 |
+
|
46 |
+
# TODO: Add link to the official dataset URLs here
|
47 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
48 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
49 |
+
# _URLS = {
|
50 |
+
# "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
51 |
+
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
52 |
+
# }
|
53 |
+
|
54 |
+
|
55 |
+
class Fancy(datasets.GeneratorBasedBuilder):
|
56 |
+
"""
|
57 |
+
TODO: Short description of my dataset.
|
58 |
+
"""
|
59 |
+
|
60 |
+
VERSION = datasets.Version("1.1.0")
|
61 |
+
|
62 |
+
# This is an example of a dataset with multiple configurations.
|
63 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
64 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
65 |
+
|
66 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
67 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
68 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
69 |
+
|
70 |
+
# You will be able to load one or the other configurations in the following list with
|
71 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
72 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
73 |
+
|
74 |
+
BUILDER_CONFIGS = [
|
75 |
+
datasets.BuilderConfig(
|
76 |
+
name="full_labels",
|
77 |
+
version=VERSION,
|
78 |
+
description="get all the data conveyed by the labels, O, B-Claim, I-Claim, etc.",
|
79 |
+
),
|
80 |
+
datasets.BuilderConfig(
|
81 |
+
name="spans",
|
82 |
+
version=VERSION,
|
83 |
+
description="get the spans, O, B-Span, I-Span.",
|
84 |
+
),
|
85 |
+
datasets.BuilderConfig(
|
86 |
+
name="simple",
|
87 |
+
version=VERSION,
|
88 |
+
description="get the labels without B/I, O, MajorClaim, Claim, Premise",
|
89 |
+
),
|
90 |
+
datasets.BuilderConfig(
|
91 |
+
name="sep_tok",
|
92 |
+
version=VERSION,
|
93 |
+
description="get the labels without B/I, meaning O, Claim, Premise"
|
94 |
+
+ ", etc.\n insert seperator tokens <s> ... </s>",
|
95 |
+
),
|
96 |
+
datasets.BuilderConfig(
|
97 |
+
name="sep_tok_full_labels",
|
98 |
+
version=VERSION,
|
99 |
+
description="get the labels with B/I, meaning O, I-Claim, I-Premise"
|
100 |
+
+ ", etc.\n insert seperator tokens <s> ... </s>",
|
101 |
+
),
|
102 |
+
]
|
103 |
+
|
104 |
+
DEFAULT_CONFIG_NAME = "full_labels"
|
105 |
+
|
106 |
+
def _info(self):
|
107 |
+
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
108 |
+
if (
|
109 |
+
self.config.name == "full_labels"
|
110 |
+
): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
111 |
+
features = datasets.Features(
|
112 |
+
{
|
113 |
+
"id": datasets.Value("int16"),
|
114 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
115 |
+
"ner_tags": datasets.Sequence(
|
116 |
+
datasets.ClassLabel(
|
117 |
+
names=[
|
118 |
+
"O",
|
119 |
+
"B-MajorClaim",
|
120 |
+
"I-MajorClaim",
|
121 |
+
"B-Claim",
|
122 |
+
"I-Claim",
|
123 |
+
"B-Premise",
|
124 |
+
"I-Premise",
|
125 |
+
]
|
126 |
+
)
|
127 |
+
),
|
128 |
+
"text": datasets.Value("string"),
|
129 |
+
}
|
130 |
+
)
|
131 |
+
elif (
|
132 |
+
self.config.name == "spans"
|
133 |
+
): # This is an example to show how to have different features for "first_domain" and "second_domain"
|
134 |
+
features = datasets.Features(
|
135 |
+
{
|
136 |
+
"id": datasets.Value("int16"),
|
137 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
138 |
+
"ner_tags": datasets.Sequence(
|
139 |
+
datasets.ClassLabel(
|
140 |
+
names=[
|
141 |
+
"O",
|
142 |
+
"B",
|
143 |
+
"I",
