Dataset Viewer
Auto-converted to Parquet
F1
int64
741
805
F2
int64
811
872
F3
int64
851
920
F4
int64
697
891
F5
int64
771
811
Acc_Fin_x
int64
-513
209
Acc_Fin_y
int64
-314
316
Acc_Fin_z
int64
-375
261
Acc_Palm_x
int64
-297
128
Acc_Palm_y
int64
-280
252
Acc_Palm_z
int64
-204
322
Acc_Arm_x
int64
-10
1
Acc_Arm_y
int64
246
264
Acc_Arm_z
int64
13
43
label
stringclasses
6 values
750
842
883
773
785
-128
-201
-122
-89
-246
51
-4
250
36
Bad
749
830
879
712
794
-136
-208
-117
-94
-238
74
-6
249
35
Bad
759
835
885
850
788
-146
51
141
-266
14
7
-5
249
35
Bad
750
851
879
875
773
186
114
96
128
198
91
-7
251
38
Bad
757
840
893
705
802
-67
167
144
-151
212
-71
-7
250
35
Bad
743
841
876
858
787
-253
69
-9
-253
0
-98
-8
251
35
Bad
745
841
884
885
784
-13
38
170
-62
192
45
-7
251
37
Bad
743
841
889
867
786
-190
-94
121
-230
3
115
-7
250
40
Bad
752
836
882
844
776
186
45
162
95
204
127
-7
250
36
Bad
754
845
890
891
796
-213
-23
99
-250
36
44
-6
248
37
Bad
756
843
875
870
794
-126
189
145
-178
221
-82
-4
250
36
Bad
742
851
884
770
771
-255
-210
-18
-232
-188
103
-4
250
35
Bad
750
840
875
798
784
209
46
159
125
221
107
-7
250
38
Bad
744
856
887
846
781
-137
-202
-113
-88
-242
52
-5
249
35
Bad
749
842
881
799
780
-179
-44
144
-234
54
89
-6
249
35
Bad
746
837
880
887
791
-196
4
133
-245
79
44
-8
252
34
Bad
757
838
878
842
786
-129
240
63
-200
216
-113
-7
251
36
Bad
746
845
884
844
793
-218
-1
96
-254
38
27
-8
252
37
Bad
752
860
893
884
790
-194
-37
144
-236
95
64
-7
249
35
Bad
741
841
887
706
789
126
12
200
47
174
169
-6
252
36
Bad
748
841
871
706
780
-463
-230
20
-53
-90
322
-8
248
18
Good
756
844
882
708
782
-512
-101
-333
-72
-256
47
-9
247
15
Good
756
844
883
710
787
-512
-143
-290
-114
-256
87
-7
247
18
Good
750
853
869
708
779
-495
-106
-64
-80
-17
233
-9
250
15
Good
752
846
880
708
792
-511
66
-8
-184
167
71
-8
249
15
Good
749
848
896
707
786
-512
-102
-339
-88
-248
61
-8
247
15
Good
750
840
883
714
794
-511
-27
60
-211
159
175
-10
248
17
Good
766
826
876
710
801
-512
157
-155
-91
52
-88
-6
248
18
Good
762
843
872
704
784
-512
181
-81
-234
118
-4
-8
249
16
Good
753
848
872
708
786
-397
196
-52
-13
220
37
-9
249
14
Good
752
839
886
705
787
-512
27
-193
-219
2
-13
-9
250
18
Good
749
845
880
712
785
-513
-103
-325
-81
-252
49
-8
249
15
Good
753
843
879
707
785
-387
174
-131
7
178
70
-7
246
14
Good
753
844
876
697
786
-512
307
-42
-128
252
-49
-7
248
16
Good
756
842
874
708
796
-488
-139
-82
-57
-63
234
-8
248
17
Good
744
840
882
708
790
-512
-101
-342
-69
-255
43
-9
247
16
Good
754
849
871
704
781
-512
246
-159
-89
96
-136
-7
248
17
Good
757
844
871
708
789
-513
316
-258
-167
147
-155
-8
249
16
Good
747
839
851
705
789
-455
-115
-66
-50
-49
249
-8
247
14
Good
759
849
879
707
791
-513
73
-8
-217
108
90
-7
247
16
Good
753
849
881
717
793
-216
178
-62
-196
175
-38
-6
260
18
Hungry
759
850
887
718
795
10
-237
102
-16
-54
235
-2
260
20
Hungry
771
855
887
718
795
41
-180
166
-10
-15
244
-4
261
17
Hungry
757
854
894
717
795
-137
-124
144
-273
39
79
-4
262
16
Hungry
788
860
897
718
796
-194
-85
261
-234
100
91
-4
263
17
Hungry
762
852
883
718
795
63
-226
118
17
-41
251
-5
263
18
Hungry
760
852
887
716
795
-159
-57
174
-225
56
113
-2
261
19
Hungry
783
856
887
716
795
-28
-234
128
-53
-11
234
-2
260
18
Hungry
767
853
885
717
796
18
-227
139
-22
-35
237
-3
262
20
Hungry
762
851
882
719
794
49
-233
130
1
-41
246
-4
262
16
Hungry
759
851
874
718
795
98
-133
189
26
-3
250
-4
263
17
Hungry
761
852
883
720
796
47
-223
129
1
-32
249
-6
263
19
Hungry
762
855
893
719
793
-121
-65
121
-215
77
101
-4
261
18
Hungry
766
855
891
718
793
-305
-29
183
-267
147
159
-4
261
17
Hungry
764
853
891
719
793
32
-128
-37
-31
9
209
-5
262
17
Hungry
766
855
889
716
795
-160
-274
107
-95
-65
215
-6
261
16
Hungry
774
856
893
721
796
-181
-43
130
-246
80
98
-4
262
19
Hungry
761
851
886
716
796
5
-231
108
-22
-50
237
-4
263
16
Hungry
760
851
890
716
793
2
-236
109
-13
-47
235
-3
263
19
Hungry
753
849
880
715
793
-215
177
-63
-197
177
-39
-4
260
17
Hungry
769
846
881
768
791
-67
-228
-130
-34
-246
75
-9
250
40
Me
777
847
876
799
791
-60
-243
-125
-22
-246
95
-8
252
42
Me
777
846
876
798
790
-59
-241
-125
-21
-248
94
-8
252
43
Me
767
850
884
798
788
-70
-235
-125
-38
-242
92
-9
252
43
Me
758
849
884
797
789
-48
-240
-143
-4
-245
109
-8
252
43
Me
771
848
874
791
788
-81
-224
-138
-55
-246
72
-8
250
41
Me
766
852
884
814
796
-168
-256
141
-177
6
203
-9
250
41
Me
766
842
886
803
786
-90
-241
-113
-58
-229
125
-8
250
42
Me
785
849
893
778
779
-237
167
80
-246
164
-118
-9
251
42
Me
751
847
883
799
789
-114
-199
-155
-73
-250
53
-8
251
41
Me
766
854
880
788
791
-96
-211
-143
-65
-236
86
-9
252
42
Me
758
867
884
762
775
-225
-152
-96
-182
-149
72
-7
250
41
Me
763
811
877
790
783
-182
-314
-105
-142
-280
157
-7
250
39
Me
765
839
885
789
789
-188
-235
-37
-210
-86
188
-10
253
43
Me
758
846
877
800
790
-100
-219
-134
-63
-244
78
-8
250
41
Me
775
855
887
791
788
-214
50
81
-205
109
-19
-8
253
40
Me
768
847
884
796
788
-91
-229
-127
-55
-241
83
-7
250
41
Me
751
847
882
789
775
-100
-210
-141
-67
-233
91
-7
252
40
Me
762
849
883
775
782
-99
-216
-141
-67
-237
90
-10
252
43
Me
766
848
878
794
785
-92
-219
-135
-53
-246
64
-7
251
40
Me
741
845
868
708
796
-474
-130
-82
-45
-81
231
-8
249
14
Null
751
852
880
705
788
-512
-70
-369
-89
-239
65
-7
247
17
Null
779
841
877
855
790
102
78
191
71
250
63
-6
251
37
Null
747
845
880
707
786
-512
-1
-9
-172
130
139
-9
249
14
Null
748
840
874
803
785
-197
141
-78
-191
-11
-176
-6
250
37
Null
752
841
879
848
786
-240
-37
63
-256
-1
47
-8
251
36
Null
750
857
886
708
786
-512
-71
-375
-91
-246
56
-8
248
16
Null
742
838
879
788
784
-187
-45
143
-238
49
87
-6
250
37
Null
759
843
870
705
785
-496
-132
-95
-59
-63
228
-7
248
17
Null
747
837
886
801
794
-198
138
-78
-193
-10
-173
-6
250
37
Null
747
839
871
796
784
-159
-99
148
-213
43
129
-6
250
38
Null
745
842
863
710
786
-475
-123
-84
-50
-78
225
-8
249
15
Null
750
854
875
720
787
-63
-203
133
-100
-10
222
-7
249
13
Null
767
836
884
758
811
-75
-241
-123
-33
-249
84
-8
251
41
Null
773
831
883
775
783
-120
-225
-144
-99
-255
90
-8
251
37
Null
754
832
863
717
791
-512
-118
-83
-87
-16
236
-9
249
16
Null
743
852
882
706
783
-126
-215
-118
-94
-229
90
-6
250
36
Null
757
859
868
713
789
96
-41
-76
-63
-5
131
-8
248
15
Null
755
851
868
711
789
-512
-110
-105
-119
5
221
-9
248
16
Null
776
839
877
720
796
-452
-134
-40
-21
218
75
-10
249
17
Null
End of preview. Expand in Data Studio