|
144 |
+
]
|
145 |
+
)
|
146 |
+
),
|
147 |
+
"text": datasets.Value("string"),
|
148 |
+
}
|
149 |
+
)
|
150 |
+
elif (
|
151 |
+
self.config.name == "simple"
|
152 |
+
): # This is an example to show how to have different features for "first_domain" and "second_domain"
|
153 |
+
features = datasets.Features(
|
154 |
+
{
|
155 |
+
"id": datasets.Value("int16"),
|
156 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
157 |
+
"ner_tags": datasets.Sequence(
|
158 |
+
datasets.ClassLabel(
|
159 |
+
names=[
|
160 |
+
"O",
|
161 |
+
"X_placeholder_X",
|
162 |
+
"MajorClaim",
|
163 |
+
"Claim",
|
164 |
+
"Premise",
|
165 |
+
]
|
166 |
+
)
|
167 |
+
),
|
168 |
+
"text": datasets.Value("string"),
|
169 |
+
}
|
170 |
+
)
|
171 |
+
elif self.config.name == "sep_tok":
|
172 |
+
features = datasets.Features(
|
173 |
+
{
|
174 |
+
"id": datasets.Value("int16"),
|
175 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
176 |
+
"ner_tags": datasets.Sequence(
|
177 |
+
datasets.ClassLabel(
|
178 |
+
names=[
|
179 |
+
"O",
|
180 |
+
"X_placeholder_X",
|
181 |
+
"MajorClaim",
|
182 |
+
"Claim",
|
183 |
+
"Premise",
|
184 |
+
]
|
185 |
+
)
|
186 |
+
),
|
187 |
+
"text": datasets.Value("string"),
|
188 |
+
}
|
189 |
+
)
|
190 |
+
elif self.config.name == "sep_tok_full_labels":
|
191 |
+
features = datasets.Features(
|
192 |
+
{
|
193 |
+
"id": datasets.Value("int16"),
|
194 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
195 |
+
"ner_tags": datasets.Sequence(
|
196 |
+
datasets.ClassLabel(
|
197 |
+
names=[
|
198 |
+
"O",
|
199 |
+
"B-MajorClaim",
|
200 |
+
"I-MajorClaim",
|
201 |
+
"B-Claim",
|
202 |
+
"I-Claim",
|
203 |
+
"B-Premise",
|
204 |
+
"I-Premise",
|
205 |
+
]
|
206 |
+
)
|
207 |
+
),
|
208 |
+
"text": datasets.Value("string"),
|
209 |
+
}
|
210 |
+
)
|
211 |
+
|
212 |
+
return datasets.DatasetInfo(
|
213 |
+
# This is the description that will appear on the datasets page.
|
214 |
+
description=_DESCRIPTION,
|
215 |
+
# This defines the different columns of the dataset and their types
|
216 |
+
features=features, # Here we define them above because they are different between the two configurations
|
217 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
218 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
219 |
+
# supervised_keys=("sentence", "label"),
|
220 |
+
# Homepage of the dataset for documentation
|
221 |
+
homepage=_HOMEPAGE,
|
222 |
+
# License for the dataset if available
|
223 |
+
license=_LICENSE,
|
224 |
+
# Citation for the dataset
|
225 |
+
citation=_CITATION,
|
226 |
+
)
|
227 |
+
|
228 |
+
def _range_generator(self, train=0.8, test=0.2):
|
229 |
+
"""
|
230 |
+
returns three range objects to access the list of essays
|
231 |
+
these are the train, test, and validate range, where the size of the
|
232 |
+
validation range is dictated by the other two ranges
|
233 |
+
"""
|
234 |
+
return (
|
235 |
+
range(0, int(402 * train)), # train
|
236 |
+
range(int(402 * train), int(402 * (train + test))), # test
|
237 |
+
range(int(402 * (train + test)), 402), # validate
|
238 |
+
)
|
239 |
+
|
240 |
+
@staticmethod
|
241 |
+
def _find_data():
|
242 |
+
"""
|
243 |
+
try to find the data folder and return the path to it if found,
|
244 |
+
otherwise return none
|
245 |
+
|
246 |
+
returns:
|
247 |
+
path to data folder or None
|
248 |
+
"""
|
249 |
+
|
250 |
+
# get path to the current working directory
|
251 |
+
cwd = Path.cwd()
|
252 |
+
# check for whether the data folder is in cwd.
|
253 |
+
# if it isnt, change cwd to its parent directory
|
254 |
+
# do this three times only (dont want infinite recursion)
|
255 |
+
for _ in range(3):
|
256 |
+
if Path.is_dir(cwd / "fancy_dataset"):
|
257 |
+
# print(f"found 'data' folder at {cwd}")
|
258 |
+
# input(f"returning {cwd / 'data'}")
|
259 |
+
return cwd / "fancy_dataset"
|
260 |
+
cwd = cwd.parent
|
261 |
+
raise FileNotFoundError("data directory has not been found")
|
262 |
+
|
263 |
+
def _get_essay_list(self):
|
264 |
+
"""
|
265 |
+
read the essay.json and return a list of dicts, where each dict is an essay
|
266 |
+
"""
|
267 |
+
|
268 |
+
path = self._find_data() / "essay.json"
|
269 |
+
with open(path, "r") as r:
|
270 |
+
lines = r.readlines()
|
271 |
+
|
272 |
+
essays = []
|
273 |
+
for line in lines:
|
274 |
+
essays.append(json.loads(line))
|
275 |
+
|
276 |
+
return essays
|
277 |
+
|
278 |
+
def _split_generators(self, dl_manager):
|
279 |
+
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
280 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
281 |
+
|
282 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
283 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
284 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
285 |
+
|
286 |
+
train, test, validate = self._range_generator()
|
287 |
+
essays = self._get_essay_list()
|
288 |
+
|
289 |
+
if len(validate) > 0:
|
290 |
+
return [
|
291 |
+
datasets.SplitGenerator(
|
292 |
+
name=datasets.Split.TRAIN,
|
293 |
+
# These kwargs will be passed to _generate_examples
|
294 |
+
gen_kwargs={
|
295 |
+
"data": essays,
|
296 |
+
"id_range": train,
|
297 |
+
},
|
298 |
+
),
|
299 |
+
datasets.SplitGenerator(
|
300 |
+
name=datasets.Split.VALIDATION,
|
301 |
+
# These kwargs will be passed to _generate_examples
|
302 |
+
gen_kwargs={
|
303 |
+
"data": essays,
|
304 |
+
"id_range": validate,
|
305 |
+
},
|
306 |
+
),
|
307 |
+
datasets.SplitGenerator(
|
308 |
+
name=datasets.Split.TEST,
|
309 |
+
# These kwargs will be passed to _generate_examples
|
310 |
+
gen_kwargs={
|
311 |
+
"data": essays,
|
312 |
+
"id_range": test,
|
313 |
+
},
|
314 |
+
),
|
315 |
+
]
|
316 |
+
else:
|
317 |
+
return [
|
318 |
+
datasets.SplitGenerator(
|
319 |
+
name=datasets.Split.TRAIN,
|
320 |
+
# These kwargs will be passed to _generate_examples
|
321 |
+
gen_kwargs={
|
322 |
+
"data": essays,
|
323 |
+
"id_range": train,
|
324 |
+
},
|
325 |
+
),
|
326 |
+
datasets.SplitGenerator(
|
327 |
+
name=datasets.Split.TEST,
|
328 |
+
# These kwargs will be passed to _generate_examples
|
329 |
+
gen_kwargs={
|
330 |
+
"data": essays,
|
331 |
+
"id_range": test,
|
332 |
+
},
|
333 |
+
),
|
334 |
+
]
|
335 |
+
|
336 |
+
def _get_id(self, essay):
|
337 |
+
return int(essay["docID"].split("_")[-1])
|
338 |
+
|
339 |
+
def _get_tokens(self, essay):
|
340 |
+
tokens = []
|
341 |
+
for sentence in essay["sentences"]:
|
342 |
+
for token in sentence["tokens"]:
|
343 |
+
tokens.append((token["surface"], token["gid"]))
|
344 |
+
return tokens
|
345 |
+
|
346 |
+
def _get_label_dict(self, essay):
|
347 |
+
label_dict = {}
|
348 |