Sensor-Based Motion Data Dataset

Description

This dataset contains sensor-based motion data collected from multiple files, each representing different recording sessions. It captures acceleration readings from various body parts, making it valuable for human activity recognition, biomechanics analysis, and motion classification.

Dataset Details

Columns:

  • F1, F2, F3, F4, F5 – Feature values representing signal intensities or raw sensor readings.
  • Acc_Fin_x, Acc_Fin_y, Acc_Fin_z – Accelerometer readings from the fingers in x, y, and z directions.
  • Acc_Palm_x, Acc_Palm_y, Acc_Palm_z – Accelerometer readings from the palm in x, y, and z directions.
  • Acc_Arm_x, Acc_Arm_y, Acc_Arm_z – Accelerometer readings from the arm in x, y, and z directions.

Notes:

  • The dataset consists of multiple files, each containing sensor readings over time.
  • Values are likely recorded at a fixed sampling rate, making the dataset useful for time-series analysis.
  • The dataset can be applied to motion recognition, gesture classification, and biomechanical research.

Use Cases

  • Human activity recognition – Classify different hand and arm movements.
  • Gesture-based interface development – Use motion data for interactive systems.
  • Sports and rehabilitation analytics – Analyze motion patterns for performance and recovery tracking.
  • Machine learning applications – Train models for predictive motion analysis.

How to Use

You can load the dataset using the datasets library:

from datasets import load_dataset

dataset = load_dataset("Tarakeshwaran/Hackathon-Dataset_Round_2_test")
print(dataset)
Downloads last month
9