+
for unit in essay["argumentation"]["units"]:
|
349 |
+
if self.config.name == "spans":
|
350 |
+
label = "Span"
|
351 |
+
else:
|
352 |
+
label = unit["attributes"]["role"]
|
353 |
+
for i, gid in enumerate(unit["tokens"]):
|
354 |
+
if i == 0:
|
355 |
+
location = "B-"
|
356 |
+
else:
|
357 |
+
location = "I-"
|
358 |
+
label_dict[gid] = location + label
|
359 |
+
return label_dict
|
360 |
+
|
361 |
+
def _match_tokens(self, tokens, label_dict):
|
362 |
+
text = []
|
363 |
+
labels = []
|
364 |
+
for surface, gid in tokens:
|
365 |
+
# for each token, unpack it into its surface and gid
|
366 |
+
# then match the gid to the label and pack them back together
|
367 |
+
|
368 |
+
# if the config requires separator tokens
|
369 |
+
if (
|
370 |
+
self.config.name == "sep_tok"
|
371 |
+
or self.config.name == "sep_tok_full_labels"
|
372 |
+
):
|
373 |
+
if label_dict.get(gid, "O")[0] == "B":
|
374 |
+
# if we are at the beginning of a span
|
375 |
+
# insert begin of sequence token (BOS) and "O" label
|
376 |
+
text.append("<s>")
|
377 |
+
labels.append("O")
|
378 |
+
elif (
|
379 |
+
label_dict.get(gid, "O") == "O"
|
380 |
+
and len(labels) != 0
|
381 |
+
and labels[-1][0] != "O"
|
382 |
+
):
|
383 |
+
# if we are not in a span, and the previous label was
|
384 |
+
# of a span
|
385 |
+
# intert end of sequence token (EOS) and "O" label
|
386 |
+
text.append("</s>")
|
387 |
+
labels.append("O")
|
388 |
+
|
389 |
+
# always append the surface form
|
390 |
+
text.append(surface)
|
391 |
+
|
392 |
+
# append the correct type of label, depending on the config
|
393 |
+
if self.config.name == "full_labels":
|
394 |
+
labels.append(label_dict.get(gid, "O"))
|
395 |
+
|
396 |
+
elif self.config.name == "spans":
|
397 |
+
labels.append(label_dict.get(gid, "O")[0])
|
398 |
+
|
399 |
+
elif self.config.name == "simple":
|
400 |
+
labels.append(label_dict.get(gid, "__O")[2:])
|
401 |
+
|
402 |
+
elif self.config.name == "sep_tok":
|
403 |
+
labels.append(label_dict.get(gid, "__O")[2:])
|
404 |
+
|
405 |
+
elif self.config.name == "sep_tok_full_labels":
|
406 |
+
labels.append(label_dict.get(gid, "O"))
|
407 |
+
|
408 |
+
else:
|
409 |
+
raise KeyError()
|
410 |
+
return text, labels
|
411 |
+
|
412 |
+
def _get_text(self, essay):
|
413 |
+
return essay["text"]
|
414 |
+
|
415 |
+
def _process_essay(self, essay):
|
416 |
+
id = self._get_id(essay)
|
417 |
+
# input(id)
|
418 |
+
tokens = self._get_tokens(essay)
|
419 |
+
# input(tokens)
|
420 |
+
label_dict = self._get_label_dict(essay)
|
421 |
+
# input(label_dict)
|
422 |
+
tokens, labels = self._match_tokens(tokens, label_dict)
|
423 |
+
# input(tokens)
|
424 |
+
# input(labels)
|
425 |
+
text = self._get_text(essay)
|
426 |
+
return {"id": id, "tokens": tokens, "ner_tags": labels, "text": text}
|
427 |
+
|
428 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
429 |
+
def _generate_examples(self, data, id_range):
|
430 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
431 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
432 |
+
|
433 |
+
for id in id_range:
|
434 |
+
# input(data[id])
|
435 |
+
yield id, self._process_essay(data[id])
|